1
|
Wellman SM, Forrest AM, Douglas MM, Subbaraman A, Zhang G, Kozai TDY. Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes. Biomaterials 2025; 315:122963. [PMID: 39547137 DOI: 10.1016/j.biomaterials.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease. While the intimate relationship between pericytes and the cortical microvasculature have been explored in other disease states, their behavior following microelectrode implantation, which is responsible for direct blood vessel disruption and dysfunction, is currently unknown. Using two-photon microscopy we observed dynamic changes in the structure and function of pericytes during implantation of a microelectrode array over a 4-week implantation period. Pericytes respond to electrode insertion through transient increases in intracellular calcium and underlying constriction of capillary vessels. Within days following the initial insertion, we observed an influx of new, proliferating pericytes which contribute to new blood vessel formation. Additionally, we discovered a potentially novel population of reactive immune cells in close proximity to the electrode-tissue interface actively engaging in encapsulation of the microelectrode array. Finally, we determined that intracellular pericyte calcium can be modulated by intracortical microstimulation in an amplitude- and frequency-dependent manner. This study provides a new perspective on the complex biological sequelae occurring at the electrode-tissue interface and will foster new avenues of potential research consideration and lead to development of more advanced therapeutic interventions towards improving the biocompatibility of neural electrode technology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Madeline M Douglas
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashwat Subbaraman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangfeng Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
3
|
Li Y, Zhou L, Deng H, Zhang Y, Li G, Yu H, Wu K, Wang F. A switch in the pathway of TRPC3-mediated calcium influx into brain pericytes contributes to capillary spasms after subarachnoid hemorrhage. Neurotherapeutics 2024; 21:e00380. [PMID: 38839450 PMCID: PMC11581875 DOI: 10.1016/j.neurot.2024.e00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
Calcium influx and subsequent elevation of the intracellular calcium concentration ([Ca2+]i) induce contractions of brain pericytes and capillary spasms following subarachnoid hemorrhage. This calcium influx is exerted through cation channels. However, the specific calcium influx pathways in brain pericytes after subarachnoid hemorrhage remain unknown. Transient receptor potential canonical 3 (TRPC3) is the most abundant cation channel potentially involved in calcium influx into brain pericytes and is involved in calcium influx into other cell types either via store-operated calcium entry (SOCE) or receptor-operated calcium entry (ROCE). Therefore, we hypothesized that TRPC3 is associated with [Ca2+]i elevation in brain pericytes, potentially mediating brain pericyte contraction and capillary spasms after subarachnoid hemorrhage. In this study, we isolated rat brain pericytes and demonstrated increased TRPC3 expression and its currents in brain pericytes after subarachnoid hemorrhage. Calcium imaging of brain pericytes revealed that changes in TRPC3 expression mediated a switch from SOCE-dominant to ROCE-dominant calcium influx after subarachnoid hemorrhage, resulting in significantly higher [Ca2+]i levels after SAH. TRPC3 activity in brain pericytes also contributed to capillary spasms and reduction in cerebral blood flow in an in vivo rat model of subarachnoid hemorrhage. Therefore, we suggest that the switch in TRPC3-mediated calcium influx pathways plays a crucial role in the [Ca2+]i elevation in brain pericytes after subarachnoid hemorrhage, ultimately leading to capillary spasms and a reduction in cerebral blood flow.
Collapse
Affiliation(s)
- Yuncong Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Hongji Deng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yongjin Zhang
- Department of Laboratory for Basic Research, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Guibo Li
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Hanfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kun Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
4
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
5
|
Sathialingam E, Cowdrick KR, Liew AY, Fang Z, Lee SY, McCracken CE, Akbik F, Samuels OB, Kandiah P, Sadan O, Buckley EM. Microvascular cerebral blood flow response to intrathecal nicardipine is associated with delayed cerebral ischemia. Front Neurol 2023; 14:1052232. [PMID: 37006474 PMCID: PMC10064128 DOI: 10.3389/fneur.2023.1052232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/06/2023] [Indexed: 03/19/2023] Open
Abstract
One of the common complications of non-traumatic subarachnoid hemorrhage (SAH) is delayed cerebral ischemia (DCI). Intrathecal (IT) administration of nicardipine, a calcium channel blocker (CCB), upon detection of large-artery cerebral vasospasm holds promise as a treatment that reduces the incidence of DCI. In this observational study, we prospectively employed a non-invasive optical modality called diffuse correlation spectroscopy (DCS) to quantify the acute microvascular cerebral blood flow (CBF) response to IT nicardipine (up to 90 min) in 20 patients with medium-high grade non-traumatic SAH. On average, CBF increased significantly with time post-administration. However, the CBF response was heterogeneous across subjects. A latent class mixture model was able to classify 19 out of 20 patients into two distinct classes of CBF response: patients in Class 1 (n = 6) showed no significant change in CBF, while patients in Class 2 (n = 13) showed a pronounced increase in CBF in response to nicardipine. The incidence of DCI was 5 out of 6 in Class 1 and 1 out of 13 in Class 2 (p < 0.001). These results suggest that the acute (<90 min) DCS-measured CBF response to IT nicardipine is associated with intermediate-term (up to 3 weeks) development of DCI.
