1
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X, Jin HC, Feng LF. The regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy. Acta Pharmacol Sin 2024; 45:2229-2240. [PMID: 39020084 PMCID: PMC11489423 DOI: 10.1038/s41401-024-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, 321000, China
| | - Wei-Kai Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Li-Yuan Zhu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hong-Chuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Li-Feng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
2
|
Hwang JS, Song HB, Lee G, Jeong S, Ma DJ. Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stem Cells Alleviate Apoptosis and Oxidative Stress of Retinal Pigment Epithelial Cells Through Activation of Nrf2 Signaling Pathway. J Ocul Pharmacol Ther 2024. [PMID: 39451126 DOI: 10.1089/jop.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Purpose: To examine the potential protective effects of adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASC-EVs) on ARPE-19 cells exposed to hydrogen peroxide (H2O2) stress and to evaluate their ability to delay retinal degeneration in Royal College of Surgeons (RCS) rats. Methods: ARPE-19 cells were pre-treated with ASC-EVs for 24 h, followed by exposure to 200 μM H2O2 for an additional 24 h. RCS rats received an intravitreal injection of phosphate-buffered saline in one eye and ASC-EVs in the other eye. Results: ASC-EV pretreatment significantly protected against H2O2 in the Cell Counting Kit-8 assay and was also effective in the lactate dehydrogenase-release assay. It notably reduced early apoptosis (Annexin V-fluorescein isothiocyanate/propidium iodide assay) and late apoptosis (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling assay), while significantly decreasing intracellular reactive oxygen species, glutathione levels, and superoxide dismutase activity. NFE2L2, HMOX1, and NQO1 mRNA levels, along with Nrf2, HO-1, and NQO1 protein levels, were significantly elevated with ASC-EV pretreatment. Compared with ARPE-19-derived EVs, 11 miRNAs were upregulated and 34 were downregulated in ASC-EVs. In RCS rats, intravitreal injections of ASC-EVs led to significant preservation of the outer nuclear layer and photoreceptor segments, along with increased nuclear Nrf2 expression and elevated HO-1 and NQO1 levels in the inner retina. Eyes that received intravitreal injections of ASC-EVs demonstrated significantly preserved electroretinography a- and b-wave amplitudes at 1 week post-injection, though this effect faded by 2 weeks. Conclusions: ASC-EVs mitigated apoptosis and oxidative stress in ARPE-19 cells subjected to H2O2 exposure and temporarily slowed retinal degeneration in RCS rats via Nrf2 pathway activation by miRNAs.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul, Republic of Korea
| | - Hyun Beom Song
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dae Joong Ma
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wu R, Song K, Jing R, Du L. The de-ubiquitinase UBQUITIN SPECIFIC PROTEASE 15 (UBP15) interacts with the SCF E3 complex adaptor ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) to regulate petal size and fertility in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112112. [PMID: 38750799 DOI: 10.1016/j.plantsci.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Ubiquitination is a pivotal type of post-translational modification, which plays a far-reaching role in plant growth and development, as well as in the response of plants to stress. Just like the two sides of a coin, de-ubiquitination also plays an important role in plant life, which has been gradually discovered in recent years. Here, we demonstrate that the UBQUITIN SPECIFIC PROTEASE 15 (UBP15), which is a UBP-type de-ubiquitinase, interacts with the SCF E3 complex adaptor ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) and influences its protein stability to regulate plant fertility and petal size. The UBP15 is associated with the ASK1 physically, as verified by yeast-two-hybrid (Y2H) and protein pull-down in vitro assays. Disruption of ASK1 by a T-DNA insertion generates some abnormal phenotypes, such as low fertility and small petals. Genetic analysis shows that the UBP15 mutation enhances the low-fertility and small-petal phenotypes of ask1 mutant plants. By proteomic analysis, many types of proteins were identified as potential candidate downstream genes associated with the phenotypes of ubp15 ask1 double mutant plants. Taken together, these findings reveal a molecular relationship between ASK1 and UBP15 and their interaction in the regulation of petal size and fertility, which would benefit in-depth research about the ubiquitin-related pathway in plant physiological processes in the future.
