1
|
Wu YY, Zeng CH, Cai KY, Zheng C, Wang MY, Zhang HH. A glutamatergic pathway between the medial habenula and the rostral ventrolateral medulla may regulate cardiovascular function in a rat model of post-traumatic stress disorder. CHINESE J PHYSIOL 2023; 66:326-334. [PMID: 37929343 DOI: 10.4103/cjop.cjop-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.
Collapse
Affiliation(s)
- Ya-Yang Wu
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Cheng-Hong Zeng
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Kun-Yi Cai
- Psychophysiology Laboratory, Wannan Medical College; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Chao Zheng
- Neurobiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| | - Huan-Huan Zhang
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
2
|
Fyk-Kolodziej BE, Ghoddoussi F, Mueller PJ. Neuroplasticity in N-methyl-d-aspartic acid receptor signaling in subregions of the rat rostral ventrolateral medulla following sedentary versus physically active conditions. J Comp Neurol 2020; 529:2311-2331. [PMID: 33347606 DOI: 10.1002/cne.25094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
The rostral ventrolateral medulla (RVLM) is a brain region involved in normal regulation of the cardiovascular system and heightened sympathoexcitatory states of cardiovascular disease (CVD). Among major risk factors for CVD, sedentary lifestyles contribute to higher mortality than other modifiable risk factors. Previous studies suggest excessive glutamatergic excitation of presympathetic neurons in the RVLM occurs in sedentary animals. Therefore, the purpose of this study was to examine neuroplasticity in the glutamatergic system in the RVLM of sedentary and physically active rats. We hypothesized that relative to active rats, sedentary rats would exhibit higher expression of glutamate N-methyl-d-aspartic acid receptor subunits (GluN), phosphoGluN1, and the excitatory scaffold protein postsynaptic density 95 (PSD95), while achieving higher glutamate levels. Male Sprague-Dawley rats (4 weeks old) were divided into sedentary and active (running wheel) conditions for 10-12 weeks. We used retrograde tracing/triple-labeling techniques, western blotting, and magnetic resonance spectroscopy. We report in sedentary versus physically active rats: 1) fewer bulbospinal non-C1 neurons positive for GluN1, 2) significantly higher expression of GluN1 and GluN2B but lower levels of phosphoGluN1 (pSer896) and PSD95, and 3) higher levels of glutamate in the RVLM. Higher GluN expression is consistent with enhanced sympathoexcitation in sedentary animals; however, a more complex neuroplasticity occurs within subregions of the ventrolateral medulla. Our results in rodents may also indicate that alterations in glutamatergic excitation of the RVLM contribute to the increased incidence of CVD in humans who lead sedentary lifestyles. Thus, there is a strong need to further pursue mechanisms of inactivity-related neuroplasticity in the RVLM.
Collapse
Affiliation(s)
- Bozena E Fyk-Kolodziej
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Patrick J Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
4
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
5
|
The asymmetric dimethylarginine-mediated inhibition of nitric oxide in the rostral ventrolateral medulla contributes to regulation of blood pressure in hypertensive rats. Nitric Oxide 2017; 67:58-67. [PMID: 28392446 DOI: 10.1016/j.niox.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis. The present was designed to determine the role of ADMA in the RVLM in the central control of BP in hypertensive rats. In Sprague Dawley (SD) rats, microinjection of ADMA into the RVLM dose-dependently increased BP, heart rate (HR), and renal sympathetic never activity (RSNA), but also reduced total NO production in the RVLM. In central angiotensin II (Ang II)-induced hypertensive rats and spontaneously hypertensive rat (SHR), the level of ADMA in the RVLM was increased and total NO production was decreased significantly, compared with SD rats treated vehicle infusion and WKY rats, respectively. These hypertensive rats also showed an increased protein level of protein arginine methyltransferases1 (PRMT1, which generates ADMA) and a decreased expression level of dimethylarginine dimethylaminohydrolases 1 (DDAH1, which degrades ADMA) in the RVLM. Furthermore, increased AMDA content and PRMT1 expression, and decreased levels of total NO production and DDAH1 expression in the RVLM in SHR were blunted by intracisternal infusion of the angiotensin II type 1 receptor (AT1R) blocker losartan. The current data indicate that the ADMA-mediated NO inhibition in the RVLM plays a critical role in involving in the central regulation of BP in hypertension, which may be associated with increased Ang II.
