1
|
Yu X, Zhang Y, Wang J, Wang X, Chen X, Yin K, Zhu X. Leonurine improves atherosclerosis by activating foam cell autophagy and metabolic remodeling via METTL3-mediated AKT1S1 mRNA stability modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155939. [PMID: 39214016 DOI: 10.1016/j.phymed.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is the most prevalent cardiovascular disease and remains the major contributor to death and mortality globally. Leonurine (LEO) is a unique alkaloid compound with protective effects on the cardiovascular system. However, the exact mechanisms underlying its cardiovascular-protecting action are still not fully elucidated. The methyltransferase 3 (METTL3), the catalytic core of the N6-methyladenosine modification (m6A) methyltransferase complex, has been shown to inhibit autophagy and exacerbate the process of AS via regulation of m6A modification of mRNA. PURPOSE We aimed to determine whether the inhibited effect of LEO on AS is related to METTL3-mediated AKT1S1 stability. METHODS The apolipoprotein E (ApoE) knockout mice was subjected to a high-fat diet (HFD), and THP-1 derived macrophages was exposed to oxidized low-density lipoprotein (ox-LDL), to establish the animal and cellular models of AS, respectively. RESULTS We found that LEO effectively improved AS and reduced the plaque area and inflammation via diminishing macrophage lipid accumulation and remodeling the lipid metabolism profile. LEO activated ox-LDL-induced macrophage autophagy, enhancing lipid metabolism decrease, according to the lipidomic and molecular biology analyses. Additionally, LEO caused a marked increase in autophagy marker levels in mouse models with advanced AS. Furthermore, we found that LEO reactivated autophagy and reversed lipid accumulation by suppressing METTL3 expression. The m6A-seq from ox-LDL-induced macrophages showed that a total of five autophagy-related mRNA transcripts (AKT1S1, AKT1, RB1CC1, CFLAR, and MTMR4) were altered, and AKT1S1 was significantly upregulated by LEO. Mechanistically, LEO-mediated regulation of METTL3 decreased AKT1S1 expression by attenuating its mRNA stability. Silencing AKT1S1 inhibited LEO-METTL3 axis-mediated autophagy and enhanced lipid accumulation in ox-LDL-induced macrophages. CONCLUSION The study first revealed that LEO exerts anti-atherosclerotic effect by activating METTL3-mediated macrophage autophagy in vivo and in vitro. The mechanism of LEO was further found to be the enhancement of METTL3-mediated AKT1S1 stability to activate autophagy thereby reducing lipid accumulation. This study provides a new perspective of natural medicines on the treatment of AS via an epigenetic manner.
Collapse
Affiliation(s)
- Xinyuan Yu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xiaodan Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Xiao Zhu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
2
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol 2024:10.1038/s41556-024-01523-7. [PMID: 39385049 DOI: 10.1038/s41556-024-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Julian Nüchel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiyoung Pan
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Yoav Elkis
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Filippo Artoni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | - Sabine Wilhelm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School of Ageing Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Zhao S, Hao S, Zhou J, Chen X, Zhang T, Qi Z, Zhang T, Jalal S, Zhai C, Yin L, Bo Y, Teng H, Wang Y, Gao D, Zhang H, Huang L. mTOR/miR-142-3p/PRAS40 signaling cascade is critical for tuberous sclerosis complex-associated renal cystogenesis. Cell Mol Biol Lett 2024; 29:125. [PMID: 39333852 PMCID: PMC11429883 DOI: 10.1186/s11658-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.
Collapse
Affiliation(s)
- Shuyun Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuai Hao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jiasheng Zhou
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xinran Chen
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zhaolai Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Lu Yin
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yufei Bo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Masuda S, Lemaitre F, Barten MJ, Bergan S, Shipkova M, van Gelder T, Vinks S, Wieland E, Bornemann-Kolatzki K, Brunet M, de Winter B, Dieterlen MT, Elens L, Ito T, Johnson-Davis K, Kunicki PK, Lawson R, Lloberas N, Marquet P, Millan O, Mizuno T, Moes DJAR, Noceti O, Oellerich M, Pattanaik S, Pawinski T, Seger C, van Schaik R, Venkataramanan R, Walson P, Woillard JB, Langman LJ. Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2024:00007691-990000000-00267. [PMID: 39331837 DOI: 10.1097/ftd.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/09/2024] [Indexed: 09/29/2024]
Abstract
ABSTRACT The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide Therapeutic Drug Monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.
Collapse
Affiliation(s)
- Satohiro Masuda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET-UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
- FHU SUPPORT, Rennes, France
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Norway
| | | | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Vinks
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- NDA Partners, A Propharma Group Company, Washington District of Columbia
| | | | | | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Brenda de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maja-Theresa Dieterlen
- Laboratory Management Research Laboratory, Cardiac Surgery Clinic, Heart Center Leipzig GmbH, University Hospital, Leipzig, Germany
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenetic and Pharmacokinetics Research Group (PMGK) Louvain Drug for Research Institute (LDRI), Catholic University of Louvain, (UCLouvain), Brussels, Belgium
| | - Taihei Ito
- Department of Organ Transplant Surgery; Fujita Health University School of Medicine, Toyoake Aichi, Japan
| | - Kamisha Johnson-Davis
- University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Pawel K Kunicki
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Roland Lawson
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
| | - Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pierre Marquet
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, France
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ofelia Noceti
- National Center for Liver Transplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tomasz Pawinski
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Walson
- University Medical School, Göttingen, Germany
| | - Jean-Baptiste Woillard
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
5
|
Cormerais Y, Lapp SC, Kalafut KC, Cissé MY, Shin J, Stefadu B, Personnaz J, Schrotter S, D’Amore A, Martin ER, Salussolia CL, Sahin M, Menon S, Byles V, Manning BD. AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614519. [PMID: 39386441 PMCID: PMC11463511 DOI: 10.1101/2024.09.23.614519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse intracellular and extracellular growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling established through biochemical and cell biological studies function under physiological states in specific mammalian tissues are unknown. Here, we characterize a genetic mouse model lacking the 5 phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can active mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as brain and skeletal muscle, associated with cell intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mouse model demonstrates that TSC2 phosphorylation is a primary mechanism of mTORC1 activation in some, but not all, tissues and provides a genetic tool to facilitate studies on the physiological regulation of mTORC1.