Collapse
Affiliation(s)
- Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Amanda Y. Liew
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Courtney E. McCracken
- Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, GA, United States
| | - Feras Akbik
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Owen B. Samuels
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Prem Kandiah
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ofer Sadan
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
- Children's Research Scholar, Children's Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Erin M. Buckley
| |
Collapse
|
6
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
7
|
Korte N, Ilkan Z, Pearson CL, Pfeiffer T, Singhal P, Rock JR, Sethi H, Gill D, Attwell D, Tammaro P. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J Clin Invest 2022; 132:e154118. [PMID: 35316222 PMCID: PMC9057602 DOI: 10.1172/jci154118] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Pericyte-mediated capillary constriction decreases cerebral blood flow in stroke after an occluded artery is unblocked. The determinants of pericyte tone are poorly understood. We show that a small rise in cytoplasmic Ca2+ concentration ([Ca2+]i) in pericytes activated chloride efflux through the Ca2+-gated anion channel TMEM16A, thus depolarizing the cell and opening voltage-gated calcium channels. This mechanism strongly amplified the pericyte [Ca2+]i rise and capillary constriction evoked by contractile agonists and ischemia. In a rodent stroke model, TMEM16A inhibition slowed the ischemia-evoked pericyte [Ca2+]i rise, capillary constriction, and pericyte death; reduced neutrophil stalling; and improved cerebrovascular reperfusion. Genetic analysis implicated altered TMEM16A expression in poor patient recovery from ischemic stroke. Thus, pericyte TMEM16A is a crucial regulator of cerebral capillary function and a potential therapeutic target for stroke and possibly other disorders of impaired microvascular flow, such as Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Claire L. Pearson
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Thomas Pfeiffer
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Prabhav Singhal
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Jason R. Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol 2021; 36:633-643. [PMID: 33595091 DOI: 10.14670/hh-18-314] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper delivery of blood is essential for healthy neuronal function. The anatomical substrate for this precise mechanism is the neurovascular unit, which is formed by neurons, glial cells, endothelia, smooth muscle cells, and pericytes. Based on their particular location on the vessel wall, morphology, and protein expression, pericytes have been proposed as cells capable of regulating capillary blood flow. Pericytes are located around the microvessels, wrapping them with their processes. Their morphology and protein expression substantially vary along the vascular tree. Their contractibility is mediated by a unique cytoskeleton organization formed by filaments of actin that allows pericyte deformability with the consequent mechanical force transferred to the extracellular matrix for changing the diameter. Pericyte ultrastructure is characterized by large mitochondria likely to provide energy to regulate intracellular calcium concentration and fuel contraction. Accordingly, pericytes with compromised energy show a sustained intracellular calcium increase that leads to persistent microvascular constriction. Pericyte morphology is highly plastic and adapted for varying contractile capability along the microvascular tree, making pericytes ideal cells to regulate the capillary blood flow in response to local neuronal activity. Besides the vascular regulation, pericytes also play a role in the maintenance of the blood-brain/retina barrier, neovascularization and angiogenesis, and leukocyte transmigration. Here, we review the morphological and functional features of the pericytes as well as potential specific markers for the study of pericytes in the brain and retina.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada.
| | - Muge Yemisci
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Hørlyck S, Cai C, Helms HCC, Lauritzen M, Brodin B. ATP induces contraction of cultured brain capillary pericytes via activation of P2Y-type purinergic receptors. Am J Physiol Heart Circ Physiol 2020; 320:H699-H712. [PMID: 33306443 DOI: 10.1152/ajpheart.00560.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.