Collapse
Affiliation(s)
- Ruihua Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Ruotong Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
4
|
Zhang J, Pan X, Ji W, Zhou J. Autophagy mediated targeting degradation, a promising strategy in drug development. Bioorg Chem 2024; 149:107466. [PMID: 38843684 DOI: 10.1016/j.bioorg.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/17/2024]
Abstract
Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xiangyi Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Wenshu Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| |
Collapse
|
5
|
Martinez S, Wu S, Geuenich M, Malik A, Weber R, Woo T, Zhang A, Jang GH, Dervovic D, Al-Zahrani KN, Tsai R, Fodil N, Gros P, Gallinger S, Neely GG, Notta F, Sendoel A, Campbell K, Elling U, Schramek D. In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer. Nat Commun 2024; 15:5266. [PMID: 38902237 PMCID: PMC11189927 DOI: 10.1038/s41467-024-49450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-β and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine. Furthermore, we find that loss of SCAF1 leads to the formation of a truncated, inactive USP15 isoform at the expense of full-length USP15, functionally coupling SCAF1 and USP15. Notably, USP15 and SCAF1 alterations are observed in 31% of pancreatic cancer patients. Our results highlight the utility of in vivo CRISPR screens to integrate human cancer genomics and mouse modeling for the discovery of cancer driver genes with potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shifei Wu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Geuenich
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ramona Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Tristan Woo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nassima Fodil
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Steven Gallinger
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Kieran Campbell
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Zhao K, Chen L, Xie Y, Ren N, Li J, Zhai X, Zheng S, Liu K, Wang C, Qiu Q, Peng X, Wang W, Liu J, Che Q, Fan J, Hu H, Liu M. m6A/HOXA10-AS/ITGA6 axis aggravates oxidative resistance and malignant progression of laryngeal squamous cell carcinoma through regulating Notch and Keap1/Nrf2 pathways. Cancer Lett 2024; 587:216735. [PMID: 38369001 DOI: 10.1016/j.canlet.2024.216735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
As the second most prevalent malignant tumor of head and neck, laryngeal squamous cell carcinoma (LSCC) imposes a substantial health burden on patients worldwide. Within recent years, resistance to oxidative stress and N6-methyladenosine (m6A) of RNA have been proved to be significantly involved in tumorigenesis. In current study, we investigated the oncogenic role of m6A modified long non coding RNAs (lncRNAs), specifically HOXA10-AS, and its downstream signaling pathway in the regulation of oxidative resistance in LSCC. Bioinformatics analysis revealed that heightened expression of HOXA10-AS was associated with the poor prognosis in LSCC patients, and N (6)-Methyladenosine (m6A) methyltransferase-like 3 (METTL3) was identified as a factor in promoting m6A modification of HOXA10-AS and further intensify its RNA stability. Mechanistically, HOXA10-AS was found to play as a competitive endogenous RNA (ceRNA) by sequestering miR-29 b-3p and preventing its downregulation of Integrin subunit alpha 6 (ITGA6), ultimately enhancing the oxidative resistance of tumor cells and promoting the malignant progression of LSCC. Furthermore, our research elucidated the mechanism by which ITGA6 accelerates Keap1 proteasomal degradation via enhancing TRIM25 expression, leading to increased Nrf2 stability and exacerbating its aberrant activation. Additionally, we demonstrated that ITGA6 enhances γ-secretase-mediated Notch signaling activation, ultimately promoting RBPJ-induced TRIM25 transcription. The current study provides the evidence supporting the effect of m6A modified HOXA10-AS and its downstream miR-29 b-3p/ITGA6 axis on regulating oxidative resistance and malignant progression in LSCC through the Notch and Keap1/Nrf2 pathways, and proposed that targeting this axis holds promise as a potential therapeutic approach for treating LSCC.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Liwei Chen
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yingli Xie
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Nan Ren
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Jianhui Li
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Xingyou Zhai
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Shikang Zheng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Kun Liu
