1
|
Schmitt I, Evert BO, Sharma A, Khazneh H, Murgatroyd C, Wüllner U. The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)-Implications for Parkinson's Disease and Rett Syndrome. Mol Neurobiol 2024; 61:7830-7844. [PMID: 38429622 DOI: 10.1007/s12035-024-03974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Hassan Khazneh
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany.
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Pantier R, Brown M, Han S, Paton K, Meek S, Montavon T, Shukeir N, McHugh T, Kelly DA, Hochepied T, Libert C, Jenuwein T, Burdon T, Bird A. MeCP2 binds to methylated DNA independently of phase separation and heterochromatin organisation. Nat Commun 2024; 15:3880. [PMID: 38719804 PMCID: PMC11079052 DOI: 10.1038/s41467-024-47395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Megan Brown
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Sicheng Han
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Katie Paton
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Stephen Meek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Thomas Montavon
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Toni McHugh
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Tino Hochepied
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Tom Burdon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Kalani L, Jorge-Torres OC, Esteller M, Ausio J, Abian O, Velazquez-Campoy A. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res 2024; 52:3636-3653. [PMID: 38321951 DOI: 10.1093/nar/gkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Bijlani S, Pang KM, Bugga LV, Rangasamy S, Narayanan V, Chatterjee S. Nuclease-free precise genome editing corrects MECP2 mutations associated with Rett syndrome. Front Genome Ed 2024; 6:1346781. [PMID: 38495533 PMCID: PMC10940404 DOI: 10.3389/fgeed.2024.1346781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Rett syndrome is an acquired progressive neurodevelopmental disorder caused by de novo mutations in the X-linked MECP2 gene which encodes a pleiotropic protein that functions as a global transcriptional regulator and a chromatin modifier. Rett syndrome predominantly affects heterozygous females while affected male hemizygotes rarely survive. Gene therapy of Rett syndrome has proven challenging due to a requirement for stringent regulation of expression with either over- or under-expression being toxic. Ectopic expression of MECP2 in conjunction with regulatory miRNA target sequences has achieved some success, but the durability of this approach remains unknown. Here we evaluated a nuclease-free homologous recombination (HR)-based genome editing strategy to correct mutations in the MECP2 gene. The stem cell-derived AAVHSCs have previously been shown to mediate seamless and precise HR-based genome editing. We tested the ability of HR-based genome editing to correct pathogenic mutations in Exons 3 and 4 of the MECP2 gene and restore the wild type sequence while preserving all native genomic regulatory elements associated with MECP2 expression, thus potentially addressing a significant issue in gene therapy for Rett syndrome. Moreover, since the mutations are edited directly at the level of the genome, the corrections are expected to be durable with progeny cells inheriting the edited gene. The AAVHSC MECP2 editing vector was designed to be fully homologous to the target MECP2 region and to insert a promoterless Venus reporter at the end of Exon 4. Evaluation of AAVHSC editing in a panel of Rett cell lines bearing mutations in Exons 3 and 4 demonstrated successful correction and rescue of expression of the edited MECP2 gene. Sequence analysis of edited Rett cells revealed successful and accurate correction of mutations in both Exons 3 and 4 and permitted mapping of HR crossover events. Successful correction was observed only when the mutations were flanked at both the 5' and 3' ends by crossover events, but not when both crossovers occurred either exclusively upstream or downstream of the mutation. Importantly, we concluded that pathogenic mutations were successfully corrected in every Rett line analyzed, demonstrating the therapeutic potential of HR-based genome editing.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Ka Ming Pang
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Lakshmi V. Bugga
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Sampath Rangasamy
- Center for Rare Childhood Disorders (C4RCD), Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders (C4RCD), Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
Ito C, Haraguchi R, Ogawa K, Iwata M, Kitazawa R, Takada Y, Kitazawa S. Demethylation in promoter region of severely damaged hepatocytes enhances chemokine receptor CXCR4 gene expression. Histochem Cell Biol 2023; 160:407-418. [PMID: 37532885 DOI: 10.1007/s00418-023-02229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The liver is known to possess remarkable regenerative potential, but persistent inflammation or severe acute injury can lead to liver fibrosis and incomplete regeneration, ultimately resulting in liver failure. Recent studies have shown that the axis of two types of CXCL12 receptors, CXCR4 and CXCR7, plays a crucial role in liver fibrosis and regeneration. The present study aimed to investigate the regulatory factors involved in CXCR4 expression in injured liver. Immunohistochemical screening of liver tissue samples collected during liver transplantation revealed a reciprocal expression pattern between CXCR4 and MeCP2. An in vitro system involving cultured cell lines and H2O2 treatment was established to study the impact of oxidative stress on signaling pathways and epigenetic alterations that affect CXCR4 mRNA expression. Operating through distinct signaling pathways, H2O2 treatment induced a dose-dependent increase in CXCR4 expression in both hepatocyte- and intrahepatic cholangiocyte-derived cells. Treatment of the cells with trichostatin and azacytidine modulated CXCR4 expression in hepatocytes by modifying the methylation status of CpG dinucleotides located in a pair of TA repeats adjacent to the TATA box of the CXCR4 gene promoter. Only MeCP2 bound to oligonucleotides representing the TATA box region when the cytosine residues within the sequence were methylated, as revealed by electrophoretic mobility shift assay (EMSA). Methylation-specific PCR analysis of microdissected samples revealed a correlation between the loss of CpG methylation and the upregulation of CXCR4 in injured hepatocytes, replicating the findings from the in vitro study. Besides the conventional MEK/ERK and NF-κB signaling pathways that activate CXCR4 in intrahepatic cholangiocytes, the unique epigenetic modifications observed in hepatocytes might also contribute to a shift in the CXCR4-CXCR7 balance towards CXCR4, leading to irreversible liver injury and fibrosis. This study highlights the importance of epigenetic modifications in regulating CXCR4 expression in liver injury and fibrosis.