Collapse
Affiliation(s)
- Sofie Hørlyck
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Carlson AP, Hänggi D, Macdonald RL, Shuttleworth CW. Nimodipine Reappraised: An Old Drug With a Future. Curr Neuropharmacol 2020; 18:65-82. [PMID: 31560289 PMCID: PMC7327937 DOI: 10.2174/1570159x17666190927113021] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Nimodipine is a dihydropyridine calcium channel antagonist that blocks the flux of extracellular calcium through L-type, voltage-gated calcium channels. While nimodipine is FDAapproved for the prevention and treatment of neurological deficits in patients with aneurysmal subarachnoid hemorrhage (aSAH), it affects myriad cell types throughout the body, and thus, likely has more complex mechanisms of action than simple inhibition of cerebral vasoconstriction. Newer understanding of the pathophysiology of delayed ischemic injury after a variety of acute neurologic injuries including aSAH, traumatic brain injury (TBI) and ischemic stroke, coupled with advances in the drug delivery method for nimodipine, have reignited interest in refining its potential therapeutic use. In this context, this review seeks to establish a firm understanding of current data on nimodipine's role in the mechanisms of delayed injury in aSAH, TBI, and ischemic stroke, and assess the extensive clinical data evaluating its use in these conditions. In addition, we will review pivotal trials using locally administered, sustained release nimodipine and discuss why such an approach has evaded demonstration of efficacy, while seemingly having the potential to significantly improve clinical care.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Daniel Hänggi
- Department of Neurosurgery, University of Dusseldorf Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Robert L. Macdonald
- University of California San Francisco Fresno Department of Neurosurgery and University Neurosciences Institute and Division of Neurosurgery, Department of Surgery, University of Toronto, Canada
| | - Claude W. Shuttleworth
- Department of Neuroscience University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
12
|
Abstract
Microcirculation is the generic name for the finest level of the circulatory system and consists of arteriolar and venular networks located upstream and downstream of capillaries, respectively. Anatomically arterioles are surrounded by a monolayer of spindle-shaped smooth muscle cells (myocytes), while terminal branches of precapillary arterioles, capillaries and all sections of postcapillary venules are surrounded by a monolayer of morphologically different perivascular cells (pericytes). Pericytes are essential components of the microvascular vessel wall. Wrapped around endothelial cells, they occupy a strategic position at the interface between the circulating blood and the interstitial space. There are physiological differences in the responses of pericytes and myocytes to vasoactive molecules, which suggest that these two types of vascular cells could have different functional roles in the regulation of local blood flow within the same microvascular bed. Also, pericytes may play different roles in different microcirculatory beds to meet the characteristics of individual organs. Contractile activity of pericytes and myocytes is controlled by changes of cytosolic free Ca2+concentration. In this chapter, we attempt to summarize the results in the field of Ca2+ signalling in pericytes especially in light of their contractile roles in different tissues and organs. We investigate the literature and describe our results regarding sources of Ca2+, relative importance and mechanisms of Ca2+ release and Ca2+ entry in control of the spatio-temporal characteristics of the Ca2+ signals in pericytes, where possible Ca2+ signalling and contractile responses in pericytes are compared to those of myocytes.
Collapse
|
13
|
Abstract
Recent stroke research has shifted the focus to the microvasculature from neuron-centric views. It is increasingly recognized that a successful neuroprotection is not feasible without microvascular protection. On the other hand, recent studies on pericytes, long-neglected cells on microvessels have provided insight into the regulation of microcirculation. Pericytes play an essential role in matching the metabolic demand of nervous tissue with the blood flow in addition to regulating the development and maintenance of the blood-brain barrier (BBB), leukocyte trafficking across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably impacts the stroke-induced tissue damage and brain edema by disrupting microvascular blood flow and BBB integrity. Strongly supporting this, clinical imaging studies show that tissue reperfusion is not always obtained after recanalization. Therefore, prevention of pericyte dysfunction may improve the outcome of recanalization therapies by promoting microcirculatory reperfusion and preventing hemorrhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels and promote angiogenesis and neurogenesis, and hence positively effect stroke outcome. Expectedly, we will learn more about the place of pericytes in CNS pathologies including stroke and devise approaches to treat them in the next decades.
Collapse
|
14
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
15
|
Kolinko Y, Kralickova M, Tonar Z. The impact of pericytes on the brain and approaches for their morphological analysis. J Chem Neuroanat 2018; 91:35-45. [DOI: 10.1016/j.jchemneu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
16
|
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. In addition to the well-established functions of astrocytes and microglia in stroke pathogenesis, pericytes also play an important role in stroke progression and recovery. As perivascular multi-potent cells and an important component of the blood–brain barrier (BBB), pericytes have been shown to exert a large variety of functions, including serving as stem/progenitor cells and maintaining BBB integrity. Here in this review, we summarize the roles of pericytes in stroke pathogenesis, with a focus on their effects in cerebral blood flow, BBB integrity, angiogenesis, immune responses, scar formation and fibrosis.