Collapse
Affiliation(s)
- Yann Cormerais
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel C. Lapp
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Benjamin Stefadu
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Personnaz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Sandra Schrotter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Cell Signaling Technologies, Inc, Beverly, MA, 01915, USA
| | - Angelica D’Amore
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emma R. Martin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine L. Salussolia
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Suchithra Menon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Vanessa Byles
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain and throughout the body, causing seizures and neurodegeneration in infancy. The mechanistic underpinnings of such neuropathology remains unclear. Here, we characterized the molecular mechanisms by which neuronal cells respond to copper depletion in multiple genetic model systems. Targeted deletion of CTR1 in neuroblastoma clonal cell lines produced copper deficiency that was associated with compromised copper-dependent Golgi and mitochondrial enzymes and a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis revealed simultaneous upregulation of mTORC1 and S6K signaling, along with reduced PERK signaling in CTR1 KO cells. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis as measured by puromycin labeling. These effects of copper depletion were corroborated by spatial transcriptomic profiling of the cerebellum of Atp7a flx/Y :: Vil1 Cre/+ mice, in which copper-deficient Purkinje cells exhibited upregulated protein synthesis machinery and expression of mTORC1-S6K pathway genes. We tested whether increased activity of mTOR in copper-deficient neurons was adaptive or deleterious by genetic epistasis experiments in Drosophila. Copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper depletion.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | | | | | - Anne M. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| |
Collapse
|
7
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient Sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:S1044-579X(24)00059-2. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, 201306 Shanghai, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Li J, Chen S, Xiao J, Ji J, Huang C, Shu G. FOXC1 transcriptionally suppresses ABHD5 to inhibit the progression of renal cell carcinoma through AMPK/mTOR pathway. Cell Biol Toxicol 2024; 40:62. [PMID: 39093497 PMCID: PMC11297099 DOI: 10.1007/s10565-024-09899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma. METHODS By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway. RESULTS FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression. CONCLUSION In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.
Collapse
Affiliation(s)
- Jianfa Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangchen Chen
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Jing Xiao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayuan Ji
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Whitehead CE, Ziemke EK, Frankowski-McGregor CL, Mumby RA, Chung J, Li J, Osher N, Coker O, Baladandayuthapani V, Kopetz S, Sebolt-Leopold JS. A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance. NATURE CANCER 2024; 5:1250-1266. [PMID: 38992135 PMCID: PMC11357990 DOI: 10.1038/s43018-024-00781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Despite tremendous progress in precision oncology, adaptive resistance mechanisms limit the long-term effectiveness of molecularly targeted agents. Here we evaluated the pharmacological profile of MTX-531 that was computationally designed to selectively target two key resistance drivers, epidermal growth factor receptor and phosphatidylinositol 3-OH kinase (PI3K). MTX-531 exhibits low-nanomolar potency against both targets with a high degree of specificity predicted by cocrystal structural analyses. MTX-531 monotherapy uniformly resulted in tumor regressions of squamous head and neck patient-derived xenograft (PDX) models. The combination of MTX-531 with mitogen-activated protein kinase kinase or KRAS-G12C inhibitors led to durable regressions of BRAF-mutant or KRAS-mutant colorectal cancer PDX models, resulting in striking increases in median survival. MTX-531 is exceptionally well tolerated in mice and uniquely does not lead to the hyperglycemia commonly seen with PI3K inhibitors. Here, we show that MTX-531 acts as a weak agonist of peroxisome proliferator-activated receptor-γ, an attribute that likely mitigates hyperglycemia induced by PI3K inhibition. This unique feature of MTX-531 confers a favorable therapeutic index not typically seen with PI3K inhibitors.
Collapse
Affiliation(s)
- Christopher E Whitehead
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA
| | | | | | - Rachel A Mumby
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - June Chung
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jinju Li
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nathaniel Osher
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veerabhadran Baladandayuthapani
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith S Sebolt-Leopold
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Ashraf N, Van Nostrand JL. Fine-tuning AMPK in physiology and disease using point-mutant mouse models. Dis Model Mech 2024; 17:dmm050798. [PMID: 39136185 PMCID: PMC11340815 DOI: 10.1242/dmm.050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that monitors the cellular energy status to adapt it to the fluctuating nutritional and environmental conditions in an organism. AMPK plays an integral part in a wide array of physiological processes, such as cell growth, autophagy and mitochondrial function, and is implicated in diverse diseases, including cancer, metabolic disorders, cardiovascular diseases and neurodegenerative diseases. AMPK orchestrates many different physiological outcomes by phosphorylating a broad range of downstream substrates. However, the importance of AMPK-mediated regulation of these substrates in vivo remains an ongoing area of investigation to better understand its precise role in cellular and metabolic homeostasis. Here, we provide a comprehensive overview of our understanding of the kinase function of AMPK in vivo, as uncovered from mouse models that harbor phosphorylation mutations in AMPK substrates. We discuss some of the inherent limitations of these mouse models, highlight the broader implications of these studies for understanding human health and disease, and explore the valuable insights gained that could inform future therapeutic strategies for the treatment of metabolic and non-metabolic disorders.
