1
|
Babbal, Mohanty S, Khasa YP. Designing Ubiquitin-like protease 1 (Ulp1) based nano biocatalysts: A promising technology for SUMO fusion proteins. Int J Biol Macromol 2024; 255:128258. [PMID: 37984574 DOI: 10.1016/j.ijbiomac.2023.128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The SUMO proteases (Ulps), a group of cysteine proteases, are well known for their efficient ability to perform structure-based cleavage of SUMO tag from the protein of interest and generation of biotherapeutics with authentic N-terminus. However, the stability of Ulps has remained a challenge for the economical production of difficult-to-produce proteins in E. coli. Therefore, the present study aimed to establish the methodology for developing stable S. pombe Ulp1 preparation using different enzyme immobilization strategies. The whole-cell biocatalyst developed using the Pir1 anchor protein of Pichia cleaved the SUMO tag within 24 h of reaction incubation. The chemical immobilization using commercial epoxy and amino methacrylate beads significantly enhanced the operational reusability of SpUlp1 up to 24 cycles. Silica beads further improved the repetitive usage of the immobilized enzyme for 65 cycles. The SpUlp1 immobilization on laboratory-developed chitosan-coated iron oxide nanoparticles exhibited more than 90 % cleavage of SUMO tag from different substrates even after 100 consecutive reactions. Moreover, an effective SUMO tag removal was observed within 10 min of incubation. The operational stability of the immobilized enzyme was confirmed in a pH range of 5 to 13. The spherical nature of nanoparticles was confirmed by FESEM and TEM results. The successful chitosan coating and subsequent activation with glutaraldehyde were established via FT-IR. Furthermore, HRTEM, SAED, and XRD proved the crystalline nature of nanoparticles, while VSM confirmed the superparamagnetic behavior.
Collapse
Affiliation(s)
- Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
2
|
Saber Braim F, Noor Ashikin Nik Ab Razak N, Abdul Aziz A, Qasim Ismael L, Kayode Sodipo B. Ultrasound assisted chitosan coated iron oxide nanoparticles: Influence of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. ULTRASONICS SONOCHEMISTRY 2022; 88:106072. [PMID: 35772239 PMCID: PMC9253479 DOI: 10.1016/j.ultsonch.2022.106072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/27/2023]
Abstract
Due to unique reaction conditions of the acoustic cavitation process, ultrasound-assisted synthesis of nanoparticles has attracted increased research attention. In this study, we demonstrate the effect of ultrasonic irradiation on the crystallinity, stability, biocompatibility, and magnetic properties of chitosan-coated superparamagnetic iron oxide nanoparticles (CS-SPIONs). CS solution and colloidal suspension of SPIONs were mixed and sonicated using an ultrasonic probe of 1.3 cm tip size horn, frequency (20 kHz), and power (750 W). Different samples were sonicated for 1.5, 5, and 10 min with corresponding acoustic powers of 67, 40 and 36 W, and the samples were denoted S1.5, S5, and S10, respectively. The samples were characterized using X-ray diffractometer (XRD), Energy dispersive X-ray (EDX), Transmission electronic microscope (TEM), Fourier transform infrared spectroscopy (FTIR), Zeta sizer, and vibrating sample magnetometer (VSM). Cell cytotoxicity and cell uptake were investigated with human embryonic kidney 293 (HEK-293) cells through MTT assay and Prussian blue staining, respectively. The sharp peaks of the XRD pattern were disappearing with an increase in the sonication period but a decrease in acoustic power. EDX analysis also demonstrates that atomic and weight percentages of the various elements in the samples were decreasing with an increase in the sonication period. However, the Zeta potential (ζ) values increase with an increase in the sonication period.The saturation magnetization (Ms) of the S1.5 before and after the coating is 62.95 and 86.93 emu/g, respectively. Cell cytotoxicity and uptake of the S1.5 show that above 70% of cells were viable at the highest concentration and the longest incubation duration. Importantly, the CS-SPIONs synthesized by the sonochemical method are non-toxic and biocompatible.