Collapse
Affiliation(s)
- Chihiro Ito
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Kohei Ogawa
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Miku Iwata
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
6
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Kunert S, Linhard V, Weirich S, Choudalakis M, Osswald F, Krämer L, Köhler AR, Bröhm A, Wollenhaupt J, Schwalbe H, Jeltsch A. The MECP2-TRD domain interacts with the DNMT3A-ADD domain at the H3-tail binding site. Protein Sci 2023; 32:e4542. [PMID: 36519786 PMCID: PMC9798253 DOI: 10.1002/pro.4542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.
Collapse
Affiliation(s)
- Stefan Kunert
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical BiologyGoethe UniversityFrankfurtGermany
| | - Sara Weirich
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Michel Choudalakis
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Florian Osswald
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Lisa Krämer
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Anja R. Köhler
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Jan Wollenhaupt
- Macromolecular Crystallography GroupHelmholtz‐Zentrum BerlinBerlinGermany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical BiologyGoethe UniversityFrankfurtGermany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
9
|
Iwasaki Y, Ikemura T, Wada K, Wada Y, Abe T. Comparative genomic analysis of the human genome and six bat genomes using unsupervised machine learning: Mb-level CpG and TFBS islands. BMC Genomics 2022; 23:497. [PMID: 35804296 PMCID: PMC9264310 DOI: 10.1186/s12864-022-08664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Emerging infectious disease-causing RNA viruses, such as the SARS-CoV-2 and Ebola viruses, are thought to rely on bats as natural reservoir hosts. Since these zoonotic viruses pose a great threat to humans, it is important to characterize the bat genome from multiple perspectives. Unsupervised machine learning methods for extracting novel information from big sequence data without prior knowledge or particular models are highly desirable for obtaining unexpected insights. We previously established a batch-learning self-organizing map (BLSOM) of the oligonucleotide composition that reveals novel genome characteristics from big sequence data. RESULTS In this study, using the oligonucleotide BLSOM, we conducted a comparative genomic study of humans and six bat species. BLSOM is an explainable-type machine learning algorithm that reveals the diagnostic oligonucleotides contributing to sequence clustering (self-organization). When unsupervised machine learning reveals unexpected and/or characteristic features, these features can be studied in more detail via the much simpler and more direct standard distribution map method. Based on this combined strategy, we identified the Mb-level enrichment of CG dinucleotide (Mb-level CpG islands) around the termini of bat long-scaffold sequences. In addition, a class of CG-containing oligonucleotides were enriched in the centromeric and pericentromeric regions of human chromosomes. Oligonucleotides longer than tetranucleotides often represent binding motifs for a wide variety of proteins (e.g., transcription factor binding sequences (TFBSs)). By analyzing the penta- and hexanucleotide composition, we observed the evident enrichment of a wide range of hexanucleotide TFBSs in centromeric and pericentromeric heterochromatin regions on all human chromosomes. CONCLUSION Function of transcription factors (TFs) beyond their known regulation of gene expression (e.g., TF-mediated looping interactions between two different genomic regions) has received wide attention. The Mb-level TFBS and CpG islands are thought to be involved in the large-scale nuclear organization, such as centromere and telomere clustering. TFBSs, which are enriched in centromeric and pericentromeric heterochromatin regions, are thought to play an important role in the formation of nuclear 3D structures. Our machine learning-based analysis will help us to understand the differential features of nuclear 3D structures in the human and bat genomes.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken, 526-0829, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken, 526-0829, Japan.
| | - Kennosuke Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken, 526-0829, Japan
| | - Yoshiko Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken, 526-0829, Japan
| | - Takashi Abe
- Smart Information Systems, Faculty of Engineering, Niigata University, Niigata-ken, 950-2181, Japan.
| |
Collapse
|
10
|
Methyl-CpG binding proteins (MBD) family evolution and conservation in plants. Gene 2022; 824:146404. [PMID: 35278634 DOI: 10.1016/j.gene.2022.146404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
DNA methylation is an epigenetic mechanism that acts on cytosine residues. The methyl-CpG-binding domain proteins (MBD) are involved in the recognition of methyl-cytosines by activating a signaling cascade that induces the formation of heterochromatin or euchromatin, thereby regulating gene expression. In this study, we analyzed the evolution and conservation of MBD proteins in plants. First, we performed a genome-wide identification and analysis of the MBD family in common bean and soybean, since they have experienced one and two whole-genome duplication events, respectively. We found one pair of MBD paralogs in soybean (GmMBD2) has subfunctionalized after their recent divergence, which was corroborated with their expression profile. Phylogenetic analysis revealed that classes of MBD proteins clustered with human MBD. Interestingly, the MBD9 may have emerged after the hexaploidization event in eudicots. We found that plants and humans share a great similarity in MBDs' binding affinity in the mCpG context. MBD2 and MBD4 from different plant species have the conserved four amino acid residues -Arg (R), Asp (D), Tyr (Y) and Arg (R)- reported to be responsible for MBD-binding in the mCpG. However, MBD8, MBD9, MBD10, and MBD11 underwent substitutions in these residues, suggesting the non-interaction in the mCpG context, but a heterochromatin association as MBD5 and MBD6 from human. This study represents the first genome-wide analysis of the MBD gene family in eurosids I - soybean and common bean. The data presented here contribute towards understanding the evolution of MBDs proteins in plants and their specific binding affinity on mCpG site.
Collapse
|
11
|
Kitazawa S, Ohno T, Haraguchi R, Kitazawa R. Histochemistry, Cytochemistry and Epigenetics. Acta Histochem Cytochem 2022; 55:1-7. [PMID: 35444348 PMCID: PMC8913277 DOI: 10.1267/ahc.21-00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past few decades, many researchers have individually identified tumor-related genes, and have accumulated information on their basic research in a database. With the development of technology that can comprehensively test the expression status within a short time, oncogene panel testing has become attainable. On the other hand, changes in gene expression that do not depend on changes in base sequences, that is, epigenetics, or more comprehensively, epigenomes, are also highly involved in the development and progression of disease. Oncogene panel tests tend to focus on DNA base mutations such as point mutations, deletions, duplications, and chimera formation. Elucidation leads to correct interpretation of diseases and treatment choices, and we are in an era where integrated understanding of the genome and epigenome is indispensable. In this review, we make every effort to cover a wide range of knowledge, including data on histone protein modification, non-coding (nc)RNA and DNA methylation, and recent application trials for demonstrating epigenetic alterations in histologic and cytologic specimens. We hope this review will help marshal the knowledge accumulated by researchers involved in genomic and epigenomic studies.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Teruyuki Ohno
- Division of Diagnostic Pathology, Ehime University Hospital
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital
| |
Collapse
|
12
|
Brändle F, Frühbauer B, Jagannathan M. Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Semin Cell Dev Biol 2022; 128:26-39. [PMID: 35144860 DOI: 10.1016/j.semcdb.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.