Collapse
Affiliation(s)
- Naghmana Ashraf
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Li X, Cheng K, Shang MD, Yang Y, Hu B, Wang X, Wei XD, Han YC, Zhang XG, Dong MH, Yang ZL, Wang JQ. MARCH1 negatively regulates TBK1-mTOR signaling pathway by ubiquitinating TBK1. BMC Cancer 2024; 24:902. [PMID: 39061024 PMCID: PMC11282859 DOI: 10.1186/s12885-024-12667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Kai Cheng
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Meng-Di Shang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yong Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Bin Hu
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Xi Wang
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Dan Wei
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yan-Chun Han
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Gang Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Meng-Hua Dong
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Zhen-Lin Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China.
| | - Jiu-Qiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
12
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
13
|
Hablase R, Kyrou I, Randeva H, Karteris E, Chatterjee J. The "Road" to Malignant Transformation from Endometriosis to Endometriosis-Associated Ovarian Cancers (EAOCs): An mTOR-Centred Review. Cancers (Basel) 2024; 16:2160. [PMID: 38893278 PMCID: PMC11172073 DOI: 10.3390/cancers16112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer is an umbrella term covering a number of distinct subtypes. Endometrioid and clear-cell ovarian carcinoma are endometriosis-associated ovarian cancers (EAOCs) frequently arising from ectopic endometrium in the ovary. The mechanistic target of rapamycin (mTOR) is a crucial regulator of cellular homeostasis and is dysregulated in both endometriosis and endometriosis-associated ovarian cancer, potentially favouring carcinogenesis across a spectrum from benign disease with cancer-like characteristics, through an atypical phase, to frank malignancy. In this review, we focus on mTOR dysregulation in endometriosis and EAOCs, investigating cancer driver gene mutations and their potential interaction with the mTOR pathway. Additionally, we explore the complex pathogenesis of transformation, considering environmental, hormonal, and epigenetic factors. We then discuss postmenopausal endometriosis pathogenesis and propensity for malignant transformation. Finally, we summarize the current advancements in mTOR-targeted therapeutics for endometriosis and EAOCs.
Collapse
Affiliation(s)
- Radwa Hablase
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 1GB, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
| | - Jayanta Chatterjee
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| |
Collapse
|
14
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
15
|
Li K, Cao JF, Gong Y, Xiong L, Wu M, Qi Y, Ying X, Liu D, Ma X, Zhang X. Rapamycin improves the survival of epilepsy model cells by blocking phosphorylation of mTOR base on computer simulations and cellular experiments. Neurochem Int 2024; 176:105746. [PMID: 38641027 DOI: 10.1016/j.neuint.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Collapse
Affiliation(s)
- Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu, China; Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Feng Cao
- Chengdu Medical College, Chengdu, China; College of Medicine, Southwest Jiaotong University, Chengdu, China
| | | | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Chengdu Medical College, Chengdu, China
| | | | | | - Xuntai Ma
- Chengdu Medical College, Chengdu, China; The First Affiliated Hospital of Clinical Medical College of Chengdu Medical College, Chengdu, China.
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China.
| |
Collapse
|
16
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04257-7. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
17
|
Onaka GM, de Carvalho MR, Onaka PK, Barbosa CM, Martinez PF, de Oliveira-Junior SA. Exercise, mTOR Activation, and Potential Impacts on the Liver in Rodents. BIOLOGY 2024; 13:362. [PMID: 38927242 PMCID: PMC11201249 DOI: 10.3390/biology13060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The literature offers a consensus on the association between exercise training (ET) protocols based on the adequate parameters of intensity and frequency, and several adaptive alterations in the liver. Indeed, regular ET can reverse glucose and lipid metabolism disorders, especially from aerobic modalities, which can decrease intrahepatic fat formation. In terms of molecular mechanisms, the regulation of hepatic fat formation would be directly related to the modulation of the mechanistic target of rapamycin (mTOR), which would be stimulated by insulin signaling and Akt activation, from the following three different primary signaling pathways: (I) growth factor, (II) energy/ATP-sensitive, and (III) amino acid-sensitive signaling pathways, respectively. Hyperactivation of the Akt/mTORC1 pathway induces lipogenesis by regulating the action of sterol regulatory element binding protein-1 (SREBP-1). Exercise training interventions have been associated with multiple metabolic and tissue benefits. However, it is worth highlighting that the mTOR signaling in the liver in response to exercise interventions remains unclear. Hepatic adaptive alterations seem to be most outstanding when sustained by chronic interventions or high-intensity exercise protocols.
Collapse
Affiliation(s)
- Giuliano Moreto Onaka
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
| | - Marianna Rabelo de Carvalho
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
| | - Patricia Kubalaki Onaka
- Graduate Program in Education and Health, State University of Mato Grosso do Sul, Dourados 79804-970, MS, Brazil
| | - Claudiane Maria Barbosa
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| | - Paula Felippe Martinez
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| | - Silvio Assis de Oliveira-Junior
- Graduate Program in Health and Development in the Midwest Region, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil; (G.M.O.); (P.F.M.)