Collapse
|
6
|
Duan XC, Liu SY, Guo R, Xiao L, Xue HM, Guo Q, Jin S, Wu YM. Cystathionine-β-Synthase Gene Transfer Into Rostral Ventrolateral Medulla Exacerbates Hypertension via Nitric Oxide in Spontaneously Hypertensive Rats. Am J Hypertens 2015; 28:1106-13. [PMID: 25628417 DOI: 10.1093/ajh/hpu299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rostral ventrolateral medulla (RVLM) plays a crucial role in the central regulation of cardiovascular functions. Cystathionine-β-synthase (CBS) is a major hydrogen sulfide (H2S)-generating enzyme that has been identified mainly in the brain. The present study was designed to examine CBS expression and determine its roles and mechanisms of regulating sympathetic outflow and blood pressure (BP) in the RVLM in spontaneously hypertensive rats (SHR). METHODS AND RESULTS CBS expression was decreased in the RVLM in SHR compared to Wistar-Kyoto (WKY) rats. Accumulating evidences suggest that H2S interacts with nitric oxide (NO) to regulate cardiovascular function. Therefore, we hypothesize that the decrease in CBS expression in the RVLM may be involved in the disorder of l-arginine/NO pathway, which subsequently affects BP in SHR. Overexpression of CBS in the RVLM caused significant increases in BP, heart rate, and urinary norepinephrine excretion in SHR but not in WKY. Acute experiments were carried out at day 7 after gene transfer. NO metabolite levels, neuronal NO synthase, and γ-amino butyric acid were decreased in SHR after CBS gene transfer. Furthermore, pressor responses to microinjection of NG-monomethyl-l-arginine into RVLM were blunt in SHR transfected with AdCBS compared to SHR transfected with AdEGFP. CONCLUSIONS Overexpression of CBS in the RVLM elicits enhanced pressor responses in SHR, but not in WKY, and the NO system is involved in these effects. The results suggest that alterations of H2S signaling in the brain may be associated with the development of hypertension.
Collapse
Affiliation(s)
- Xiao-Cui Duan
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China; Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Shang-Yu Liu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Rong Guo
- Department of Education Administration, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Hong-Mei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China;
| |
Collapse
|
7
|
Lee YH, Tsai MC, Li TL, Dai YWE, Huang SC, Hwang LL. Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla. Exp Physiol 2015; 100:993-1007. [PMID: 26096870 DOI: 10.1113/ep085016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala(11), d-Leu(15)]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reduced the intra-RVLM [Ala(11), d-Leu(15) ]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.
Collapse
Affiliation(s)
- Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Ling Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Ameer OZ, Boyd R, Butlin M, Avolio AP, Phillips JK. Abnormalities associated with progressive aortic vascular dysfunction in chronic kidney disease. Front Physiol 2015; 6:150. [PMID: 26042042 PMCID: PMC4436592 DOI: 10.3389/fphys.2015.00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/27/2015] [Indexed: 11/13/2022] Open
Abstract
Increased stiffness of large arteries in chronic kidney disease (CKD) has significant clinical implications. This study investigates the temporal development of thoracic aortic dysfunction in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Animals aged 12 and 18 weeks were studied alongside age-matched Lewis controls (total n = 94). LPK rodents had elevated systolic blood pressure, left ventricular hypertrophy and progressively higher plasma creatinine and urea. Relative to Lewis controls, LPK exhibited reduced maximum aortic vasoconstriction (Rmax) to noradrenaline at 12 and 18 weeks, and to K+ (12 weeks). Sensitivity to noradrenaline was greater in 18-week-old LPK vs. age matched Lewis (effective concentration 50%: 24 × 10−9 ± 78 × 10−10 vs. 19 × 10−8 ± 49 × 10−9, P < 0.05). Endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) relaxation was diminished in LPK, declining with age (12 vs. 18 weeks Rmax: 80 ± 8% vs. 57 ± 9% and 92 ± 6% vs. 70 ± 9%, P < 0.05, respectively) in parallel with the decline in renal function. L-Arginine restored endothelial function in LPK, and L-NAME blunted acetylcholine relaxation in all groups. Impaired nitric oxide synthase (NOS) activity was recovered with L-Arginine plus L-NAME in 12, but not 18-week-old LPK. Aortic calcification was increased in LPK rats, as was collagen I/III, fibronectin and NADPH-oxidase subunit p47 (phox) mRNAs. Overall, our observations indicate that the vascular abnormalities associated with CKD are progressive in nature, being characterized by impaired vascular contraction and relaxation responses, concurrent with the development of endothelial dysfunction, which is likely driven by evolving deficits in NO signaling.