Collapse
Affiliation(s)
- Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Benjamin Frühbauer
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland.
| |
Collapse
|
13
|
Chávez-García C, Hénin J, Karttunen M. Multiscale Computational Study of the Conformation of the Full-Length Intrinsically Disordered Protein MeCP2. J Chem Inf Model 2022; 62:958-970. [PMID: 35130441 DOI: 10.1021/acs.jcim.1c01354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The malfunction of the methyl-CpG binding protein 2 (MeCP2) is associated with the Rett syndrome, one of the most common causes of cognitive impairment in females. MeCP2 is an intrinsically disordered protein (IDP), making its experimental characterization a challenge. There is currently no structure available for the full-length MeCP2 in any of the databases, and only the structure of its MBD domain has been solved. We used this structure to build a full-length model of MeCP2 by completing the rest of the protein via ab initio modeling. Using a combination of all-atom and coarse-grained simulations, we characterized its structure and dynamics as well as the conformational space sampled by the ID and transcriptional repression domain (TRD) domains in the absence of the rest of the protein. The present work is the first computational study of the full-length protein. Two main conformations were sampled in the coarse-grained simulations: a globular structure similar to the one observed in the all-atom force field and a two-globule conformation. Our all-atom model is in good agreement with the available experimental data, predicting amino acid W104 to be buried, amino acids R111 and R133 to be solvent-accessible, and having a 4.1% α-helix content, compared to the 4% found experimentally. Finally, we compared the model predicted by AlphaFold to our Modeller model. The model was not stable in water and underwent further folding. Together, these simulations provide a detailed (if perhaps incomplete) conformational ensemble of the full-length MeCP2, which is compatible with experimental data and can be the basis of further studies, e.g., on mutants of the protein or its interactions with its biological partners.
Collapse
Affiliation(s)
- Cecilia Chávez-García
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique UPR 9080, CNRS and Université de Paris, Paris 75005, France
| | - Mikko Karttunen
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
14
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
16
|
Sharifi O, Yasui DH. The Molecular Functions of MeCP2 in Rett Syndrome Pathology. Front Genet 2021; 12:624290. [PMID: 33968128 PMCID: PMC8102816 DOI: 10.3389/fgene.2021.624290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MeCP2 protein, encoded by the MECP2 gene, binds to DNA and affects transcription. Outside of this activity the true range of MeCP2 function is still not entirely clear. As MECP2 gene mutations cause the neurodevelopmental disorder Rett syndrome in 1 in 10,000 female births, much of what is known about the biologic function of MeCP2 comes from studying human cell culture models and rodent models with Mecp2 gene mutations. In this review, the full scope of MeCP2 research available in the NIH Pubmed (https://pubmed.ncbi.nlm.nih.gov/) data base to date is considered. While not all original research can be mentioned due to space limitations, the main aspects of MeCP2 and Rett syndrome research are discussed while highlighting the work of individual researchers and research groups. First, the primary functions of MeCP2 relevant to Rett syndrome are summarized and explored. Second, the conflicting evidence and controversies surrounding emerging aspects of MeCP2 biology are examined. Next, the most obvious gaps in MeCP2 research studies are noted. Finally, the most recent discoveries in MeCP2 and Rett syndrome research are explored with a focus on the potential and pitfalls of novel treatments and therapies.
Collapse
Affiliation(s)
- Osman Sharifi
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| | - Dag H Yasui
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
17
|
Tillotson R, Cholewa-Waclaw J, Chhatbar K, Connelly JC, Kirschner SA, Webb S, Koerner MV, Selfridge J, Kelly DA, De Sousa D, Brown K, Lyst MJ, Kriaucionis S, Bird A. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol Cell 2021; 81:1260-1275.e12. [PMID: 33561390 PMCID: PMC7980222 DOI: 10.1016/j.molcel.2021.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Justyna Cholewa-Waclaw
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kashyap Chhatbar
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - John C Connelly
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sophie A Kirschner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Martha V Koerner
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jim Selfridge
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Dina De Sousa
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kyla Brown
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Matthew J Lyst
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
18
|
Katsura Y, Ikemura T, Kajitani R, Toyoda A, Itoh T, Ogata M, Miura I, Wada K, Wada Y, Satta Y. Comparative genomics of Glandirana rugosa using unsupervised AI reveals a high CG frequency. Life Sci Alliance 2021; 4:4/5/e202000905. [PMID: 33712508 PMCID: PMC7994367 DOI: 10.26508/lsa.202000905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022] Open
Abstract
Genome sequencing of a unique frog (Glandirana rugosa) having XY/ZW systems within the species and comparative genomics with other six frogs were performed using a batch-learning self-organizing map, which is unsupervised AI for oligonucleotide compositions, to clarify its genome characteristics. The Japanese wrinkled frog (Glandirana rugosa) is unique in having both XX-XY and ZZ-ZW types of sex chromosomes within the species. The genome sequencing and comparative genomics with other frogs should be important to understand mechanisms of turnover of sex chromosomes within one species or during a short period. In this study, we analyzed the newly sequenced genome of G. rugosa using a batch-learning self-organizing map which is unsupervised artificial intelligence for oligonucleotide compositions. To clarify genome characteristics of G. rugosa, we compared its short oligonucleotide compositions in all 1-Mb genomic fragments with those of other six frog species (Pyxicephalus adspersus, Rhinella marina, Spea multiplicata, Leptobrachium leishanense, Xenopus laevis, and Xenopus tropicalis). In G. rugosa, we found an Mb-level large size of repeat sequences having a high identity with the W chromosome of the African bullfrog (P. adspersus). Our study concluded that G. rugosa has unique genome characteristics with a high CG frequency, and its genome is assumed to heterochromatinize a large size of genome via methylataion of CG.