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, MS, Brazil;
| |
Collapse
|
18
|
Cheng TYD, Fu DA, Falzarano SM, Zhang R, Datta S, Zhang W, Omilian AR, Aduse-Poku L, Bian J, Irianto J, Asirvatham JR, Campbell-Thompson M. Association of computed tomography scan-assessed body composition with immune and PI3K/AKT pathway proteins in distinct breast cancer tumor components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24307688. [PMID: 38826360 PMCID: PMC11142286 DOI: 10.1101/2024.05.21.24307688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
This hypothesis-generating study aims to examine the extent to which computed tomography-assessed body composition phenotypes are associated with immune and PI3K/AKT signaling pathways in breast tumors. A total of 52 patients with newly diagnosed breast cancer were classified into four body composition types: adequate (lowest two tertiles of total adipose tissue [TAT]) and highest two tertiles of total skeletal muscle [TSM] areas); high adiposity (highest tertile of TAT and highest two tertiles of TSM); low muscle (lowest tertile of TSM and lowest two tertiles of TAT); and high adiposity with low muscle (highest tertile of TAT and lowest tertile of TSM). Immune and PI3K/AKT pathway proteins were profiled in tumor epithelium and the leukocyte-enriched stromal microenvironment using GeoMx (NanoString). Linear mixed models were used to compare log2-transformed protein levels. Compared with the normal type, the low muscle type was associated with higher expression of INPP4B (log2-fold change = 1.14, p = 0.0003, false discovery rate = 0.028). Other significant associations included low muscle type with increased CTLA4 and decreased pan-AKT expression in tumor epithelium, and high adiposity with increased CD3, CD8, CD20, and CD45RO expression in stroma (P<0.05; false discovery rate >0.2). With confirmation, body composition can be associated with signaling pathways in distinct components of breast tumors, highlighting the potential utility of body composition in informing tumor biology and therapy efficacies.
Collapse
|
19
|
Yang L, Liao J, Huang H, Lee TL, Qi H. Stage-specific regulation of undifferentiated spermatogonia by AKT1S1-mediated AKT-mTORC1 signaling during mouse spermatogenesis. Dev Biol 2024; 509:11-27. [PMID: 38311163 DOI: 10.1016/j.ydbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.
Collapse
Affiliation(s)
- Lele Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyue Liao
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hongying Huang
- The Experimental Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tin Lap Lee
- GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Huayu Qi
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
20
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
23
|
Ichikawa K, Ito S, Kato E, Abe N, Machida T, Iwasaki J, Tanaka G, Araki H, Wakayama K, Jona H, Sugimoto T, Miyadera K, Ohkubo S. TAS0612, a Novel RSK, AKT, and S6K Inhibitor, Exhibits Antitumor Effects in Preclinical Tumor Models. Mol Cancer Ther 2024; 23:174-186. [PMID: 37906695 DOI: 10.1158/1535-7163.mct-21-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/18/2022] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The MAPK and PI3K pathways are involved in cancer growth and survival; however, the clinical efficacy of single inhibitors of each pathway is limited or transient owing to resistance mechanisms, such as feedback signaling and/or reexpression of receptor-type tyrosine kinases (RTK). This study identified a potent and novel kinase inhibitor, TAS0612, and characterized its properties. We found that TAS0612 is a potent, orally available compound that can inhibit p90RSK (RSK), AKT, and p70S6K (S6K) as a single agent and showed a strong correlation with the growth inhibition of cancer cells with PTEN loss or mutations, regardless of the presence of KRAS and BRAF mutations. Additional RSK inhibitory activity may differentiate the sensitivity profile of TAS0612 from that of signaling inhibitors that target only the PI3K pathway. Moreover, TAS0612 demonstrated broad-spectrum activity against tumor models wherein inhibition of MAPK or PI3K pathways was insufficient to exert antitumor effects. TAS0612 exhibited a stronger growth-inhibitory activity against the cancer cell lines and tumor models with dysregulated signaling with the genetic abnormalities described above than treatment with inhibitors against AKT, PI3K, MEK, BRAF, and EGFR/HER2. In addition, TAS0612 demonstrated the persistence of blockade of downstream growth and antiapoptotic signals, despite activation of upstream effectors in the signaling pathway and FoxO-dependent reexpression of HER3. In conclusion, TAS0612 with RSK/AKT/S6K inhibitory activity may provide a novel therapeutic strategy for patients with cancer to improve clinical responses and overcome resistance mechanisms.
Collapse
Affiliation(s)
- Koji Ichikawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Satoshi Ito
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Emi Kato
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naomi Abe
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takumitsu Machida
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junya Iwasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Gotaro Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hikari Araki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kentaro Wakayama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hideki Jona
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Tetsuya Sugimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
25
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
26
|
Frappaolo A, Giansanti MG. Using Drosophila melanogaster to Dissect the Roles of the mTOR Signaling Pathway in Cell Growth. Cells 2023; 12:2622. [PMID: 37998357 PMCID: PMC10670727 DOI: 10.3390/cells12222622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The evolutionarily conserved target of rapamycin (TOR) serine/threonine kinase controls eukaryotic cell growth, metabolism and survival by integrating signals from the nutritional status and growth factors. TOR is the catalytic subunit of two distinct functional multiprotein complexes termed mTORC1 (mechanistic target of rapamycin complex 1) and mTORC2, which phosphorylate a different set of substrates and display different physiological functions. Dysregulation of TOR signaling has been involved in the development and progression of several disease states including cancer and diabetes. Here, we highlight how genetic and biochemical studies in the model system Drosophila melanogaster have been crucial to identify the mTORC1 and mTORC2 signaling components and to dissect their function in cellular growth, in strict coordination with insulin signaling. In addition, we review new findings that involve Drosophila Golgi phosphoprotein 3 in regulating organ growth via Rheb-mediated activation of mTORC1 in line with an emerging role for the Golgi as a major hub for mTORC1 signaling.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
27
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
28
|
McNair AJ, Markby GR, Tang Q, MacRae VE, Corcoran BM. TGF-β phospho antibody array identifies altered SMAD2, PI3K/AKT/SMAD, and RAC signaling contribute to the pathogenesis of myxomatous mitral valve disease. Front Vet Sci 2023; 10:1202001. [PMID: 37908840 PMCID: PMC10613673 DOI: 10.3389/fvets.2023.1202001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