Collapse
Affiliation(s)
- Farhank Saber Braim
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia; Department of Physics, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq
| | - Nik Noor Ashikin Nik Ab Razak
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia.
| | - Azlan Abdul Aziz
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Layla Qasim Ismael
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Bashiru Kayode Sodipo
- Department of Physics, Kaduna State University, Nigeria; Sabanci University Nanotechnology Research and Application Center (SUNUM), Turkey.
| |
Collapse
|
3
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| |
Collapse
|
4
|
Li W, Zhang X, Xue Z, Mi Y, Ma P, Fan D. Ginsenoside CK production by commercial snailase immobilized onto carboxylated chitosan-coated magnetic nanoparticles. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Cheon HJ, Nguyen QH, Kim MI. Highly Sensitive Fluorescent Detection of Acetylcholine Based on the Enhanced Peroxidase-Like Activity of Histidine Coated Magnetic Nanoparticles. NANOMATERIALS 2021; 11:nano11051207. [PMID: 34062948 PMCID: PMC8147487 DOI: 10.3390/nano11051207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.
Collapse
|
6
|
Nouri M, khodaiyan F. Green synthesis of chitosan magnetic nanoparticles and their application with poly-aldehyde kefiran cross-linker to immobilize pectinase enzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Hojnik Podrepšek G, Knez Ž, Leitgeb M. Development of Chitosan Functionalized Magnetic Nanoparticles with Bioactive Compounds. NANOMATERIALS 2020; 10:nano10101913. [PMID: 32992815 PMCID: PMC7599998 DOI: 10.3390/nano10101913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
In this study, magnetic maghemite nanoparticles, which belong to the group of metal oxides, were functionalized with chitosan, a non-toxic, hydrophilic, biocompatible, biodegradable biopolymer with anti-bacterial effects. This was done using different synthesis methods, and a comparison of the properties of the synthesized chitosan functionalized maghemite nanoparticles was conducted. Characterization was performed using scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Characterizations of size distribution were performed using dynamic light scattering (DLS) measurements and laser granulometry. A chitosan functionalization layer was confirmed using potentiometric titration on variously synthesized chitosan functionalized maghemite nanoparticles, which is important for further immobilization of bioactive compounds. Furthermore, after activation of chitosan functionalized maghemite nanoparticles with glutaraldehyde (GA) or pentaethylenehexamine (PEHA), immobilization studies of enzyme cholesterol oxidase (ChOx) and horseradish peroxidase (HRP) were conducted. Factors influencing the immobilization of enzymes, such as type and concentration of activating reagent, mass ratio between carrier and enzyme, immobilization time and enzyme concentration, were investigated. Briefly, microparticles made using the chitosan suspension cross-linking process (MC2) proved to be the most suitable for obtaining the highest activity of immobilized enzyme, and nanoparticles functionalized with chitosan using the covalent binding method (MC3) could compete with MC2 for their applications.
Collapse
Affiliation(s)
- Gordana Hojnik Podrepšek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-222-94-462
| |
Collapse
|
8
|
Merces AADD, Ferreira RDS, Silva KJS, Salu BR, Maciel JDC, Aguiar JAO, Tashima AK, Oliva MLV, Carvalho Júnior LBD. Identification of blood plasma proteins using heparin-coated magnetic chitosan particles. Carbohydr Polym 2020; 247:116671. [PMID: 32829799 DOI: 10.1016/j.carbpol.2020.116671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
Heparin was immobilized on magnetic chitosan particles to be used as a tool for human plasma protein identification. Chitosan was magnetized by co-precipitation with Fe2+/Fe3+ (MAG-CH). Heparin was functionalized with carbodiimide and N-hydroxysuccinimide and covalently linked to MAG-CH (MAG-CH-hep). X-ray diffraction confirmed the presence of chitosan and Fe3O4 in MAG-CH. This particle exhibited superparamagnetism and size between 100-300 μm. Human plasma diluted with 10 mM phosphate buffer (pH 5.5) or 50 mM Tris-HCl buffer (pH 8.5) was incubated with MAG-CH-hep, and the proteins fixed were eluted with the same buffers containing increasing concentrations of NaCl. The proteins obtained were investigated by SDS-PAGE, LC/MS, and biological activity tests (PT, aPTT, and enzymatic chromogenic assay). Inhibitors of the serpin family, prothrombin, and human albumin were identified in this study. Therefore, MAG-CH-hep can be used to purify these proteins and presents the following advantages: low-cost synthesis, magnetic separation, ion-exchange purification, and reusability.