Collapse
Affiliation(s)
- Jyoti Gautam
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yao Yao
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B. Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Curr Neuropharmacol 2018; 15:892-905. [PMID: 28088914 PMCID: PMC5652032 DOI: 10.2174/1570159x15666170112170226] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Every year, strokes take millions of lives and leave millions of individuals living with permanent disabilities. Recently more researchers embrace the concept of the neurovascular unit (NVU), which encompasses neurons, endothelial cells (ECs), pericytes, astrocyte, microglia, and the extracellular matrix. It has been well-documented that NVU emerged as a new paradigm for the exploration of mechanisms and therapies in ischemic stroke. To better understand the complex NVU and broaden therapeutic targets, we must probe the roles of multiple cell types in ischemic stroke. The aims of this paper are to introduce the biological characteristics of brain pericytes and the available evidence on the diverse functions and mechanisms involving the pericytes in the context of ischemic stroke. Methods: Research and online content related to the biological characteristics and pathophysiological roles of pericytes is review. The new research direction on the Pericytes in ischemic stroke, and the potential therapeutic targets are provided. Results: During the different stages of ischemic stroke, pericytes play different roles: 1) On the hyperacute phase of stroke, pericytes constriction and death may be a cause of the no-reflow phenomenon in brain capillaries; 2) During the acute phase, pericytes detach from microvessels and participate in inflammatory-immunological response, resulting in the BBB damage and brain edema. Pericytes also provide benefit for neuroprotection by protecting endothelium, stabilizing BBB and releasing neurotrophins; 3) Similarly, during the later recovery phase of stroke, pericytes also contribute to angiogenesis, neurogenesis, and thereby promote neurological recovery. Conclusion: This emphasis on the NVU concept has shifted the focus of ischemic stroke research from neuro-centric views to the complex interactions within NVU. With this new perspective, pericytes that are centrally positioned in the NVU have been widely studied in ischemic stroke. More work is needed to elucidate the beneficial and detrimental roles of brain pericytes in ischemic stroke that may serve as a basis for potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Elvis Nana Opoku
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingqiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
18
|
Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2017; 19:771-83. [PMID: 27227366 DOI: 10.1038/nn.4288] [Citation(s) in RCA: 755] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, Cambridge, Massachusetts, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Dalkara T, Alarcon-Martinez L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 2015; 1623:3-17. [DOI: 10.1016/j.brainres.2015.03.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023]
|
20
|
Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF. Vascular dysfunction in the pathogenesis of Alzheimer's disease--A review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 2015; 82:593-606. [PMID: 26311408 DOI: 10.1016/j.nbd.2015.08.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Late-onset dementia is a major health concern in the ageing population. Alzheimer's disease (AD) accounts for the largest proportion (65-70%) of dementia cases in the older population. Despite considerable research effort, the pathogenesis of late-onset AD remains unclear. Substantial evidence suggests that the neurodegenerative process is initiated by chronic cerebral hypoperfusion (CCH) caused by ageing and cardiovascular conditions. CCH causes reduced oxygen, glucose and other nutrient supply to the brain, with direct damage not only to the parenchymal cells, but also to the blood-brain barrier (BBB), a key mediator of cerebral homeostasis. BBB dysfunction mediates the indirect neurotoxic effects of CCH by promoting oxidative stress, inflammation, paracellular permeability, and dysregulation of nitric oxide, a key regulator of regional blood flow. As such, BBB dysfunction mediates a vicious circle in which cerebral perfusion is reduced further and the neurodegenerative process is accelerated. Endothelial interaction with pericytes and astrocytes could also play a role in the process. Reciprocal interactions between vascular dysfunction and neurodegeneration could further contribute to the development of the disease. A comprehensive overview of the complex scenario of interacting endothelium-mediated processes is currently lacking, and could prospectively contribute to the identification of adequate therapeutic interventions. This study reviews the current literature of in vitro and ex vivo studies on endothelium-mediated mechanisms underlying vascular dysfunction in AD pathogenesis, with the aim of presenting a comprehensive overview of the complex network of causative relationships. Particular emphasis is given to vicious circles which can accelerate the process of neurovascular degeneration.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.