Collapse
Affiliation(s)
- Omar Z Ameer
- Faculty of Medicine and Health Sciences, The Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | - Rochelle Boyd
- Faculty of Medicine and Health Sciences, The Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | - Mark Butlin
- Faculty of Medicine and Health Sciences, The Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | - Alberto P Avolio
- Faculty of Medicine and Health Sciences, The Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| | - Jacqueline K Phillips
- Faculty of Medicine and Health Sciences, The Australian School of Advanced Medicine, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
9
|
Subramanian M, Holt AG, Mueller PJ. Physical activity correlates with glutamate receptor gene expression in spinally-projecting RVLM neurons: a laser capture microdissection study. Brain Res 2014; 1585:51-62. [PMID: 25173073 PMCID: PMC5828155 DOI: 10.1016/j.brainres.2014.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/31/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Physical inactivity is an important risk factor in the development of cardiovascular disease. The rostral ventrolateral portion of the medulla (RVLM) is composed of heterogeneous populations of neurons that are involved in the regulation of the cardiovascular system. Because of functional heterogeneity, studying the changes in the gene expression of this specific population of neurons within the RVLM is challenging. In the present study, a fluorescent retrograde tracer was injected into the spinal cord to specifically label bulbospinal RVLM neurons in sedentary and active rats. Laser capture microdissection (LCM) was then employed to collect the fluorescently labeled neurons from sections encompassing the rostrocaudal extent of the RVLM. RNA extracted from the neurons was used in qRT-PCR analysis. Changes in gene expression levels of glutamate and GABA receptor subunits were compared between sedentary and physically active rats. GLUR3 subunit showed a significant negative correlation between total running distance and its relative gene expression in active rats. There were no significant difference in the gene expression of NMDA (NR1, NR2A, NR2B, NR2C and NR2D), AMPA (GLUR1, GLUR2 and GLUR3) and GABAA (GABAA1 and GABAA2) receptor subunits. Overall, the present study demonstrates the feasibility of utilizing LCM to investigate the gene expression changes in a specific population of neurons in the RVLM. Correlation studies suggest that physical activity could contribute to neuroplasticity in the RVLM.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Avril G Holt
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patrick J Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Wang YK, Shen D, Hao Q, Yu Q, Wu ZT, Deng Y, Chen YF, Yuan WJ, Hu QK, Su DF, Wang WZ. Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. Am J Physiol Heart Circ Physiol 2014; 307:H182-90. [PMID: 24838502 DOI: 10.1152/ajpheart.00518.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rostral ventrolateral medulla (RVLM) plays a key role in cardiovascular regulation. It has been reported that tonically active glutamatergic input to the RVLM is increased in hypertensive rats, whereas angiotensin-converting enzyme 2 (ACE2) in the brain has been suggested to be beneficial to hypertension. This study was designed to determine the effect of ACE2 gene transfer into the RVLM on tonically active glutamatergic input in spontaneously hypertensive rats (SHRs). Lentiviral particles containing enhanced green fluorescent protein (lenti-GFP) or ACE2 (lenti-ACE2) were injected bilaterally into the RVLM. Both protein expression and activity of ACE2 in the RVLM were increased in SHRs after overexpression of ACE2. A significant reduction in blood pressure and heart rate in SHRs was observed 6 wk after lenti-ACE2 injected into the RVLM. The concentration of glutamate in microdialysis fluid from the RVLM was significantly reduced by an average of 61% in SHRs with lenti-ACE2 compared with lenti-GFP. ACE2 overexpression significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity evoked by bilateral injection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nl) into the RVLM in SHRs. Therefore, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced tonically active glutamatergic input in SHRs, which may be an important mechanism underlying the beneficial effect of central ACE2 to hypertension.
Collapse
Affiliation(s)
- Yang-Kai Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Du Shen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Qiang Hao
- Department of Medical Imaging, Changhai Hospital, Shanghai, China
| | - Qiang Yu
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Zhao-Tang Wu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu Deng
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Yan-Fang Chen
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio
| | - Wen-Jun Yuan
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Qi-Kuan Hu
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Ding-Feng Su
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, Shanghai, China;
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
12
|
Ding A, Kalaignanasundaram P, Ricardo SD, Abdelkader A, Witting PK, Broughton BRS, Kim HB, Wyse BF, Phillips JK, Evans RG. Chronic treatment with tempol does not significantly ameliorate renal tissue hypoxia or disease progression in a rodent model of polycystic kidney disease. Clin Exp Pharmacol Physiol 2012; 39:917-29. [DOI: 10.1111/1440-1681.12013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alice Ding