Background TGFβ signaling appears to contribute to the pathogenesis of myxomatous mitral valve disease (MMVD) in both dogs and humans. However, little is known about the extent of the downstream signaling changes that will then affect cell phenotype and function in both species. Objective Identify changes in downstream signals in the TGFβ pathway in canine MMVD and examine the effects of antagonism of one significant signal (SMAD2 was selected). Materials and methods Canine cultures of normal quiescent valve interstitial cells (qVICs) and disease-derived activated myofibroblasts (aVICs) (n = 6) were examined for TGFβ signaling protein expression using a commercial antibody array. Significant changes were confirmed, and additional proteins of interest downstream in the TGFβ signaling pathway and markers of cell phenotype were examined (PRAS40, S6K, elF4E IRS-1, αSMA, and VIM), using protein immunoblotting. RT-PCR examined expression of gene markers of VIC activation (ACTA2, TAGLN, and MYH10; encoding the proteins αSMA, SM22, and Smemb, respectively). Attenuation of pSMAD2 in aVICs was examined using a combination of RNA interference technology (siRNA) and the SMAD7 (antagonizes SMAD2) agonist asiaticoside. Results The antibody array identified significant changes (P < 0.05) in 19 proteins, of which six were phosphorylated (p). There was increased expression of pSMAD2 and pRAC1 and decreased expression of pmTOR, pERK1/2, and pAKT1. Expression of pPRAS40 and pIRS-1 was increased, as was the mTOR downstream transcription factor pS6K, with increased expression of peIF4E in aVICs, indicating negative feedback control of the PI3K/AKT/mTOR pathway. SMAD2 antagonism by siRNA and the SMAD7 agonist asiaticoside decreased detection of pSMAD by at least 50%, significantly decreased expression of the aVIC gene markers ACTA2, TAGLN, and MYH10, and pαSMA, pAKT2, and pERK1, but had no effect on pS6K, pERK2, or pVIM expression in aVICs. SMAD2 antagonism transitioned diseased aVICs to normal qVICs, while maintaining a mesenchymal phenotype (VIM+) while concurrently affecting non-canonical TGFβ signaling. Conclusion MMVD is associated with changes in both the canonical and non-canonical TGFβ signaling pathway. Antagonism of SMAD2 transitions diseased-activated myofibroblasts back to a normal phenotype, providing data that will inform studies on developing novel therapeutics to treat MMVD in dogs and humans.
Collapse
Affiliation(s)
- Andrew J. McNair
- The Roslin Institute, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
| | - Greg R. Markby
- The Roslin Institute, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
| | - Qiyu Tang
- The Roslin Institute, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
| | - Vicky E. MacRae
- The Roslin Institute, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
| | - Brendan M. Corcoran
- The Roslin Institute, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easterbush Veterinary Centre, Roslin, United Kingdom
| |
Collapse
|
29
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
30
|
Nicastro R, Brohée L, Alba J, Nüchel J, Figlia G, Kipschull S, Gollwitzer P, Romero-Pozuelo J, Fernandes SA, Lamprakis A, Vanni S, Teleman AA, De Virgilio C, Demetriades C. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 2023; 25:1303-1318. [PMID: 37563253 PMCID: PMC10495264 DOI: 10.1038/s41556-023-01198-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laura Brohée
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | - Peter Gollwitzer
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Jesus Romero-Pozuelo
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Unidad de Investigación Biomedica, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | | | - Andreas Lamprakis
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany.
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
31
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
33
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Implication of mTOR Signaling in NSCLC: Mechanisms and Therapeutic Perspectives. Cells 2023; 12:2014. [PMID: 37566093 PMCID: PMC10416991 DOI: 10.3390/cells12152014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanistic target of the rapamycin (mTOR) signaling pathway represents a central cellular kinase that controls cell survival and metabolism. Increased mTOR activation, along with upregulation of respective upstream and downstream signaling components, have been established as oncogenic features in cancer cells in various tumor types. Nevertheless, mTOR pathway therapeutic targeting has been proven to be quite challenging in various clinical settings. Non-small cell lung cancer (NSCLC) is a frequent type of solid tumor in both genders, where aberrant regulation of the mTOR pathway contributes to the development of oncogenesis, apoptosis resistance, angiogenesis, cancer progression, and metastasis. In this context, the outcome of mTOR pathway targeting in clinical trials still demonstrates unsatisfactory results. Herewith, we discuss recent findings regarding the mechanisms and therapeutic targeting of mTOR signaling networks in NSCLC, as well as future perspectives for the efficient application of treatments against mTOR and related protein molecules.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biopathology, ‘Eginition’ Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
34
|
Gao Y, Tian T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int J Mol Sci 2023; 24:11811. [PMID: 37511569 PMCID: PMC10380532 DOI: 10.3390/ijms241411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) integrates multiple intracellular and extracellular upstream signals involved in the regulation of anabolic and catabolic processes in cells and plays a key regulatory role in cell growth and metabolism. The activation of the mTOR signaling pathway has been reported to be associated with a wide range of human diseases. A growing number of in vivo and in vitro studies have demonstrated that gut microbes and their complex metabolites can regulate host metabolic and immune responses through the mTOR pathway and result in disorders of host physiological functions. In this review, we summarize the regulatory mechanisms of gut microbes and mTOR in different diseases and discuss the crosstalk between gut microbes and their metabolites and mTOR in disorders in the gastrointestinal tract, liver, heart, and other organs. We also discuss the promising application of multiple potential drugs that can adjust the gut microbiota and mTOR signaling pathways. Despite the limited findings between gut microbes and mTOR, elucidating their relationship may provide new clues for the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
35
|
Marques-Ramos A, Cervantes R. Expression of mTOR in normal and pathological conditions. Mol Cancer 2023; 22:112. [PMID: 37454139 PMCID: PMC10349476 DOI: 10.1186/s12943-023-01820-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), a protein discovered in 1991, integrates a complex pathway with a key role in maintaining cellular homeostasis. By comprising two functionally distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, it is a central cellular hub that integrates intra- and extracellular signals of energy, nutrient, and hormone availability, modulating the molecular responses to acquire a homeostatic state through the regulation of anabolic and catabolic processes. Accordingly, dysregulation of mTOR pathway has been implicated in a variety of human diseases. While major advances have been made regarding the regulators and effectors of mTOR signaling pathway, insights into the regulation of mTOR gene expression are beginning to emerge. Here, we present the current available data regarding the mTOR expression regulation at the level of transcription, translation and mRNA stability and systematize the current knowledge about the fluctuations of mTOR expression observed in several diseases, both cancerous and non-cancerous. In addition, we discuss whether mTOR expression changes can be used as a biomarker for diagnosis, disease progression, prognosis and/or response to therapeutics. We believe that our study will contribute for the implementation of new disease biomarkers based on mTOR as it gives an exhaustive perspective about the regulation of mTOR gene expression in both normal and pathological conditions.