| | - Annalena Venneri
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK; IRCCS San Camillo Foundation Hospital, Venice, Italy
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, UK
| | - Alberto Marzo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
22
|
The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res 2015; 1623:110-22. [PMID: 25982598 DOI: 10.1016/j.brainres.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Despite accumulated understanding on the mechanisms of early brain injury and improved management of subarachnoid hemorrhage (SAH), it is still one of the serious and refractory health problems around the world. Traditionally, pericyte, served as capillary contraction handler, is recently considered as the main participant of microcirculation regulation in SAH pathophysiology. However, accumulate evidences indicate that pericyte is much more than we already know. Therefore, we briefly review the characteristics, regulation pathways and functions of pericyte, aim to summarize the evolving new pathophysiological roles of pericyte that are implicated in early brain injury after SAH and to improve our understanding in order to explore potential novel therapeutic options for patients with SAH. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
23
|
Yokoyama T, Nakamuta N, Kusakabe T, Yamamoto Y. Sympathetic regulation of vascular tone via noradrenaline and serotonin in the rat carotid body as revealed by intracellular calcium imaging. Brain Res 2015; 1596:126-35. [DOI: 10.1016/j.brainres.2014.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
|
24
|
L-type calcium channel blockers and substance P induce angiogenesis of cortical vessels associated with beta-amyloid plaques in an Alzheimer mouse model. Neurobiol Aging 2014; 36:1333-41. [PMID: 25619662 PMCID: PMC4347662 DOI: 10.1016/j.neurobiolaging.2014.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 12/02/2022]
Abstract
It is well established that L-type calcium channels (LTCCs) are expressed in astroglia. However, their functional role is still speculative, especially under pathologic conditions. We recently showed that the α1 subunit-like immunoreactivity of the CaV1.2 channel is strongly expressed in reactive astrocytes around beta-amyloid plaques in 11-month-old Alzheimer transgenic (tg) mice with the amyloid precursor protein London and Swedish mutations. The aim of the present study was to examine the cellular expression of all LTCC subunits around beta-amyloid plaques by in situ hybridization using 35S-labeled oligonucleotides. Our data show that messenger RNAs (mRNAs) of the LTCC CaV1.2 α1 subunit as well as all auxiliary β and α2δ subunits, except α2δ-4, were expressed in the hippocampus of age-matched wild-type mice. It was unexpected to see, that cells directly located in the plaque core in the cortex expressed mRNAs for CaV1.2 α1, β2, β4, and α2δ-1, whereas no expression was detected in the halo. Furthermore, cells in the plaque core also expressed preprotachykinin-A mRNA, the precursor for substance P. By means of confocal microscopy, we demonstrated that collagen-IV-stained brain vessels in the cortex were associated with the plaque core and were immunoreactive for substance P. In cortical organotypic brain slices of adult Alzheimer mice, we could demonstrate that LTCC blockers increased angiogenesis, which was further potentiated by substance P. In conclusion, our data show that brain vessels associated with beta-amyloid plaques express substance P and an LTCC and may play a role in angiogenesis.
Collapse
|
25
|
Burdyga T, Borysova L. Calcium signalling in pericytes. J Vasc Res 2014; 51:190-9. [PMID: 24903335 DOI: 10.1159/000362687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/06/2014] [Indexed: 11/19/2022] Open
Abstract
Recent advances in pericyte research have contributed to our understanding of the physiology and pathophysiology of microvessels. The microvasculature consists of arteriolar and venular networks located upstream and downstream of the capillaries. Arterioles are surrounded by a monolayer of spindle-shaped myocytes, while terminal branches of precapillary arterioles, capillaries and all sections of postcapillary venules are encircled by a monolayer of morphologically diverse pericytes. There are physiological differences in the response of pericytes and myocytes to vasoactive molecules, suggesting that these two vascular cell types could have different functional roles in the regulation of local blood flow. The contractile activity of pericytes and myocytes is controlled by changes of cytosolic free Ca(2+) concentration. In this short review, we summarize our results and those of other authors on the contractility of pericytes and their Ca(2+) signalling. We describe results regarding sources of Ca(2+) and mechanisms of Ca(2+) release and Ca(2+) entry in control of the spatiotemporal characteristics of the Ca(2+) signals in pericytes.
Collapse
Affiliation(s)
- Theodor Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
26
|
Nakamura K, Kamouchi M, Arimura K, Nishimura A, Kuroda J, Ishitsuka K, Tokami H, Sugimori H, Ago T, Kitazono T. Extracellular acidification activates cAMP responsive element binding protein via Na+/H+ exchanger isoform 1-mediated Ca²⁺ oscillation in central nervous system pericytes. Arterioscler Thromb Vasc Biol 2012; 32:2670-7. [PMID: 22922957 DOI: 10.1161/atvbaha.112.254946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We have previously shown that Na(+)/H(+) exchanger isoform 1 (NHE1) plays an important role in Ca(2+) signaling and cell proliferation in human central nervous system (CNS) pericytes. The aims of the present study were to elucidate how NHE1-induced Ca(2+) signaling during acidosis is transformed into cellular responses in CNS pericytes. METHODS AND RESULTS Human CNS pericytes were cultured, and the activation of cAMP responsive element-binding protein (CREB) was evaluated by Western blotting analysis, immunofluorescence, and luciferase assays. In human CNS pericytes, low extracellular Na(+) or low pH generated Ca(2+) oscillation and subsequently phosphorylated Ca(2+)/calmodulin-dependent kinase II (CaMKII) and CREB in a time-dependent manner. Focal cerebral ischemia was applied using photothrombotic distal middle cerebral artery occlusion in mice, and the phosphorylation of CREB and the production of interleukin-6 were observed in pericytes migrating into the peri-infarct penumbra during the early phase after ischemic insult. CONCLUSIONS Our results indicate that extracellular acidosis induces Ca(2+) oscillation via NHE1, leading to Ca(2+)/CaMKII-dependent CREB activation in human CNS pericytes. Acidosis may upregulate a variety of proteins, such as interleukin-6, through the NHE1-Ca2+/CaMKII-CREB pathway in brain pericytes and may thus modulate brain ischemic insult.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14:1398-1405. [PMID: 22030551 DOI: 10.1038/nn.2946] [Citation(s) in RCA: 723] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease.