- The Australian School of Advanced Medicine; Macquarie University; Sydney; NSW; Australia
| | | | - Sharon D Ricardo
- Department of Monash Immunology & Stem Cell Laboratories; Monash University; Melbourne; Vic.; Australia
| | - Amany Abdelkader
- Department of Physiology; Monash University; Melbourne; Vic.; Australia
| | - Paul K Witting
- Discipline of Pathology; The University of Sydney; Sydney; NSW; Australia
| | - Brad RS Broughton
- Department of Pharmacology; Monash University; Melbourne; Vic.; Australia
| | - Hyun B Kim
- Discipline of Pathology; The University of Sydney; Sydney; NSW; Australia
| | - Benjamin F Wyse
- The Australian School of Advanced Medicine; Macquarie University; Sydney; NSW; Australia
| | - Jacqueline K Phillips
- The Australian School of Advanced Medicine; Macquarie University; Sydney; NSW; Australia
| | - Roger G Evans
- Department of Physiology; Monash University; Melbourne; Vic.; Australia
| |
Collapse
|
13
|
Parker LM, Tallapragada VJ, Kumar NN, Goodchild AK. Distribution and localisation of Gα proteins in the rostral ventrolateral medulla of normotensive and hypertensive rats: focus on catecholaminergic neurons. Neuroscience 2012; 218:20-34. [PMID: 22626648 DOI: 10.1016/j.neuroscience.2012.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 02/07/2023]
Abstract
About 860 G-protein-coupled receptors (GPCRs) mediate their actions via heterotrimeric G-proteins. Their activation releases Gα from Gβλ subunits. The type of Gα subunit dictates the major signalling proteins involved: adenylyl cyclase, PLC and rhoGEF. The rostral ventrolateral medulla (RVLM), containing the rostral C1 (rC1) cell group, sets and maintains the tonic and reflex control of blood pressure and a plethora of inputs converge onto these neurons. We determined the relative abundance of 10 Gα subunit mRNAs, representing the four major families, within the RVLM, using quantitative RT-PCR. In situ hybridisation (ISH) combined with immunohistochemistry (IHC) was used to quantify and compare this expression in rC1 with that in the A1 and A5 cell groups. The relative abundance of Gα subunit mRNAs and a comparison of gene expression levels were quantitatively determined in normotensive and hypertensive rat strains. All 10 Gα mRNAs were detected in the RVLM of Sprague-Dawley (SD) rats with relative abundance such that Gαs>Gαi2>Gαo>Gαq>GαL>Gα11>Gαi3>Gαi1>Gα12>Gα13. The high abundance of Gα mRNAs signalling via adenylyl cyclase indicates the importance of associated GPCRs. Within the rC1 and A1 groups similar differential Gα mRNA expression profiles were seen with Gαs being found in all rC1 cells, Gα11 absent and Gαi3 rarely expressed. Thus functionally distinct subgroups exist within the rC1 and A1 cell groups as differing distributions of Gα subunits must reflect the array of GPCRs that influence their activity. In contrast, all A5 cells expressed all Gα mRNAs suggesting a functionally homogeneous group. When the 10 Gα mRNAs of the RVLM in spontaneously hypertensive rats (SHR) were compared quantitatively to Wistar-Kyoto (WKY), only Gαs and Gα12 were significantly elevated. However when the expression in normotensive SD and WKY was compared with SHR no significant differences were evident. These findings demonstrate a range of GPCR signalling capabilities in brainstem neurons important for homeostasis and suggest a prominent role for signalling via adenylyl cyclase.
Collapse
Affiliation(s)
- L M Parker
- The Australian School of Advanced Medicine, 2 Technology Place, Macquarie University, 2109 NSW, Australia
| | | | | | | |
Collapse
|
14
|
Role of GluN2A and GluN2B subunits in the formation of filopodia and secondary dendrites in cultured hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:171-80. [DOI: 10.1007/s00210-011-0701-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
|
15
|
Burzomato V, Frugier G, Pérez-Otaño I, Kittler JT, Attwell D. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol 2010; 588:3403-14. [PMID: 20660562 DOI: 10.1113/jphysiol.2010.195503] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg(2+) than are most neuronal NMDA receptors. This weak Mg(2+) block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mM Mg(2+) than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg(2+)) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg(2+) block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits.
Collapse
Affiliation(s)
- Valeria Burzomato
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
16
|
Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 2010; 27:1929-40. [PMID: 19587610 DOI: 10.1097/hjh.0b013e32832e8ddf] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide formed by neuronal nitric oxide synthase (nNOS) in the brain, autonomic inhibitory (nitrergic) nerves, and heart plays important roles in the control of blood pressure. Activation of nitrergic nerves innervating the systemic vasculature elicits vasodilatation, decreases peripheral resistance, and lowers blood pressure. Impairment of nitrergic nerve function, as well as endothelial dysfunction, results in systemic and pulmonary hypertension and decreased regional blood flow. Blockade of nNOS activity in the brain, particularly the medulla and hypothalamus, causes systemic hypertension. Under hypertensive states, such as those in spontaneously hypertensive and Dahl salt-sensitive rats, the expression of the nNOS gene in the brain is increased; this appears to counteract the activated sympathetic function in the vasomotor center. The present article summarizes information concerning the modulation of systemic and pulmonary hypertension through nNOS-derived nitric oxide produced in the brain and periphery.