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Cheng Wang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Qibing Qiu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Peng
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Wenjia Wang
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Jinjing Liu
- Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Qin Che
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Junda Fan
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| | - Mingbo Liu
- Department of Otolaryngology Head and Neck Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, PR China; Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
8
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
9
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
10
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:BST20230454. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
11
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
12
|
Xu H, Hu R, Zhao Z. DegronMD: Leveraging Evolutionary and Structural Features for Deciphering Protein-Targeted Degradation, Mutations, and Drug Response to Degrons. Mol Biol Evol 2023; 40:msad253. [PMID: 37992195 PMCID: PMC10701100 DOI: 10.1093/molbev/msad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Protein-targeted degradation is an emerging and promising therapeutic approach. The specificity of degradation and the maintenance of cellular homeostasis are determined by the interactions between E3 ubiquitin ligase and degradation signals, known as degrons. The human genome encodes over 600 E3 ligases; however, only a small number of targeted degron instances have been identified so far. In this study, we introduced DegronMD, an open knowledgebase designed for the investigation of degrons, their associated dysfunctional events, and drug responses. We revealed that degrons are evolutionarily conserved and tend to occur near the sites of protein translational modifications, particularly in the regions of disordered structure and higher solvent accessibility. Through pattern recognition and machine learning techniques, we constructed the degrome landscape across the human proteome, yielding over 18,000 new degrons for targeted protein degradation. Furthermore, dysfunction of degrons disrupts the degradation process and leads to the abnormal accumulation of proteins; this process is associated with various types of human cancers. Based on the estimated phenotypic changes induced by somatic mutations, we systematically quantified and assessed the impact of mutations on degron function in pan-cancers; these results helped to build a global mutational map on human degrome, including 89,318 actionable mutations that may induce the dysfunction of degrons and disrupt protein degradation pathways. Multiomics integrative analysis unveiled over 400 drug resistance events associated with the mutations in functional degrons. DegronMD, accessible at https://bioinfo.uth.edu/degronmd, is a useful resource to explore the biological mechanisms, infer protein degradation, and assist with drug discovery and design on degrons.
Collapse
Affiliation(s)
- Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Chan SC, Tung CW, Lin CW, Tung YS, Wu PM, Cheng PH, Chen CM, Yang SH. miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease. Free Radic Biol Med 2023; 209:292-300. [PMID: 37907121 DOI: 10.1016/j.freeradbiomed.2023.10.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by the accumulation of mutant Huntingtin protein (mHTT) and oxidative stress-induced neuronal damage. Based on previous reports, microRNA-196a (miR-196a) has emerged as a potential therapeutic target due to its neuroprotective effects in various neurodegenerative diseases. However, whether miR-196a functions through antioxidative effects is still unknown. In this study, we demonstrated that HD models, both in vitro and in vivo, exhibit elevated levels of reactive oxygen species (ROS) and increased neuronal death, and miR-196a mitigates ROS levels and reduces cell death in HD cells. Moreover, we elucidated that miR-196a facilitates the translocation of nuclear factor erythroid 2 (Nrf2) into the nucleus, enhancing the transcription of antioxidant genes, including heme oxygenase-1 (HO-1). We further identified ubiquitin-specific peptidase 15 (USP15), a direct target of miR-196a related to the Nrf2 pathway, and USP15 exacerbates mHTT aggregate formation while partially counteracting miR-196a-induced reductions in mHTT levels. Taken together, these findings shed light on the multifaceted role of miR-196a in HD, highlighting its potential as a therapeutic avenue for ameliorating oxidative stress and neurodegeneration in this debilitating disease.