Collapse
Affiliation(s)
- Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama-shi, Japan .,Amphibian Research Center, Hiroshima University, Hiroshima-shi, Japan.,Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University For Advanced Studies (SOKENDAI), Shonankokuraimura, Hayama-machi, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo-to, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima-shi, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo-to, Japan
| | | | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Hiroshima-shi, Japan
| | - Kennosuke Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Yoshiko Wada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shi, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University For Advanced Studies (SOKENDAI), Shonankokuraimura, Hayama-machi, Japan
| |
Collapse
|
19
|
The emergence of the brain non-CpG methylation system in vertebrates. Nat Ecol Evol 2021; 5:369-378. [PMID: 33462491 PMCID: PMC7116863 DOI: 10.1038/s41559-020-01371-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.
Collapse
|
20
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
21
|
Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021; 700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner. Despite significant progresses in our understanding of MeCP2 over the last few decades, there is still a considerable knowledge gap to translate the in vitro and in vivo experimental findings into therapeutic interventions. In this review, we provide a synopsis of the role of MeCP2 in the pathophysiology of non-neurological disorders, MeCP2-based research directions and therapeutic strategies for non-neurological disorders are also discussed.
Collapse
|
22
|
Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Sci Rep 2020; 10:22255. [PMID: 33335218 PMCID: PMC7746753 DOI: 10.1038/s41598-020-79268-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate common presentations and pathophysiology across disorders. To clarify the mechanisms of these interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, and in particular, the genes recognized by MeCP2 and associated to several neurological and neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and development. Also, while the nervous system is the most relevant in the pathophysiology of the disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 may modulate similar mechanisms in different pathologies, suggesting that treatments for one condition may be effective for related disorders.
Collapse
|
23
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
24
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
25
|
Connelly JC, Cholewa-Waclaw J, Webb S, Steccanella V, Waclaw B, Bird A. Absence of MeCP2 binding to non-methylated GT-rich sequences in vivo. Nucleic Acids Res 2020; 48:3542-3552. [PMID: 32064528 PMCID: PMC7144902 DOI: 10.1093/nar/gkaa102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
MeCP2 is a nuclear protein that binds to sites of cytosine methylation in the genome. While most evidence confirms this epigenetic mark as the primary determinant of DNA binding, MeCP2 is also reported to have an affinity for non-methylated DNA sequences. Here we investigated the molecular basis and in vivo significance of its reported affinity for non-methylated GT-rich sequences. We confirmed this interaction with isolated domains of MeCP2 in vitro and defined a minimal target DNA sequence. Binding depends on pyrimidine 5′ methyl groups provided by thymine and requires adjacent guanines and a correctly orientated A/T-rich flanking sequence. Unexpectedly, full-length MeCP2 protein failed to bind GT-rich sequences in vitro. To test for MeCP2 binding to these motifs in vivo, we analysed human neuronal cells using ChIP-seq and ATAC-seq technologies. While both methods robustly detected DNA methylation-dependent binding of MeCP2 to mCG and mCAC, neither showed evidence of MeCP2 binding to GT-rich motifs. The data suggest that GT binding is an in vitro phenomenon without in vivo relevance. Our findings argue that MeCP2 does not read unadorned DNA sequence and therefore support the notion that its primary role is to interpret epigenetic modifications of DNA.
Collapse
Affiliation(s)
- John C Connelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | | | - Shaun Webb
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Verdiana Steccanella
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, UK
| |
Collapse
|
26
|
Jiang W, Liang YL, Liu Y, Chen YY, Yang ST, Li BR, Yu YX, Lyu Y, Wang R. MeCP2 inhibits proliferation and migration of breast cancer via suppression of epithelial-mesenchymal transition. J Cell Mol Med 2020; 24:7959-7967. [PMID: 32510753 PMCID: PMC7348137 DOI: 10.1111/jcmm.15428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/24/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
Methyl‐CpG‐binding protein 2 (MeCP2) is an important epigenetic regulator for normal neuronal maturation and brain glial cell function. Additionally, MeCP2 is also involved in a variety of cancers, such as breast, prostate, lung, liver and colorectal. However, whether MeCP2 contributes to the progression of breast cancer remains unknown. In the present study, we investigated the role of MeCP2 in cell proliferation, migration and invasion in vitro. We found that knockdown of MeCP2 inhibited expression of epithelial‐mesenchymal transition (EMT)‐related markers in breast cancer cell lines. In conclusion, our study suggests that MeCP2 inhibits proliferation and invasion through suppression of the EMT pathway in breast cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yan-Ling Liang
- Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, China
| | - Yang Liu
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yu-Yan Chen
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Shu-Ting Yang
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Bi-Rong Li
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Ying-Xian Yu
- Department of Anatomy & Histology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
27
|
Xiang Z, Zhou Q, Hu M, Sanders YY. MeCP2 epigenetically regulates alpha-smooth muscle actin in human lung fibroblasts. J Cell Biochem 2020; 121:3616-3625. [PMID: 32115750 DOI: 10.1002/jcb.29655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A critical feature for fibroblasts differentiation into myofibroblasts is the expression of alpha-smooth muscle actin (α-SMA) during the tissue injury and repair process. The epigenetic mechanism, DNA methylation, is involved in regulating α-SMA expression. It is not clear how methyl-CpG-binding protein 2 (MeCP2) interacts with CpG-rich region in α-SMA, and if the CpG methylation status would affect MeCP2 binding and regulation of α-SMA expression. METHODS The association of MeCP2 with α-SMA CpG rich region were examined by chromatin immunoprecipitation (ChIP) assays in primary fibroblasts from idiopathic pulmonary fibrosis (IPF) and non-IPF control individuals, and in the lung fibroblasts treated with profibrotic cytokine transforming growth factor β1 (TGF-β1). The regulation of α-SMA by MeCP2 was examined by knocking down MeCP2 with small interfering RNA (siRNA). To explore the effects of the DNA methylation status of the CpG rich region on α-SMA expression, the cells were treated with DNA methyltransferase inhibitor, 5'-azacytidine (5'-aza). The expression of α-SMA was examined by Western blot and quantitative polymerase chain reaction, the association with MeCP2 was assessed by ChIP assays, and the methylation status was checked by bisulfate sequencing. RESULTS The human lung fibroblasts with increased α-SMA showed an enriched association of MeCP2, while knockdown MeCP2 by siRNA reduced α-SMA upregulation by TGF-β1. The 5'-Aza-treated cells have decreased α-SMA expression with reduced MeCP2 association. However, bisulfite sequencing revealed that most CpG sites are unmethylated despite the different expression levels of α-SMA after being treated by TGF-β1 or 5'-aza. CONCLUSION Our data indicate that the methyl-binding protein MeCP2 is critical for α-SMA expression in human lung myofibroblast, and the DNA methylation status at the CpG rich region of α-SMA is not a determinative factor for its inducible expression.