Collapse
|
17
|
Ferrari MFR, Reis EM, Matsumoto JPP, Fior-Chadi DR. Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol 2009; 29:287-308. [PMID: 18949554 DOI: 10.1007/s10571-008-9321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/26/2008] [Indexed: 02/07/2023]
Abstract
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321 Cidade Universitária, Sao Paulo, SP, 05508-090, Brazil.
| | | | | | | |
Collapse
|
18
|
Kung LC, Chan SHH, Wu KLH, Ou CC, Tai MH, Chan JYH. Mitochondrial respiratory enzyme complexes in rostral ventrolateral medulla as cellular targets of nitric oxide and superoxide interaction in the antagonism of antihypertensive action of eNOS transgene. Mol Pharmacol 2008; 74:1319-32. [PMID: 18715945 DOI: 10.1124/mol.108.048793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overproduction of nitric oxide (NO) by gene transduction of endothelial NO synthase (eNOS) in rostral ventrolateral medulla (RVLM), which is responsible for maintenance of vasomotor tone, reduces arterial pressure in spontaneously hypertensive rats (SHR). This NO-induced vasodepression, however, is not sustained and is followed by rebound hypertension. Because superoxide anion (O(2)(*-)) level is increased and synthesis or activity of mitochondrial manganese superoxide dismutase (SOD2) is reduced in RVLM during hypertension, we hypothesized that an interaction between NO and O(2)(*-) in RVLM, using mitochondrial respiratory enzyme complexes (MRC) as the cellular target, contributes to those cardiovascular outcomes after eNOS gene transduction in SHR. The present study assessed this hypothesis using adenoviral vectors to overexpress eNOS (AdeNOS) and/or SOD2 (AdSOD2) in RVLM of SHR or normotensive Wistar-Kyoto (WKY) rats. Microinjection of AdeNOS bilaterally into RVLM elicited 35% depression of MRC-I enzyme activity and evoked 60% and 50% increase in O(2)(*-) and peroxynitrite level in RVLM of SHR, but not WKY rats, which was reversed by cotransduced AdSOD2 or treatment with peroxynitrite decomposition catalyst. Cotransduction of AdeNOS and AdSOD2 in RVLM of SHR elicited significantly greater decreases in arterial pressure and heart rate than those promoted by the individual transgene and prevented the AdeNOS-induced rebound hypertension. We conclude that an interactive action between NO and O(2)(*-) on MRC-I in RVLM via formation of peroxynitrite contributes to the unsustained hypotensive effects of NO after overexpression of eNOS in SHR. The mitochondria-derived O(2)(*-) also mediates the rebound hypertension induced by eNOS transgene in RVLM of SHR.
Collapse
Affiliation(s)
- Ling-Chang Kung
- Department of Neurology, Antai Tian-Sheng Memorial Hospital, Pintong, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Powers-Martin K, Barron AM, Auckland CH, McCooke JK, McKitrick DJ, Arnolda LF, Phillips JK. Immunohistochemical assessment of cyclic guanosine monophosphate (cGMP) and soluble guanylate cyclase (sGC) within the rostral ventrolateral medulla. J Biomed Sci 2008; 15:801-12. [PMID: 18604639 DOI: 10.1007/s11373-008-9269-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/29/2008] [Indexed: 12/15/2022] Open
Abstract
Functional evidence suggests that nitric oxide (NO) signalling in the rostral ventrolateral medulla (RVLM) is cGMP-dependent and that this pathway is impaired in hypertension. We examined cGMP expression as a marker of active NO signalling in the C1 region of the RVLM, comparing adult (>18 weeks) Wistar-Kyoto (WKY, n = 4) and spontaneously hypertensive rats (SHR, n = 4). Double label immunohistochemistry for cGMP-immunoreactivity (IR) and C1 neurons [as identified by phenylethanolamine N-methyltransferase (PNMT-IR) or tyrosine hydroxylase TH-IR)], or neuronal NO synthase (nNOS) neurones, failed to reveal cGMP-IR neurons in the RVLM of either strain, despite consistent detection of cGMP-IR in the nucleus ambiguus (NA). This was unchanged in the presence of isobutylmethylxanthine (IBMX; 0.5 mM, WKY, n = 4, SHR n = 2) and in young animals (WKY, 10-weeks, n = 3). Incubation of RVLM-slices (WKY, 10-weeks, n = 9) in DETA-NO (100 mum; 10 min) or NMDA (10 muM; 2 min) did not uncover cGMP-IR. In all studies, cGMP was prominent within the vasculature. Soluble guanylate cyclase (sGC)-IR was found throughout neurones of the RVLM, but did not co-localise with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks, n = 6). Results indicate that within the RVLM, cGMP is not detectable using immunohistochemistry in the basal state and cannot be elicited by phosphodiesterase inhibition, NMDA receptor stimulation or NO donor application.