Collapse
Affiliation(s)
- A Marques-Ramos
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - R Cervantes
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Public Health Research Centre, NOVA National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
36
|
Gasimli R, Kayabasi C, Ozmen Yelken B, Asik A, Sogutlu F, Celebi C, Yilmaz Susluer S, Kamer S, Biray Avci C, Haydaroglu A, Gunduz C. The effects of PKI-402 on breast tumor models' radiosensitivity via dual inhibition of PI3K/mTOR. Int J Radiat Biol 2023; 99:1961-1970. [PMID: 37389464 DOI: 10.1080/09553002.2023.2232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE PI3K/Akt/mTOR pathway activation causes relapse and resistance after radiotherapy in breast cancer (BC). We aimed to radiosensitize BC cell lines to irradiation (IR) by PKI-402, a dual PI3K/mTOR inhibitor. METHODS We performed cytotoxicity, clonogenicity, hanging drop, apoptosis and double-strand break detection, and phosphorylation of 16 essential proteins involved in the PI3K/mTOR pathway. RESULTS Our findings showed that PKI-402 has cytotoxic efficiency in all cell lines. Clonogenic assay results showed that PKI-402 plus IR inhibited the colony formation ability of MCF-7 and breast cancer stem cell lines. Results showed that PKI-402 plus IR causes more apoptotic cell death than IR alone in the MCF-7 cells but did not cause significant changes in the MDA-MB-231. γ-H2AX levels were increased in MDA-MB-231 in PKI-402 plus IR groups, whereas we did not observe any apoptotic and γ-H2AX induction in BCSCs and MCF-10A cells in all treatment groups. Some pivotal phosphorylated proteins of the PI3K/AKT pathway decreased, several proteins increased and others did not change. CONCLUSION In conclusion, if the combined use of PKI-402 with radiation is supported by in vivo studies, it can contribute to the treatment options and the course of the disease.
Collapse
Affiliation(s)
- Roya Gasimli
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cagla Kayabasi
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Besra Ozmen Yelken
- Department of Medical Biology, Faculty of Medicine, Bakircay University, Izmir, Turkey
| | - Aycan Asik
- Department of Medical Biology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Caglar Celebi
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sunde Yilmaz Susluer
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serra Kamer
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayfer Haydaroglu
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
37
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
38
|
Wang S, Wang J, Wang S, Tao R, Yi J, Chen M, Zhao Z. mTOR Signaling Pathway in Bone Diseases Associated with Hyperglycemia. Int J Mol Sci 2023; 24:ijms24119198. [PMID: 37298150 DOI: 10.3390/ijms24119198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
The interplay between bone and glucose metabolism has highlighted hyperglycemia as a potential risk factor for bone diseases. With the increasing prevalence of diabetes mellitus worldwide and its subsequent socioeconomic burden, there is a pressing need to develop a better understanding of the molecular mechanisms involved in hyperglycemia-mediated bone metabolism. The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that senses extracellular and intracellular signals to regulate numerous biological processes, including cell growth, proliferation, and differentiation. As mounting evidence suggests the involvement of mTOR in diabetic bone disease, we provide a comprehensive review of its effects on bone diseases associated with hyperglycemia. This review summarizes key findings from basic and clinical studies regarding mTOR's roles in regulating bone formation, bone resorption, inflammatory responses, and bone vascularity in hyperglycemia. It also provides valuable insights into future research directions aimed at developing mTOR-targeted therapies for combating diabetic bone diseases.