Collapse
Affiliation(s)
- Aurenice Arruda Dutra das Merces
- Laboratório de Imunopatologia Keizo Asami, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Rodrigo da Silva Ferreira
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, 04044-020, Brazil
| | - Karciano José Santos Silva
- Instituto Federal de Alagoas, Palmeiras dos Índios, Alagoas, 57608-180, Brazil; Centro de Ciências Exatas e da Natureza, Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Bruno Ramos Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, 04044-020, Brazil
| | | | - José Albino Oliveira Aguiar
- Centro de Ciências Exatas e da Natureza, Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, 04044-020, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, 04044-020, Brazil
| | - Luiz Bezerra de Carvalho Júnior
- Laboratório de Imunopatologia Keizo Asami, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
9
|
Karagoz P, Mandair R, Manayil JC, Lad J, Chong K, Kyriakou G, Lee AF, Wilson K, Bill RM. Purification and immobilization of engineered glucose dehydrogenase: a new approach to producing gluconic acid from breadwaste. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:100. [PMID: 32514312 PMCID: PMC7268246 DOI: 10.1186/s13068-020-01735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. RESULTS In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The K m and V max values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. CONCLUSIONS This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse.
Collapse
Affiliation(s)
- Pinar Karagoz
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - Ravneet Mandair
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | | | - Jai Lad
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Katie Chong
- European Bioenergy Research Institute (EBRI), Aston University, Birmingham, B4 7ET UK
| | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, 265 04 Patras, Greece
| | - Adam F. Lee
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Karen Wilson
- Applied Chemistry & Environmental Science, School of Science, RMIT University, Melbourne, VIC 3000 Australia
| | - Roslyn M. Bill
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
10
|
Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. J Pharm Biomed Anal 2020; 184:113195. [PMID: 32163827 DOI: 10.1016/j.jpba.2020.113195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles were coated with polyvinyl alcohol and activated with glutaraldehyde for trypsin immobilization. The prepared magnetic nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, thermal gravimetric analysis, zeta potential meter and vibrating sample magnetometer. Free and immobilized trypsin showed optimum activity at pH 6.0, 30 °C and pH 7.0, 40 °C, respectively. Immobilized trypsin was more stable than the free enzyme at 40 °C. After immobilization, Km of the immobilized trypsin increased, however, Vmax value was almost the same with free trypsin. According to the results, the immobilized trypsin retained 50 % of its initial activity, whereas free trypsin retained 19 % of its initial activity after 12-days at 4 °C. Immobilized trypsin sustained 56 % of its initial activity after eight times of successive reuse. The performance of the immobilized trypsin was evaluated by digestion of cytochrome c. The peptide fragments in digest solution were determined by using MALDI-TOF mass spectrometry. Immobilized trypsin showed effective proteolytic activity in shorter time (15 min) than free trypsin (24 h). Hence, immobilized trypsin on the polyvinyl alcohol coated magnetic nanoparticles could be promising biocatalyst for large-scale proteomics studies and practical applications.
Collapse
|
11
|
Moradi S, Khodaiyan F, Hadi Razavi S. Green construction of recyclable amino-tannic acid modified magnetic nanoparticles: Application for β-glucosidase immobilization. Int J Biol Macromol 2019; 154:1366-1374. [PMID: 31730982 DOI: 10.1016/j.ijbiomac.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
The β-glucosidase (BGL) enzyme in food industry is great interest due to its role in food conversion to produce functional food products. In this study, the BGL was covalently immobilized onto amino-tannic acid modified Fe3O4 magnetic nanoparticles (ATA-Fe3O4 MNPs) as biocompatible nanoplatform by modified poly-aldehyde pullulan (PAP) as a cross-linker to enhance the ability and strength of the nanoparticle connection to the enzyme. The properties of support were subsequently characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The highest percentage of loading and immobilization yield was obtained with 0.1 mg enzyme/mL citrate buffer (pH 6, 1 M) enzyme solution, carrier solution of 10 mg ATA-Fe3O4/3 mL citrate buffer (pH 6, 1 M), and PAP solution of 20% total reaction system volume. Optimum pH and temperature were found for free (pH 5.0 and temperature 30 °C) and immobilized (pH 6.0 and temperature 40 °C) enzyme. The immobilized BGL maintains its activity to 83% after 10 cycles. Therefore, immobilization of BGL by this method is an efficient procedure to improve the properties of enzyme.