Collapse
Affiliation(s)
- Zheyi Xiang
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qingxian Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell Res 2020; 30:393-407. [PMID: 32111972 DOI: 10.1038/s41422-020-0288-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
Rett syndrome (RTT), a severe postnatal neurodevelopmental disorder, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). MeCP2 is a chromatin organizer regulating gene expression. RTT-causing mutations have been shown to affect this function. However, the mechanism by which MeCP2 organizes chromatin is unclear. In this study, we found that MeCP2 can induce compaction and liquid-liquid phase separation of nucleosomal arrays in vitro, and DNA methylation further enhances formation of chromatin condensates by MeCP2. Interestingly, RTT-causing mutations compromise MeCP2-mediated chromatin phase separation, while benign variants have little effect on this process. Moreover, MeCP2 competes with linker histone H1 to form mutually exclusive chromatin condensates in vitro and distinct heterochromatin foci in vivo. RTT-causing mutations reduce or even abolish the ability of MeCP2 to compete with histone H1 and to form chromatin condensates. Together, our results identify a novel mechanism by which phase separation underlies MeCP2-mediated heterochromatin formation and reveal the potential link between this process and the pathology of RTT.
Collapse
|
29
|
Terry DM, Devine SE. Aberrantly High Levels of Somatic LINE-1 Expression and Retrotransposition in Human Neurological Disorders. Front Genet 2020; 10:1244. [PMID: 31969897 PMCID: PMC6960195 DOI: 10.3389/fgene.2019.01244] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Retrotransposable elements (RTEs) have actively multiplied over the past 80 million years of primate evolution, and as a consequence, such elements collectively occupy ∼ 40% of the human genome. As RTE activity can have detrimental effects on the human genome and transcriptome, silencing mechanisms have evolved to restrict retrotransposition. The brain is the only known somatic tissue where RTEs are de-repressed throughout the life of a healthy human and each neuron in specific brain regions accumulates up to ∼13.7 new somatic L1 insertions (and perhaps more). However, even higher levels of somatic RTE expression and retrotransposition have been found in a number of human neurological disorders. This review is focused on how RTE expression and retrotransposition in neuronal tissues might contribute to the initiation and progression of these disorders. These disorders are discussed in three broad and sometimes overlapping categories: 1) disorders such as Rett syndrome, Aicardi-Goutières syndrome, and ataxia–telangiectasia, where expression/retrotransposition is increased due to mutations in genes that play a role in regulating RTEs in healthy cells, 2) disorders such as autism spectrum disorder, schizophrenia, and substance abuse disorders, which are thought to be caused by a combination of genetic and environmental stress factors, and 3) disorders associated with age, such as frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and normal aging, where there is a time-dependent accumulation of neurological degeneration, RTE copy number, and phenotypes. Research has revealed increased levels of RTE activity in many neurological disorders, but in most cases, a clear causal link between RTE activity and these disorders has not been well established. At the same time, even if increased RTE activity is a passenger and not a driver of disease, a detrimental effect is more likely than a beneficial one. Thus, a better understanding of the role of RTEs in neuronal tissues likely is an important part of understanding, preventing, and treating these disorders.
Collapse
Affiliation(s)
- Diane M Terry
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott E Devine
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
DNA Modification Readers and Writers and Their Interplay. J Mol Biol 2019:S0022-2836(19)30718-1. [PMID: 31866298 DOI: 10.1016/j.jmb.2019.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Genomic DNA is modified in a postreplicative manner and several modifications, the enzymes responsible for their deposition as well as proteins that read these modifications, have been described. Here, we focus on the impact of DNA modifications on the DNA helix and review the writers and readers of cytosine modifications and how they interplay to shape genome composition, stability, and function.
Collapse
|
31
|
Keidar L, Gerlitz G, Kshirsagar A, Tsoory M, Olender T, Wang X, Yang Y, Chen YS, Yang YG, Voineagu I, Reiner O. Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Front Cell Neurosci 2019; 13:370. [PMID: 31474834 PMCID: PMC6703185 DOI: 10.3389/fncel.2019.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
LIS1 is the main causative gene for lissencephaly, while MeCP2 is the main causative gene for Rett syndrome, both of which are neurodevelopmental diseases. Here we report nuclear functions for LIS1 and identify previously unrecognized physical and genetic interactions between the products of these two genes in the cell nucleus, that has implications on MeCP2 organization, neuronal gene expression and mouse behavior. Reduced LIS1 levels affect the association of MeCP2 with chromatin. Transcriptome analysis of primary cortical neurons derived from wild type, Lis1±, MeCP2−/y, or double mutants mice revealed a large overlap in the differentially expressed (DE) genes between the various mutants. Overall, our findings provide insights on molecular mechanisms involved in the neurodevelopmental disorders lissencephaly and Rett syndrome caused by dysfunction of LIS1 and MeCP2, respectively.