Collapse
Affiliation(s)
- Ethan A Winkler
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert D Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
28
|
Brain microvascular pericytes in health and disease. Acta Neuropathol 2011; 122:1-9. [PMID: 21656168 DOI: 10.1007/s00401-011-0847-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022]
Abstract
Pericytes are located at periphery of the microvessel wall and wrap it with their processes. They communicate with other cells of the neurovascular unit by direct contact or through signaling pathways and regulate several important microcirculatory functions. These include development and maintenance of the blood-brain barrier (BBB), distribution of the capillary blood flow to match the local metabolic need of the nearby cells, and angiogenesis. Pericytes also exhibit phagocytic activity and may function as pluripotent stem cells. Increasing evidence suggests a role for pericytes in a wide range of CNS diseases. They appear to be vulnerable to oxygen and nitrogen radical toxicity and have been shown to contract during cerebral ischemia and remain contracted despite reopening of the occluded artery. This causes impaired re-flow and may diminish the benefit of re-canalization therapies in stroke patients. Hyperglycemia-induced dysfunction of the signaling pathways between pericytes and endothelia is thought to play an important role in diabetic retinopathy, a common cause of blindness. Amyloid deposits detected within degenerating pericytes in the brains of patients with Alzheimer's disease suggest that pericyte dysfunction may play a role in cerebral hypoperfusion and impaired amyloid β-peptide clearance in Alzheimer's disease. This exciting possibility may reveal a novel temporal sequence of events in chronic neurodegeneration, in which microvascular dysfunction due to pericyte degeneration initiates secondary neurodegenerative changes. Identification of molecular mechanisms by which pericytes regulate BBB integrity in inflammatory conditions as well as in vasogenic brain edema may lead to new treatments. Pericytes may also take part in tissue repair and vascularization after CNS injury. In conclusion, although the evidence is just emerging and mostly preliminary, disclosing pericytes' role in the pathophysiology of CNS diseases may yield exciting developments and novel treatments.
Collapse
|
29
|
Abstract
Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Frank M Faraci
- Dept. of Internal Medicine, Carver College of Medicine, Univ. of Iowa, Iowa City, Iowa 52242-1081, USA.
| |
Collapse
|
30
|
Kamouchi M, Ago T, Kitazono T. Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011; 31:175-93. [PMID: 21061157 DOI: 10.1007/s10571-010-9605-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022]
Abstract
Brain pericytes are an important constituent of neurovascular unit. They encircle endothelial cells and contribute to the maturation and stabilization of the capillaries in the brain. Recent studies have revealed that brain pericytes play pivotal roles in a variety of brain functions, such as regulation of capillary flow, angiogenesis, blood brain barrier, immune responses, and hemostasis. In addition, brain pericytes are pluripotent and can differentiate into different lineages similar to mesenchymal stem cells. The brain pericytes are revisited as a key player to maintain brain function and repair brain damage.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
31
|
Dai M, Nuttall A, Yang Y, Shi X. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res 2009; 254:100-7. [PMID: 19422897 DOI: 10.1016/j.heares.2009.04.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/19/2009] [Accepted: 04/27/2009] [Indexed: 10/24/2022]
Abstract
Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.