Collapse
Affiliation(s)
- Shuangcheng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuangwen Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ran Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Tang J, Yang L, Guan F, Miller H, Camara NOS, James LK, Benlagha K, Kubo M, Heegaard S, Lee P, Lei J, Zeng H, He C, Zhai Z, Liu C. The role of Raptor in lymphocytes differentiation and function. Front Immunol 2023; 14:1146628. [PMID: 37283744 PMCID: PMC10239924 DOI: 10.3389/fimmu.2023.1146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Japan
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hu Zeng
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Sanjurjo L, Castelblanco E, Julve J, Villalmanzo N, Téllez É, Ramirez-Morros A, Alonso N, Mauricio D, Sarrias MR. Contribution of Elevated Glucose and Oxidized LDL to Macrophage Inflammation: A Role for PRAS40/Akt-Dependent Shedding of Soluble CD14. Antioxidants (Basel) 2023; 12:antiox12051083. [PMID: 37237950 DOI: 10.3390/antiox12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis, a process in which macrophages play a key role, is accelerated in diabetes. Elevated concentrations of serum-oxidized low-density lipoproteins (oxLDL) represent a common feature of both conditions. The main goal of this study was to determine the contribution of oxLDL to the inflammatory response of macrophages exposed to diabetic-mimicking conditions. THP1 cells and peripheral blood monocytes purified from non-diabetic healthy donors were cultured under normal (5 mM) or high glucose (HG) (15 mM) with oxLDL. Then, foam cell formation, expression of CD80, HLADR, CD23, CD206, and CD163, as well as toll-like receptor 4 (TLR4) and co-receptors CD36 and CD14 (both at the cell surface and soluble (sCD14)), and inflammatory mediators' production were measured by flow cytometry, RT-qPCR, or ELISA. Additionally, serum sCD14 was determined in subjects with subclinical atherosclerosis with and without diabetes by ELISA. Our results showed that oxLDL-mediated intracellular lipid accumulation via CD36 increased under HG and that HG + oxLDL enhanced TNF, IL1B, and IL8, and decreased IL10. Moreover, TLR4 was upregulated in macrophages under HG and monocytes of subjects with diabetes and atherosclerosis. Interestingly, HG-oxLDL upregulated CD14 gene expression, although its total cellular protein abundance remained unaltered. sCD14 shedding via PRAS40/Akt-dependent mechanisms, with pro-inflammatory activity, was significantly increased in cultured macrophages and plasma from subjects with diabetes and subclinical atherosclerosis or hypercholesterolemia. Our data support an enhanced synergistic pro-inflammatory effect induced by HG and oxLDL in cultured human macrophages, possibly explained by increased sCD14 shedding.
Collapse
Affiliation(s)
- Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
| | - Josep Julve
- Endocrinology, Diabetes and Nutrition Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IRHSCSP), 08041 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Nuria Villalmanzo
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Érica Téllez
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Ramirez-Morros
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, 08272 Sant Fruitós de Bages, Spain
| | - Núria Alonso
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Dídac Mauricio
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007 Barcelona, Spain
- Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical Research Institute, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
41
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca-Angel Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca-Angel
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
42
|
Majeed ST, Majeed R, Malik AA, Andrabi KI. MTORC2 is a physiological hydrophobic motif kinase of S6 Kinase 1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119449. [PMID: 36858209 DOI: 10.1016/j.bbamcr.2023.119449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.
Collapse
Affiliation(s)
- Sheikh Tahir Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India; Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Aijaz A Malik
- Centre of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Khurshid Iqbal Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.
| |
Collapse
|
43
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
44
|
Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers (Basel) 2023; 15:cancers15061665. [PMID: 36980552 PMCID: PMC10046096 DOI: 10.3390/cancers15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Papillary thyroid cancer (PTC) comprises approximately 80% of all thyroid malignancies. Although several etiological factors, such as age, gender, and irradiation, are already known to be involved in the development of PTC, the genetics of cancerogenesis remain undetermined. The mTOR pathway regulates several cellular processes that are critical for tumorigenesis. Activated mTOR is involved in the development and progression of PTC. Therefore, we performed a systematic review of papers studying the expression of the mTOR gene and protein and its relationship with PTC risk and clinical outcome. A systematic literature search was performed using PubMed, Embase, and Scopus databases (the search date was 2012–2022). Studies investigating the expression of mTOR in the peripheral blood or tissue of patients with PTC were deemed eligible for inclusion. Seven of the 286 screened studies met the inclusion criteria for mTOR gene expression and four for mTOR protein expression. We also analyzed the data on mTOR protein expression in PTC. We analyzed the association of mTOR expression with papillary thyroid cancer clinicopathological features, such as the TNM stage, BRAF V600E mutation, sex distribution, lymph node and distant metastases, and survival prognosis. Understanding specific factors involved in PTC tumorigenesis provides opportunities for targeted therapies. We also reviewed the possible new targeted therapies and the use of mTOR inhibitors in PTC. This topic requires further research with novel techniques to translate the achieved results to clinical application.
Collapse
|
45
|
Castro-Cruz A, Echeverría OM, Sánchez-Sánchez L, Muñoz-Velasco I, Juárez-Chavero S, Torres-Ramírez N, Vázquez-Nin GH, Escobar ML. Dissection of the autophagic route in oocytes from atretic follicles. Biol Cell 2023; 115:e2200046. [PMID: 36571578 DOI: 10.1111/boc.202200046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Autophagy is a conserved process that functions as a cytoprotective mechanism; it may function as a cell death process called programmed cell death type II. There is considerable evidence for the presence of autophagic cell death during oocyte elimination in prepubertal rats. However, the mechanisms involved in this process have not been deciphered. RESULTS Our observations revealed autophagic cell death in oocytes with increased labeling of the autophagic proteins Beclin 1, light chain 3 A (LC3 A), and lysosomal-associated membrane protein 1 (Lamp1). Furthermore, mTOR and phosphorylated (p)-mTOR (S2448) proteins were significantly decreased in oocytes with increased levels of autophagic proteins, indicating autophagic activation. Moreover, phosphorylated protein kinase B (p-AKT) was not expressed by oocytes, but mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling was observed. Additionally, selective and elevated mitochondrial degradation was identified in altered oocytes. CONCLUSIONS All these results suggest that mTOR downregulation, which promotes autophagy, could be mediated by low energy levels and sustained starvation involving the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and MAPK/ERK pathways. SIGNIFICANCE In this work, we analyzed the manner in which autophagy is carried out in oocytes undergoing autophagic cell death by studying the behavior of proteins involved in different steps of the autophagic pathway.