Collapse
Affiliation(s)
- Kellysan Powers-Martin
- Division of Health Sciences, School of Veterinary and Biomedical Science, Murdoch University, South St. Murdoch, Perth, WA, 6150, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Khama-Murad AK, Mokrushin AA. Analysis of function of the glutamatergic and GABAergic mediator systems in the olfactory cortex of spontaneously hipertensive rats in vitro. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Gao M, Kondo F, Murakami T, Xu JW, Ma N, Zhu X, Mori K, Ishida T. 1-Aminocyclopropanecarboxylic acid, an antagonist of N-methyl-D-aspartate receptors, causes hypotensive and antioxidant effects with upregulation of heme oxygenase-1 in stroke-prone spontaneously hypertensive rats. Hypertens Res 2007; 30:249-57. [PMID: 17510507 DOI: 10.1291/hypres.30.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1-Aminocyclopropanecarboxylic acid (ACPC) has been shown to protect neurons against glutamate-induced neurotoxicity by reducing N-methyl-D-aspartate (NMDA) receptor activation. Recent studies have demonstrated that several antagonists of NMDA receptors have important cardiovascular effects. In this study, we examined whether the cardiovascular effects of ACPC involve the role of heme oxygenase-1 (HO-1) and its antioxidant effect in stroke-prone spontaneously hypertensive rats (SHRSP). Male SHRSP were divided into two groups: a control group and an ACPC group administered ACPC at 50 mg/kg per day for 4 weeks by peritoneal injection. Systolic blood pressure (SBP) and mortality of stroke were significantly lower in the ACPC group than in the control group. Urinary Na(+) and Cl(-) excretion and plasma superoxide dismutase (SOD) activity were increased in the ACPC group. Western analysis detected proteins that were immunoreactive to anti-nitrotyrosine antibody and showed lower levels of expression in the cerebral cortex compared to that in the control group. Immunohistochemical analysis revealed that 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the hippocampus and cerebral cortex was reduced in the ACPC group. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that administration of ACPC also significantly decreased the expression of neuronal nitric oxide synthase (nNOS) mRNA in the hippocampus and endotherial nitric oxide synthase (eNOS) mRNA in the cerebral cortex, and drastically increased HO-1 mRNA in the cerebral cortex. Enhanced HO-1 staining on sections from the hippocampus and cerebral cortex was observed in the ACPC group. These data suggest that the normalization by ACPC of blood pressure elevation and mortality of stroke involves induction of the expression of HO-1, which exerts antioxidant and vascular relaxation effects, in SHRSP.
Collapse
Affiliation(s)
- Ming Gao
- Faculty of Pharmaceutical Science, School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Edwards MA, Loxley RA, Williams AJ, Connor M, Phillips JK. Lack of functional expression of NMDA receptors in PC12 cells. Neurotoxicology 2007; 28:876-85. [PMID: 17572500 DOI: 10.1016/j.neuro.2007.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 03/27/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
PC12 cells are an established model for studying the role of N-methyl-d-aspartate (NMDA) receptors in excitotoxicity and function as multimeric assemblies of NR1 with at least one NR2(A-D) subunit. We examined NR1 splice variant and NR2 subunit expression in four PC12 cell-lines (ATCC, WEHI, Ordway and Flinders), correlated mRNA expression with protein expression, and used patch-clamp recordings to test functionality. PCR indicated strong expression of the NR1 splice variants NR1-2a and NR1-4a in all cell-lines, with the remainder weakly detected or absent. Real-time PCR showed variable levels of NR1 mRNA expression (all splice variants) between cell-lines and a significant increase in response to nerve growth factor in the WEHI and Ordway lines (NGF: 50ng/ml, 2.1- and 13.4-fold increases, respectively, P< or =0.05). mRNA for NR2A or NR2B was not detected in any PC12 cell-line. NR2C mRNA expression varied between lines and increased after NGF treatment (approximately 4-fold increase in WEHI and Ordway lines, P< or =0.05). In the Ordway line, NR2D mRNA was seen only after NGF treatment. Immunohistochemistry confirmed protein expression for NR1, NR2C and NR2D, and while fluorescence intensity changes in response to NGF paralleled mRNA responses, the degree of increase was of reduced magnitude. Whole-cell patch-clamping of NGF treated cells failed to detect functional NMDA receptors in any of the cell-lines. Our study demonstrates that in contrast to neurons from the CNS, PC12 cells do not express a normal complement of NMDA receptor-subunits, and this may be one factor limiting functional responses to NMDA/glutamate and consequently the use of PC12 cells as a neuronal model.