Collapse
Affiliation(s)
- Liraz Keidar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Gerlitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xing Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Sheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Cholewa-Waclaw J, Shah R, Webb S, Chhatbar K, Ramsahoye B, Pusch O, Yu M, Greulich P, Waclaw B, Bird AP. Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic. Proc Natl Acad Sci U S A 2019; 116:14995-15000. [PMID: 31289233 PMCID: PMC6660794 DOI: 10.1073/pnas.1903549116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates "slow sites" in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.
Collapse
Affiliation(s)
- Justyna Cholewa-Waclaw
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, United Kingdom
| | - Ruth Shah
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, United Kingdom
| | - Shaun Webb
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, United Kingdom
| | - Kashyap Chhatbar
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, United Kingdom
| | - Bernard Ramsahoye
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Campus, EH4 2XU Edinburgh, United Kingdom
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Miao Yu
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| | - Philip Greulich
- Mathematical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| | - Adrian P Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3BF Edinburgh, United Kingdom;
| |
Collapse
|
33
|
Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 2019; 46:9044-9056. [PMID: 30102379 PMCID: PMC6158614 DOI: 10.1093/nar/gky715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ines Hanelt
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Schiffers
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
34
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
35
|
Sanfeliu A, Hokamp K, Gill M, Tropea D. Transcriptomic Analysis of Mecp2 Mutant Mice Reveals Differentially Expressed Genes and Altered Mechanisms in Both Blood and Brain. Front Psychiatry 2019; 10:278. [PMID: 31110484 PMCID: PMC6501143 DOI: 10.3389/fpsyt.2019.00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome is a rare neuropsychiatric disorder with a wide symptomatology including impaired communication and movement, cardio-respiratory abnormalities, and seizures. The clinical presentation is typically associated to mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2), which is a transcription factor. The gene is ubiquitously present in all the cells of the organism with a peak of expression in neurons. For this reason, most of the studies in Rett models have been performed in brain. However, some of the symptoms of Rett are linked to the peripheral expression of MECP2, suggesting that the effects of the mutations affect gene expression levels in tissues other than the brain. We used RNA sequencing in Mecp2 mutant mice and matched controls, to identify common genes and pathways differentially regulated across different tissues. We performed our study in brain and peripheral blood, and we identified differentially expressed genes (DEGs) and pathways in each tissue. Then, we compared the genes and mechanisms identified in each preparation. We found that some genes and molecular pathways that are differentially expressed in brain are also differentially expressed in blood of Mecp2 mutant mice at a symptomatic-but not presymptomatic-stage. This is the case for the gene Ube2v1, linked to ubiquitination system, and Serpin1, involved in complement and coagulation cascades. Analysis of biological functions in the brain shows the enrichment of mechanisms correlated to circadian rhythms, while in the blood are enriched the mechanisms of response to stimulus-including immune response. Some mechanisms are enriched in both preparations, such as lipid metabolism and response to stress. These results suggest that analysis of peripheral blood can reveal ubiquitous altered molecular mechanisms of Rett and have applications in diagnosis and treatments' assessments.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
- Department of Psychiatry, School of Medicine, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Guy J, Alexander-Howden B, FitzPatrick L, DeSousa D, Koerner MV, Selfridge J, Bird A. A mutation-led search for novel functional domains in MeCP2. Hum Mol Genet 2019; 27:2531-2545. [PMID: 29718204 PMCID: PMC6030874 DOI: 10.1093/hmg/ddy159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Most missense mutations causing Rett syndrome (RTT) affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterized domains. We studied the molecular consequences of four of these ‘non-canonical’ mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of RTT. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilize these mutant proteins may be of therapeutic value.
Collapse
Affiliation(s)
- Jacky Guy
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Laura FitzPatrick
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Dina DeSousa
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martha V Koerner
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jim Selfridge
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Konwar C, Del Gobbo GF, Terry J, Robinson WP. Association of a placental Interleukin-6 genetic variant (rs1800796) with DNA methylation, gene expression and risk of acute chorioamnionitis. BMC MEDICAL GENETICS 2019; 20:36. [PMID: 30795743 PMCID: PMC6387541 DOI: 10.1186/s12881-019-0768-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute chorioamnionitis (aCA), inflammation of the placenta and fetal membranes, is a frequently reported lesion in preterm deliveries. Genetic variants in innate immune system genes such as Interleukin-6 (IL6) may contribute to the placenta's inflammatory response, thus predisposing some pregnancies to aCA. These genetic variants may modulate molecular processes such as DNA methylation and gene expression, and in turn might affect susceptibility to aCA. Currently, there is remarkably little research on the role of fetal (placental) genetic variation in aCA. We aimed to explore the associations between genetic variants in candidate immune-system genes and susceptibility towards inflammatory responses in the placenta, which is linked to a strong inflammatory response in the newborn. METHODS DNA samples from 269 placentas (72 aCA cases, 197 non-aCA cases) were collected for this study. Samples were genotyped at 55 ancestry informative markers (AIMs) and 16 additional single nucleotide polymorphisms (SNPs) in 12 candidate innate immune system genes using the Sequenom iPLEX Gold Assay. Publicly available datasets were used to obtain DNA methylation (GSE100197, GSE74738, GSE115508, GSE44667, GSE98224) and gene expression data (GSE44711, GSE98224). RESULTS Differences in IL6 placental allele frequencies were associated with aCA (rs1800796, p = 0.04) with the CC genotype specifically implicated (OR = 3.1; p = 0.02). In a subset of the placental samples (n = 67; chorionic villi), we showed that the IL6 SNP (rs1800796) was associated with differential DNA methylation in five IL6-related CpG sites (cg01770232, cg02335517, cg07998387, cg13104385, and cg0526589), where individuals with a CC genotype showed higher DNA methylation levels than individuals carrying the GG genotype. Using two publicly available datasets, we observed that the DNA methylation levels at cg01770232 negatively correlated with IL6 gene expression in the placenta (r = - 0.67, p < 0.004; r = - 0.56, p < 2.937e-05). CONCLUSIONS We demonstrated that the minor C allele at the IL6 SNP (rs1800796), which is largely limited to East Asian populations, is associated with the presence of aCA. This SNP was associated with increased DNA methylation at a nearby MEPC2 binding site, which was also associated with decreased expression of IL6 in the placenta. Decreased expression of IL6 may increase vulnerability to microbial infection. Additional studies are required to confirm this association in Asian populations with larger sample sizes.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Giulia F. Del Gobbo
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Jefferson Terry
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Pathology, BC Children’s Hospital, Vancouver, BC V6H 3N1 Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| |
Collapse
|
38
|
Franklin D. P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding Selectivity. Interdiscip Sci 2019; 11:10-20. [PMID: 30673959 DOI: 10.1007/s12539-019-00316-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
Abstract
MeCP2 is a protein highly expressed in the brain that participates in the genetic expression and RNA splicing regulation. MeCP2 binds preferably to methylated DNA and other nuclear corepressors to alter chromatin. MECP2 gene mutations can cause rett syndrome (RTT), a severe neurological disorder that affects around one in ten thousand girls. In this paper, Molecular Dynamics (MD) simulations were performed to scrutinize how the MeCP2 P152R mutation influences the protein binding to DNA. Also, the Umbrella Sampling technique was used to obtain the potential mean forces (PMFs) of both wild-type and mutated MeCP2 Methyl-CpG-binding domain (MBD) binding to both non-methylated and methylated DNA. P152R is a common missense mutation in MBD associated with RTT; however, there are no studies that explain how it causes protein dysfunction. The results from this study hypothesize that P152R mutation leads to MBD binding more strongly to DNA, while selectively decreasing binding affinity to methylated DNA. These provide an explanation for previous not conclusive experimental results regarding the mechanism of how this mutation affects the binding of the protein to DNA, and subsequently its effects on RTT. Furthermore, the results of this research-in-progress can be used as the basis for further investigations into the molecular basis of RTT and to potentially reveal a target for therapy in the future.