Collapse
Affiliation(s)
- Abraham Castro-Cruz
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Olga M Echeverría
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Luis Sánchez-Sánchez
- Laboratorio de Biología Molecular del Cáncer, Lab. 6, 2do piso, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México, Ciudad de México, Iztapalapa, México
| | - Israel Muñoz-Velasco
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Silvia Juárez-Chavero
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo H Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - María Luisa Escobar
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México,Ciudad Universitaria, Col. Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
46
|
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 2023; 50:3873-3884. [PMID: 36787054 PMCID: PMC10042974 DOI: 10.1007/s11033-023-08251-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer is the second most common cancer diagnosed in men and the fifth-leading cause of cancer death in men worldwide. Like any solid tumor, the hypoxic microenvironment of prostatic cancer drives hypoxia-inducible factors (HIFs) to mediate cell adaptions to hypoxic conditions. HIFs direct different signaling pathways such as PI3K/Akt/mTOR, NOX, and Wnt/β-Catenin to tumor progression depending on the degree of hypoxia. HIFs regulate cytoskeleton protein expression, promoting epithelial-mesenchymal transition (EMT), which occurs when cancer cells lose cell-to-cell adhesions and start invasion and metastasis. Through activating pathways, the hypoxic microenvironment maintains the self-renewal, potency, and anti-apoptotic function of prostate cancer cells and induces tumor metastasis and transformation. These pathways could serve as a potential target for prostate cancer therapy. HIFs increase the expression of androgen receptors on cancer cells maintaining the growth and survival of prostate cancer and the development of its castration resistance. In this review, we elaborate on the role of hypoxia in prostatic cancer pathogenesis and different hypoxia-induced mechanisms.
Collapse
Affiliation(s)
- Osama A A Mohamed
- Biotechnology Department, Faculty of Science, Mansoura University, Dakahlia, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Heba S Tesen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Marwa Hany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya Sherif
- Chemistry & Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Maya Magdy Abdelwahab
- Faculty of Medicine, Helwan University, Cairo, Egypt. .,Biomedical Research Department, Tetraploid Team, Cairo, Egypt.
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| |
Collapse
|
47
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
48
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
49
|
Takeda K, Tago K, Funakoshi-Tago M. The indispensable role of the RNA helicase DDX5 in tumorigenesis induced by the myeloproliferative neoplasm-associated JAK2V617F mutant. Cell Signal 2023; 102:110537. [PMID: 36442590 DOI: 10.1016/j.cellsig.2022.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A point mutation (V617F) in the Janus kinase 2 (JAK2) gene results in the production of disorderly activated tyrosine kinase, which causes myeloproliferative neoplasms (MPN). We herein demonstrated that the RNA helicase DDX5 was highly expressed at the mRNA and protein levels through the activation of signal transducer and activator of transcription 5 (STAT5) in Ba/F3 cells expressing a JAK2V617F mutant and erythropoietin receptor (V617F/EpoR cells) and MPN patient-derived HEL cells. A treatment with the JAK1/2 inhibitor, ruxolitinib and STAT5 inhibitor, pimozide significantly inhibited DDX5 mRNA expression and enhanced the degradation of DDX5 in these cells, suggesting that the JAK2V617F mutant positively regulates DDX5 mRNA expression and DDX5 protein stability by activating STAT5. The knockdown of DDX5 specifically inhibited the activation of mechanistic target of rapamycin (mTOR) in V617F/EpoR cells and HEL cells and significantly suppressed the proliferation of these cells. Furthermore, the knockdown of DDX5 markedly suppressed tumorigenesis, splenomegaly, and liver hypertrophy caused by an inoculation of V617F/EpoR cells in nude mice. Collectively, these results revealed that JAK2V617F exhibits transforming activity by inducing the expression of DDX5 in a STAT5-dependent manner, indicating the potential of the JAK2V617F/STAT5/DDX5 axis as a therapeutic target in the treatment of MPN.
Collapse
Affiliation(s)
- Kengo Takeda
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan.
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
50
|
Liu B, Zhang Y, Ren H, Yao Q, Ba J, Luan J, Zhao P, Qin Z, Qi Z. mTOR signaling regulates Zika virus replication bidirectionally through autophagy and protein translation. J Med Virol 2023; 95:e28422. [PMID: 36546404 DOI: 10.1002/jmv.28422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Zika virus (ZIKV) reemerged in 2016 and attracted much more attention worldwide. To date, the limited knowledge of ZIKV interactions with host cells in the early stages of infection impedes the prevention of viral epidemics and the treatment of ZIKV disease. The mammalian target of rapamycin (mTOR) signaling pathway plays an essential role in the regulation of autophagy and protein synthesis during multiple viral infections. This study aimed to investigate the functional role of mTOR signaling in ZIKV replication in human umbilical vein endothelial cells. Immunoblotting demonstrated that ZIKV infection inhibited mTORC1 signaling, enhancing autophagy but obstructing protein translation. Drugs or siRNA for interfering with mTOR signaling molecules were utilized to demonstrate that AKT/TSC2/mTORC1 signaling was involved in ZIKV infection and that autophagy promoted ZIKV production, but viral protein expression was regulated by mTORC1 signaling. Moreover, confocal microscopy indicated a robust correlation between autophagy and viral RNA transcription. This study clarifies the dual functions of mTOR signaling during ZIKV infection and provides theoretical support for developing potential anti-ZIKV drugs based on mTOR signaling molecules and deeper insights to better understand the mechanism between ZIKV and host cells.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China.,Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yahui Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hao Ren
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China
| | - Qiufeng Yao
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China
| | - Jianbo Ba
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Jie Luan
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China
| | - Zhaoling Qin
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, China
| |
Collapse
|