Collapse
Affiliation(s)
- Mark A Edwards
- Division of Health Sciences, Murdoch University, Perth, WA, Australia
| | | | | | | | | |
Collapse
|
23
|
Hojná S, Kadlecová M, Dobesová Z, Valousková V, Zicha J, Kunes J. The participation of brain NO synthase in blood pressure control of adult spontaneously hypertensive rats. Mol Cell Biochem 2006; 297:21-9. [PMID: 17009099 DOI: 10.1007/s11010-006-9318-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology AS CR, Charles University, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Powers-Martin K, McKitrick DJ, Arnolda LF, Phillips JK. Distinct subpopulations of cyclic guanosine monophosphate (cGMP) and neuronal nitric oxide synthase (nNOS) containing sympathetic preganglionic neurons in spontaneously hypertensive and Wistar-Kyoto rats. J Comp Neurol 2006; 497:566-74. [PMID: 16739165 DOI: 10.1002/cne.20998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sympathetic preganglionic neurons (SPN) of the intermediolateral cell column (IML) play a critical role in the maintenance of vascular tone. We undertook a comparative neuroanatomical analysis of neuronal nitric oxide synthase (nNOS) expression in the SPN of the mature normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR). The anatomical relationship between nNOS and the NO signaling molecule cyclic guanosine monophosphate (cGMP) was also determined. All animals were male, age > 6 months. Fluorogold (FG) retrograde labeling of SPN (detected with immunohistochemistry) was combined with NADPH-diaphorase histochemistry for NOS in the thoracic spinal cord (T1-11, n = 5 WKY, 5 SHR). There was no difference in the total number of FG-labeled SPN (WKY 6,542 +/- 828, SHR 6,091 +/- 820), but the proportion of FG-labeled cells expressing NOS was significantly less in the SHR (WKY 64.4 +/- 5.1 vs. SHR 55.6 +/- 2.1, P < 0.05). Fluorescence immunohistochemistry for nNOS/cGMP (n = 4 WKY, 4 SHR) was also performed. Confocal microscopy revealed that all nNOS-positive SPN contain cGMP and confirmed a strain-specific anatomical arrangement of SPN cell clusters. A novel subpopulation of cGMP-only cells were also identified. Double labeling for cGMP and choline acetyltransferase (n = 3 WKY, 3 SHR), confirmed these cells as SPN in both WKY and SHR. These results suggest that cGMP is a key signaling molecule in SPN, and that a reduced number of NOS neurons in the SHR may play a role in the increase in sympathetic tone associated with hypertension in these animals.
Collapse
|
25
|
Fuller PI, Reddrop C, Rodger J, Bellingham MC, Phillips JK. Differential expression of the NMDA NR2B receptor subunit in motoneuron populations susceptible and resistant to amyotrophic lateral sclerosis. Neurosci Lett 2006; 399:157-61. [PMID: 16490316 DOI: 10.1016/j.neulet.2006.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/23/2006] [Accepted: 01/26/2006] [Indexed: 11/27/2022]
Abstract
We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D) and NR1 splice variants (NR1-1a/1b,-2a/2b,-3a/3b,-4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (>15 fold greater, P<or=0.05, n = 11 animals), while conventional RT-PCR showed no difference in NR1 splice variant expression (with all variants except NR1-3 detected in both nuclei; n = 6 animals). Within III, the NR2B subunit was expressed 1.7 to 2.6-fold lower than the other NR2 subunits (P<or=0.05), while in XII all NR2 subunits were expressed at equal levels. When comparing levels between the 2 nuclei, mRNA for the NR2B subunit was expressed 2.1-fold higher in XII compared to III (P<or=0.05), while their was no difference in mRNA expression for the other subunits. Immunohistochemical analysis confirmed greater NR2B protein levels within individual hypoglossal neurons compared to oculomotor neurons (1.8-fold greater, P<or=0.05, n = 5 animals). Lower expression of the NMDA NR2B subunit may constitute one factor conferring protection to oculomotor neurons in ALS.