Collapse
Affiliation(s)
- Min Dai
- Oregon Hearing Research Center (NRC04), Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
32
|
Amiloride inhibits hydrogen peroxide-induced Ca2+ responses in human CNS pericytes. Microvasc Res 2008; 77:327-34. [PMID: 19154746 DOI: 10.1016/j.mvr.2008.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 12/22/2022]
Abstract
The aims of the present study were to investigate the mechanisms of Ca(2+) signaling caused by hydrogen peroxide in CNS pericytes. In cultured human brain microvascular pericytes, cytosolic Ca(2+) concentration was measured by means of fura-2 fluorescence. Reverse transcription and polymerase chain reaction was performed to examine the expression of mRNA. Knockdown of Na(+)/H(+) exchanger (NHE) was done by transfecting the cells with specific double-strand siRNAs for NHE. Externally applied hydrogen peroxide dose-dependently (100 microM-10 mM) increased cytosolic Ca(2+) in human CNS pericytes. Cytosolic Ca(2+) remained high after wash-out of hydrogen peroxide. However, the addition of dithiothreitol rapidly reversed cytosolic Ca(2+) to the resting level. The hydrogen peroxide-induced Ca(2+) increase was not inhibited by nicardipine, Gd(3+), La(3+), or omission of external Ca(2+). Neither thapsigargin nor carbonyl cyanide 4-trifluoromethoxyphenylhydrazone attenuated the hydrogen peroxide-induced Ca(2+) rise. Amiloride and its derivatives, benzamil and hexamethylene amiloride reversed the hydrogen peroxide-induced Ca(2+) increase. Human CNS pericytes expressed acid sensing ion channel (ASIC) 1a, Na(+)/Ca(2+) exchanger (NCX) 1, Na(+)/H(+) exchanger (NHE) 1, and NHE7. However, the removal of external Na(+), treatment with KB-R 7943 and mibefradil, or knockdown of NHE1 and NHE7 did not affect the hydrogen peroxide-induced Ca(2+) increase. Hydrogen peroxide releases Ca(2+) from intracellular Ca(2+) pool via an amiloride-sensitive protein, which is controlled by oxidation of thiol group in human CNS pericytes.
Collapse
|
33
|
Takata F, Dohgu S, Nishioku T, Takahashi H, Harada E, Makino I, Nakashima M, Yamauchi A, Kataoka Y. Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neurosci Lett 2008; 449:71-5. [PMID: 18983892 DOI: 10.1016/j.neulet.2008.10.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 10/23/2008] [Indexed: 11/29/2022]
Abstract
Brain pericytes are known to embrace the abluminal endothelial surfaces of cerebral microvessels. The rich expression of contractile proteins in these cells suggests pericytal regulation of cerebral blood flow. Here, we investigated the molecular mechanisms by which an endothelium-derived relaxing factor, adrenomedullin, was able to induce the relaxation of rat primary cultured brain pericytes. Adrenomedullin increased the relative proportion of pericytes that were relaxed, as shown by an increased cell surface area. A smaller fragment of adrenomedullin (adrenomedullin(22-52)) blocked the adrenomedullin-induced relaxation. Adrenomedullin increased intracellular cAMP concentrations and decreased the phosphorylation of myosin light chain (MLC). H89 (a PKA inhibitor) inhibited the adrenomedullin-induced increase in the number of relaxed pericytes, and returned the level of phosphorylation of MLC to the control level. The results of the present study suggest that adrenomedullin-induced relaxation of brain pericytes is related to the reduced phosphorylation of MLC through cAMP/PKA.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Matsuo R, Hagiwara N, Ishikawa E, Ooboshi H, Ibayashi S, Iida M. Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes. Am J Physiol Heart Circ Physiol 2008; 294:H1700-7. [PMID: 18263712 DOI: 10.1152/ajpheart.01203.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) pericytes play an important role in brain microcirculation. Na(+)/H(+) exchanger isoform 1 (NHE1) has been suggested to regulate the proliferation of nonvascular cells through the regulation of intracellular pH, Na(+), and cell volume; however, the relationship between NHE1 and intracellular Ca(2+), an essential signal of cell growth, is still not known. The aim of the present study was to elucidate the role of NHE1 in Ca(2+) signaling and the proliferation of human CNS pericytes. The intracellular Ca(2+) concentration was measured by fura 2 in cultured human CNS pericytes. The cells showed spontaneous Ca(2+) oscillation under quasi-physiological ionic conditions. A decrease in extracellular pH or Na(+) evoked a transient Ca(2+) rise followed by Ca(2+) oscillation, whereas an increase in pH or Na(+) did not induce the Ca(2+) responses. The Ca(2+) oscillation was inhibited by an inhibitor of NHE in a dose-dependent manner and by knockdown of NHE1 by using RNA interference. The Ca(2+) oscillation was completely abolished by thapsigargin. The proliferation of pericytes was attenuated by inhibition of NHE1. These results demonstrate that NHE1 regulates Ca(2+) signaling via the modulation of Ca(2+) release from the endoplasmic reticulum, thus contributing to the regulation of proliferation in CNS pericytes.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Dept. of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kamouchi M, Kitazono T, Ago T, Wakisaka M, Kuroda J, Nakamura K, Hagiwara N, Ooboshi H, Ibayashi S, Iida M. Hydrogen peroxide-induced Ca2+ responses in CNS pericytes. Neurosci Lett 2007; 416:12-6. [PMID: 17350757 DOI: 10.1016/j.neulet.2007.