Collapse
Affiliation(s)
- Dino Franklin
- Faculty of Computing, Federal University of Uberlandia, Uberlândia, Brazil.
| |
Collapse
|
39
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
40
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
41
|
Takeda Y, Demura M, Wang F, Karashima S, Yoneda T, Kometani M, Hashimoto A, Aono D, Horike SI, Meguro-Horike M, Yamagishi M, Takeda Y. Epigenetic Regulation of Aldosterone Synthase Gene by Sodium and Angiotensin II. J Am Heart Assoc 2018; 7:JAHA.117.008281. [PMID: 29739797 PMCID: PMC6015301 DOI: 10.1161/jaha.117.008281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background DNA methylation is believed to be maintained in adult somatic cells. Recent findings, however, suggest that all methylation patterns are not stable. We demonstrate that stimulatory signals can change the DNA methylation status around transcription factor binding sites and a transcription start site and activate expression of the aldosterone synthase gene (CYP11B2). Methods and Results DNA methylation of CYP11B2 was analyzed in aldosterone‐producing adenomas, nonfunctioning adrenal adenomas, and adrenal glands and compared with the gene expression levels. CpG dinucleotides in the CYP11B2 promoter were found to be hypormethylated in tissues with high expression, but not in those with low expression, of CYP11B2. Methylation of the CYP11B2 promoter fused to a reporter gene decreased transcriptional activity. Methylation of recognition sequences of transcription factors, including CREB1, NGFIB (NR4A1), and NURR1 (NR4A2) diminished their DNA‐binding activity. A methylated‐CpG‐binding protein MECP2 interacted directly with the methylated CYP11B2 promoter. In rats, low salt intake led to upregulation of CYP11B2 expression and DNA hypomethylation in the adrenal gland. Treatment with angiotensin II type 1 receptor antagonist decreased CYP11B2 expression and led to DNA hypermethylation. Conclusions DNA demethylation may switch the phenotype of CYP11B2 expression from an inactive to an active state and regulate aldosterone biosynthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Masashi Demura
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Fen Wang
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Shigehiro Karashima
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Atsushi Hashimoto
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Daisuke Aono
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Kanazawa University Advanced Science Research Center, Kanazawa, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Kanazawa University Advanced Science Research Center, Kanazawa, Japan
| | - Masakazu Yamagishi
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Yoshiyu Takeda
- Department of Internal Medicine, Kanazawa University School of Medicine, Kanazawa, Japan .,Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
42
|
Abstract
Cytosine methylation plays a major role in the regulation of sequential and tissue-specific expression of genes. De novo aberrant DNA methylation and demethylation are also crucial processes in tumorigenesis and tumor progression. The mechanisms of how and when such aberrant methylation and demethylation occur in tumor cells are still obscure, however. To evaluate subtle epigenetic alteration among minor subclonal populations, morphology-oriented epigenetic analysis is requisite, especially where heterogeneity and flexibility are as notable as in the process of cancer progression and cellular differentiation at critical stages. Therefore, establishment of reliable morphology-oriented epigenetic studies has become increasingly important in not only the experimental but also the diagnostic field. By selecting a subset of cells based on characteristic morphological features disclosed by microdissection or in situ hybridization, we discovered how methylation at certain CpG sites outside of CpG islands would play a crucial epigenetic role in the versatility and flexibility of gene expression during cancer progression. In this review, we first introduce technical aspects of two morphology-oriented epigenetic studies: (1) histoendonuclease-linked detection of methylated sites of DNA (HELMET), and (2) padlock probe and rolling circle amplification (RCA) for in situ identification of methylated cytosine in a sequence-dependent manner. We then present our observation of a novel MeCP2-mediated gene-silencing mechanism through the addition of methylation to a single-CpG-locus upstream of the TATA-box of the receptor activator of NF-κB ligand (RANKL) and of secreted frizzled-related protein 4 (SFRP4) gene promoters.