Collapse
Affiliation(s)
- Paula I Fuller
- Division of Health Sciences, Murdoch University, South St, Murdoch, Perth 6150, WA, Australia
| | | | | | | | | |
Collapse
|
26
|
Phillips JK. Pathogenesis of hypertension in renal failure: role of the sympathetic nervous system and renal afferents. Clin Exp Pharmacol Physiol 2006; 32:415-8. [PMID: 15854151 DOI: 10.1111/j.1440-1681.2005.04204.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The kidney receives a dense innervation of sympathetic and sensory fibres and can be both a target of sympathetic activity and a source of signals that drive sympathetic tone. In the normal state, interactions between the kidney and sympathetic nervous system (SNS) serve to maintain blood pressure and glomerular filtration rate within tightly controlled levels. In renal failure, a defect in renal sodium excretory function leads to an abnormal pressure natriuresis relationship and activation of the renin-angiotensin-aldosterone system, contributing to the development of hypertension and progression of kidney disease. 2. Evidence now strongly indicates a role for the SNS in the pathogenesis of hypertension in renal failure. Hypertension occurs commonly and early in renal disease and is paralleled by increases in SNS activity, as indicated by increased muscle sympathetic nerve activity and circulating catecholamines. This appears to be driven by the diseased kidneys, because nephrectomy or denervation has been shown to correct blood pressure and SNS activity in human and animal studies. 3. Afferent signals from the kidney, detected by chemoreceptors and mechanoreceptors, feed directly into central nuclei of the SNS, including the hypothalamus and circumventricular organs, in addition to the stimulus provided by circulating and brain-derived angiotensin II. Therefore, the pathogenesis of hypertension in renal failure is complex and arises from the interaction of haemodynamic and neuroendocrine factors. 4. Increased SNS activity has significant implications with regard to increased risk of cardiovascular disease and is an important consideration in the treatment of renal failure.
Collapse
Affiliation(s)
- Jacqueline K Phillips
- Division of Health Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
27
|
Dixon DN, Loxley RA, Barron A, Cleary S, Phillips JK. Comparative studies of PC12 and mouse pheochromocytoma-derived rodent cell lines as models for the study of neuroendocrine systems. In Vitro Cell Dev Biol Anim 2005; 41:197-206. [PMID: 16223334 DOI: 10.1290/0411077.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have compared PC12 cell lines derived from different laboratories and the newly developed mouse pheochromocytoma (MPC) cell line. Morphologically, there were distinct differences in size, shape, adherence, and clumping behavior, which varied in response to different culture media, growth substrates, and nerve growth factor. Quantitative messenger ribonucleic acid (mRNA) analysis showed significant variability in the expression of the catecholaminergic biosynthetic enzymes tyrosine hydroxylase (TH), phenylethanolamine N-methyltransferase (PNMT), the noradrenaline transporter (NAT), and neuron-specific enolase (NSE) between all lines examined. Of most significance were the increased levels of PNMT mRNA in the MPC cells, which were to 15-fold greater than in the PC12 cell lines grown under the same conditions in Dulbecco modified Eagle medium (P < or = 0.05). Growth of MPC cells in Roswell Park Memorial Institute media induced a further significant increase in PNMT gene expression (P < or = 0.05). Immunohistochemistry for TH, PNMT, and NAT was generally consistent with mRNA analysis, with the MPC cells demonstrating strong immunoreactivity for PNMT. The MPC cells showed the highest levels of desipramine-sensitive [(3)H] noradrenaline uptake activity (threefold > than PC12 American Type Culture Center line, P < or = 0.05), despite relatively low levels of NAT mRNA. These results indicate that PC12 cell lines should be carefully chosen for optimal utility in the study of chromaffin cell or sympathetic neuron biology and that cell features will be influenced by type of media and substrate chosen. Furthermore, they confirm that the new MPC cell line is likely a useful model for the study of adrenergic mechanisms or studies involving NAT.
Collapse
Affiliation(s)
- Darcelle N Dixon
- Division of Health Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
28
|
Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Prog Neurobiol 2005; 77:396-425. [PMID: 16376477 DOI: 10.1016/j.pneurobio.2005.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 01/07/2023]
Abstract
As much as brain stem death is currently the clinical definition of death in many countries and is a phenomenon of paramount medical importance, there is a dearth of information on its mechanistic underpinnings. A majority of the clinical studies are concerned only with methods to determine brain stem death. Whereas a vast amount of information is available on the cellular and molecular mechanisms of cell death, rarely are these studies directed specifically towards the understanding of brain stem death. This review presents a framework for translational research on brain stem death that is based on systematically coordinated clinical and laboratory efforts that center on this phenomenon. It begins with the identification of a novel clinical marker from patients that is related specifically to brain stem death. After realizing that this "life-and-death" signal is related to the functional integrity of the brain stem, its origin is traced to the rostral ventrolateral medulla (RVLM). Subsequent laboratory studies on this neural substrate in animal models of brain stem death provide credence to the notion that both "pro-life" and "pro-death" programs are at work during the progression towards death. Those programs (mitochondrial functions, nitric oxide, peroxynitrite, superoxide anion, coenzyme Q10, heat shock proteins and ubiquitin-proteasome system) hitherto identified from the RVLM are presented, along with their cellular and molecular mechanisms. It is proposed that outcome of the interplay between the "pro-life" and "pro-death" programs (dying) in this neural substrate determines the final fate of the individual (being dead). Thus, identification of additional programs in the RVLM and delineation of their regulatory mechanisms should shed new lights on future directions for clinical management of life-and-death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, ROC
| | | | | |
Collapse
|
29
|
|