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/06/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aims of the present study were to elucidate the interaction of reactive oxygen species (ROS) and Ca(2+) response in central nervous system (CNS) pericytes. METHODS The intracellular Ca(2+) concentration was measured using fluorescent Ca(2+) indicator, fura-2, in cultured CNS pericytes. RESULTS Hydrogen peroxide evoked a dose-dependent increase in cytosolic Ca(2+), which was completely inhibited by catalase. Removal of external Ca(2+) or addition of nicardipine (1 microM) during application of hydrogen peroxide did not affect Ca(2+) response. Incubation of the cells in Ca(2+) free solution did not abolish but slightly reduced Ca(2+) response by hydrogen peroxide. Ca(2+) response to hydrogen peroxide was not altered by the depletion of intracellular Ca(2+) by thapsigargin (1 microM). Pretreatment of the cells with tyrosine kinase inhibitor genistein (100 microM) or tyrphostin A47 (30 microM) significantly reduced Ca(2+) increase by hydrogen peroxide. CONCLUSIONS These results indicate that hydrogen peroxide evokes Ca(2+) increase predominantly by release from intracellular Ca(2+) store, which may be regulated by tyrosine kinases.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh U, Sun T, Looman C, Heuchel R, Elliott R, Freichel M, Meissner M, Flockerzi V, Fundele R. Expression and function of the gene encoding the voltage-dependent calcium channel beta3-subunit in the mouse placenta. Placenta 2006; 28:412-20. [PMID: 16822546 DOI: 10.1016/j.placenta.2006.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 01/02/2023]
Abstract
Voltage-dependent Ca(2+) channels (VDCC) exist in most excitable cells and their properly regulated activity is essential for critical biological processes as many of these are sensitive to cellular Ca(2+) ion concentration. The ancillary cytoplasmic Ca(2+) channel beta subunits (CACNB) modulate Ca(2+) channel function and are required to enhance the number of functional channels in the plasma membrane. There are four genes encoding CACNB subunits and the gene encoding CACNB3 is over expressed in hyperplastic placentas of mouse interspecies hybrids. To determine the role of CACNB3 in the mouse placenta, we performed an expression and function analysis. Our results show that Cacnb3 exhibits specific spatial and temporal expression in the mouse placenta. Deletion of Cacnb3 does not produce a strong placental phenotype, which may be due to expression of other CACNB subunit encoding genes; however, sporadic occurrence of a labyrinthine architecture phenotype, characterized by reduced density of fetal blood vessels and decrease in pericyte number, could be observed. Down-regulation of Cacnb3 expression did not rescue placental hyperplasia in a model of interspecies hybrid placentas, which indicates that up-regulation in the hyperplastic placentas is a downstream event.
Collapse
Affiliation(s)
- U Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lai CH, Kuo KH. The critical component to establish in vitro BBB model: Pericyte. ACTA ACUST UNITED AC 2005; 50:258-65. [PMID: 16199092 DOI: 10.1016/j.brainresrev.2005.07.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/26/2005] [Accepted: 07/29/2005] [Indexed: 01/05/2023]
Abstract
The blood-brain barrier (BBB), a highly regulated membranous barrier of brain capillaries, consists of an intricate network of tight junctions (TJs) that segregate the central nervous system (CNS) from systemic blood circulation and maintain a delicate homeostasis of the CNS environment. While endothelial cells (ECs) of brain capillaries are clearly the principal cellular element of BBB, the formation and regulation of intact BBB structure appear to require the interactions of endothelial cells with other cellular components. Astrocytes, one of the major non-neural cells in the brain, associate closely and interact with capillary endothelial cells during the angiogenesis and BBB development. Current in vitro cellular models for the study of BBB functions often incorporate astrocytes with endothelial cells. However, another foremost cell type, CNS pericyte, which intimately embraces brain capillary endothelium, attracts relatively little attention for its role in developing the in vitro BBB system. This review will analyze the critical functions of pericytes in angiogenesis in various systems and discuss the relevance of these functions in mediating the development, maintenance, and regulation of BBB. The author will also discuss the functional role of actin in both ECs and pericytes, and further elaborate the molecular mechanisms of BBB permeability regulation that involves the transduction pathway-mediated actin remodeling process. Finally, the rationale of incorporating pericytes for establishing a better in vitro BBB model will be emphasized.
Collapse
Affiliation(s)
- Char-Huei Lai
- Advanced Peptide Medicine and Drug Delivery Research Laboratory, 72 Jennifer Drive, Chester Springs, PA 19425, USA.
| | | |
Collapse
|
38
|
Abstract
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|