Collapse
|
43
|
Liu K, Xu C, Lei M, Yang A, Loppnau P, Hughes TR, Min J. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J Biol Chem 2018; 293:7344-7354. [PMID: 29567833 DOI: 10.1074/jbc.ra118.001785] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Cytosine methylation is a well-characterized epigenetic mark and occurs at both CG and non-CG sites in DNA. Both methylated CG (mCG)- and mCH (H = A, C, or T)-containing DNAs, especially mCAC-containing DNAs, are recognized by methyl-CpG-binding protein 2 (MeCP2) to regulate gene expression in neuron development. However, the molecular mechanism involved in the binding of methyl-CpG-binding domain (MBD) of MeCP2 to these different DNA motifs is unclear. Here, we systematically characterized the DNA-binding selectivities of the MBD domains in MeCP2 and MBD1-4 with isothermal titration calorimetry-based binding assays, mutagenesis studies, and X-ray crystallography. We found that the MBD domains of MeCP2 and MBD1-4 bind mCG-containing DNAs independently of the sequence identity outside the mCG dinucleotide. Moreover, some MBD domains bound to both methylated and unmethylated CA dinucleotide-containing DNAs, with a preference for the CAC sequence motif. We also found that the MBD domains bind to mCA or nonmethylated CA DNA by recognizing the complementary TG dinucleotide, which is consistent with an overlooked ligand of MeCP2, i.e. the matrix/scaffold attachment regions (MARs/SARs) with a consensus sequence of 5'-GGTGT-3' that was identified in early 1990s. Our results also explain why MeCP2 exhibits similar binding affinity to both mCA- and hmCA-containing dsDNAs. In summary, our results suggest that in addition to mCG sites, unmethylated CA or TG sites also serve as DNA-binding sites for MeCP2 and other MBD-containing proteins. This discovery expands the genome-wide activity of MBD-containing proteins in gene regulation.
Collapse
Affiliation(s)
- Ke Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ming Lei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
44
|
Sheikh TI, Harripaul R, Ayub M, Vincent JB. MeCP2 AT-Hook1 mutations in patients with intellectual disability and/or schizophrenia disrupt DNA binding and chromatin compaction in vitro. Hum Mutat 2018; 39:717-728. [DOI: 10.1002/humu.23409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Taimoor I. Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Muhammad Ayub
- Lahore Institute of Research & Development; Lahore Pakistan
- Department of Psychiatry; Queen's University; Kingston Ontario Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
45
|
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2018; 356:356/6337/eaaj2239. [PMID: 28473536 DOI: 10.1126/science.aaj2239] [Citation(s) in RCA: 718] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.
Collapse
Affiliation(s)
- Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Ekaterina Morgunova
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Biswajyoti Sahu
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Pratyush K Das
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kazuhiro R Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Minna Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Paul A Ginno
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Domcke
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Dirk Schübeler
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden. .,Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Mushtaq AU, Lee Y, Hwang E, Bang JK, Hong E, Byun Y, Song JJ, Jeon YH. Biophysical characterization of the basic cluster in the transcription repression domain of human MeCP2 with AT-rich DNA. Biochem Biophys Res Commun 2018; 495:145-150. [DOI: 10.1016/j.bbrc.2017.10.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
48
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
49
|
Ginder GD, Williams DC. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther 2017; 184:98-111. [PMID: 29128342 DOI: 10.1016/j.pharmthera.2017.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation represents a fundamental epigenetic modification that regulates chromatin architecture and gene transcription. Many diseases, including cancer, show aberrant methylation patterns that contribute to the disease phenotype. DNA methylation inhibitors have been used to block methylation dependent gene silencing to treat hematopoietic neoplasms and to restore expression of developmentally silenced genes. However, these inhibitors disrupt methylation globally and show significant off-target toxicities. As an alternative approach, we have been studying readers of DNA methylation, the 5-methylcytosine binding domain family of proteins, as potential therapeutic targets to restore expression of aberrantly and developmentally methylated and silenced genes. In this review, we discuss the role of DNA methylation in gene regulation and cancer development, the structure and function of the 5-methylcytosine binding domain family of proteins, and the possibility of targeting the complexes these proteins form to treat human disease.
Collapse
Affiliation(s)
- Gordon D Ginder
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
50
|
Howell CJ, Sceniak MP, Lang M, Krakowiecki W, Abouelsoud FE, Lad SU, Yu H, Katz DM. Activation of the Medial Prefrontal Cortex Reverses Cognitive and Respiratory Symptoms in a Mouse Model of Rett Syndrome. eNeuro 2017; 4:ENEURO.0277-17.2017. [PMID: 29333487 PMCID: PMC5762598 DOI: 10.1523/eneuro.0277-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2; Amir et al., 1999), a transcriptional regulatory protein (Klose et al., 2005). Mouse models of RTT (Mecp2 mutants) exhibit excitatory hypoconnectivity in the medial prefrontal cortex (mPFC; Sceniak et al., 2015), a region critical for functions that are abnormal in RTT patients, ranging from learning and memory to regulation of visceral homeostasis (Riga et al., 2014). The present study was designed to test the hypothesis that increasing the activity of mPFC pyramidal neurons in heterozygous female Mecp2 mutants (Hets) would ameliorate RTT-like symptoms, including deficits in respiratory control and long-term retrieval of auditory conditioned fear. Selective activation of mPFC pyramidal neurons in adult animals was achieved by bilateral infection with an AAV8 vector expressing excitatory hm3D(Gq) DREADD (Designer Receptors Exclusively Activated by Designer Drugs) (Armbruster et al., 2007) under the control of the CamKIIa promoter. DREADD activation in Mecp2 Hets completely restored long-term retrieval of auditory conditioned fear, eliminated respiratory apneas, and reduced respiratory frequency variability to wild-type (Wt) levels. Reversal of respiratory symptoms following mPFC activation was associated with normalization of Fos protein levels, a marker of neuronal activity, in a subset of brainstem respiratory neurons. Thus, despite reduced levels of MeCP2 and severe neurological deficits, mPFC circuits in Het mice are sufficiently intact to generate normal behavioral output when pyramidal cell activity is increased. These findings highlight the contribution of mPFC hypofunction to the pathophysiology of RTT and raise the possibility that selective activation of cortical regions such as the mPFC could provide therapeutic benefit to RTT patients.
Collapse
Affiliation(s)
- C James Howell
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Michael P Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Wenceslas Krakowiecki
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fatimah E Abouelsoud
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Saloni U Lad
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Heping Yu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|