Collapse
Affiliation(s)
- Samira Moradi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Hadi Razavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
12
|
Zdarta J, Bachosz K, Degórska O, Zdarta A, Kaczorek E, Pinelo M, Meyer AS, Jesionowski T. Co-Immobilization of Glucose Dehydrogenase and Xylose Dehydrogenase as a New Approach for Simultaneous Production of Gluconic and Xylonic Acid. MATERIALS 2019; 12:ma12193167. [PMID: 31569698 PMCID: PMC6804251 DOI: 10.3390/ma12193167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
The conversion of biomass components catalyzed via immobilized enzymes is a promising way of obtaining valuable compounds with high efficiency under mild conditions. However, simultaneous transformation of glucose and xylose into gluconic acid and xylonic acid, respectively, is an overlooked research area. Therefore, in this work we have undertaken a study focused on the co-immobilization of glucose dehydrogenase (GDH, EC 1.1.1.118) and xylose dehydrogenase (XDH, EC 1.1.1.175) using mesoporous Santa Barbara Amorphous silica (SBA 15) for the simultaneous production of gluconic acid and xylonic acid. The effective co-immobilization of enzymes onto the surface and into the pores of the silica support was confirmed. A GDH:XDH ratio equal to 1:5 was the most suitable for the conversion of xylose and glucose, as the reaction yield reached over 90% for both monosaccharides after 45 min of the process. Upon co-immobilization, reaction yields exceeding 80% were noticed over wide pH (7–9) and temperature (40–60 °C) ranges. Additionally, the co-immobilized GDH and XDH exhibited a significant enhancement of their thermal, chemical and storage stability. Furthermore, the co-immobilized enzymes are characterized by good reusability, as they facilitated the reaction yields by over 80%, even after 5 consecutive reaction steps.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Oliwia Degórska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, DTU Chemical Engineering, Technical University of Denmark, Soltofts Plads 229, DK-2800 Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 224, DK-2800 Kgs. Lyngby, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
13
|
Flores EEE, Cardoso FD, Siqueira LB, Ricardi NC, Costa TH, Rodrigues RC, Klein MP, Hertz PF. Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Development of Voltammetric Glucose-6-phosphate Biosensors Based on the Immobilization of Glucose-6-phosphate Dehydrogenase on Polypyrrole- and Chitosan-Coated Fe 3O 4 Nanoparticles/Polypyrrole Nanocomposite Films. Appl Biochem Biotechnol 2019; 188:1145-1157. [PMID: 30820758 DOI: 10.1007/s12010-019-02979-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Polypyrrole (PPy) and PPy-containing chitosan-coated Fe3O4 have been electrochemically polymerized on pencil graphite electrodes (PGEs). After the resulting electrodes were characterized by SEM-EDS analysis, glucose-6-phosphate dehydrogenase (G6PD) was immobilized onto these electrodes via glutaraldehyde. The biosensors prepared for the chronopotentiometric detection of glucose-6-phosphate (G6P) at 0.25 mAcm-2 were studied and optimized at different parameters such as the pH of supporting electrolyte, the temperature, and NADP+ and G6P concentrations related with the analytical performance of the biosensors. PPy/G6PD (BS-1) and CS/Fe3O4-PPy/G6PD (BS-2) biosensors showed a broad linear response in the concentration range 0.025-0.25 mM and 0.0025-0.05 mM, and their detection limits for G6P and the RSD values were determined as 0.008 mM and 0.002 mM and 3.80% and 4.60% after 15 times usage, respectively. The interference study with various major blood components such as urea, glucose, and cysteine was performed to evaluate the selectivity of the biosensors. The proposed BS-2 biosensor showed almost free response from available interferences in blood serum with a recovery of 91 to 110%. The developed biosensors could be used in the G6P level measurement of medical samples.
Collapse
|
15
|
Zdarta J, Pinelo M, Jesionowski T, Meyer AS. Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase. ChemCatChem 2018. [DOI: 10.1002/cctc.201801335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering Faculty of Chemical Technology Poznan University of Technology Berdychowo 4 Poznan 60965 Poland
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| | - Manuel Pinelo
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering Faculty of Chemical Technology Poznan University of Technology Berdychowo 4 Poznan 60965 Poland
| | - Anne S. Meyer
- Center for BioProcess Engineering Department of Chemical and Biochemical Engineering Technical University of Denmark Soltofts Plads 229 Lyngby 2800 Denmark
| |
Collapse
|