Collapse
Affiliation(s)
- Siew Chin Chan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Wei Tung
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chia-Wei Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yun-Shiuan Tung
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Min Wu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
Liu B, Gao Y, Liu X, Lian Q, Li Y. Tripartite motif containing 59 mediates protective anti-oxidative effects in intestinal injury through Nrf2 signaling. Int Immunopharmacol 2023; 124:110896. [PMID: 37729796 DOI: 10.1016/j.intimp.2023.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Elevated evidence has reported the important role of oxidative stress injury and inflammatory response in the progression of colitis. Tumor Suppressor TSBF1, TRIM59, is a ubiquitin E3 ligase and mediates immune response. However, the underlying molecular function of TRIM59 on regulation of colitis is still not understood. In the current study, we identify the TRIM59 as a critical and novel endogenous suppressor of kelch-like ECH-associated protein 1 (KEAP1), and we also determine that TRIM59 is a KEAP1-interacting partner protein that catalyses its ubiquitination and degradation in intestinal epithelial cells (IEC). Moreover, IEC-specific loss of the Trim59 disrupts colon metabolic homeostasis, accompanied by intestinal oxidative stress injury, elevated endogenous reactive oxygen species (ROS) production and pro-inflammatory cytokines release, significantly promotes acute or chronic colitis progression. Conversely, transgenic mice with Trim59 overexpression by adeno-associated virus (AAV)-induced Trim59 gene therapeutics mitigates colitis in acute or chronic colitis rodent models and in vitro experiments. Mechanistically, in response to onset of colitis, TRIM59 directly interacts with KEAP1 and promotes ubiquitin-proteasome degradation, thus results in NRF2 activation and its downstream cascade anti-oxidative stress-related pathway activation, which facilitates anti-oxidant defense and reduces tissue damage. All the findings elucidated the potential role of TRIM59 in colitis progression by mediating KEAP1 deactivation and degradation, and could be considered as a therapeutic target for the treatment of such disease.
Collapse
Affiliation(s)
- Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Qin Lian
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yanliang Li
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
15
|
Zhang T, Wang L, Chen L. Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15. Cell Biol Toxicol 2023; 39:1-16. [PMID: 35478295 DOI: 10.1007/s10565-022-09702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The current study tries to discuss the functional role of microRNA-497 (miR-497) in diabetic neuropathic pain (DNP) and the related downstream mechanism. Bioinformatics analysis was implemented for the identification of differentially expressed miRNAs and genes. DNP was simulated in rats through intraperitoneal injection of streptozotocin. The expression patterns of miR-497, USP15, NRF2, and G6PD were then determined. The binding of miR-497 and USP15 was confirmed. Using gain- and loss-of-function assays, we analyzed the critical role of miR-497-mediated USP15 in DNP through the NRF2/G6PD axis. Downregulated miR-497 and elevated USP15 were observed in the dorsal root ganglion neurons isolated from spinal cord tissues of STZ-induced DNP rats. miR-497 could alleviate DNP, which was associated with suppression of USP15, a confirmed target of miR-497. USP15 enhanced the degradation and ubiquitination of NRF2 and induced G6PD expression, leading to the progression of DNP. We highlighted the crucial role of miR-497-mediated USP15 in DNP through the NRF2/G6PD axis. 1. miR-497 is downregulated in DRG neurons from spinal cord tissues of STZ-induced DNP rats. 2. miR-497 inhibits the expression of USP15, thereby alleviating STZ-induced DNP in rats. 3. USP15 promotes ubiquitination and degradation of NRF2, reducing the expression of G6PD. 4. miR-497 alleviates STZ-induced DNP in rats by regulating the USP15/NRF2/G6PD axis.
Collapse
Affiliation(s)
- Tonghui Zhang
- Emergency Department, Liaoning Health Industry Group Fukuang General Hospital, Fushun, 113008, People's Republic of China
| | - Ling Wang
- Department of Endocrinology, Liaoning Health Industry Group Fukuang General Hospital, Fushun, 113008, People's Republic of China
| | - Ling Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section 5, Renmin Street, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
16
|
Baek JH, Kim MS, Jung HR, Hwang MS, Lee CH, Han DH, Lee YH, Yi EC, Im SS, Hwang I, Kim K, Chung JY, Chun KH. Ablation of the deubiquitinase USP15 ameliorates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Exp Mol Med 2023; 55:1520-1530. [PMID: 37394587 PMCID: PMC10394025 DOI: 10.1038/s12276-023-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs due to the accumulation of fat in the liver, leading to fatal liver diseases such as nonalcoholic steatohepatitis (NASH) and cirrhosis. Elucidation of the molecular mechanisms underlying NAFLD is critical for its prevention and therapy. Here, we observed that deubiquitinase USP15 expression was upregulated in the livers of mice fed a high-fat diet (HFD) and liver biopsies of patients with NAFLD or NASH. USP15 interacts with lipid-accumulating proteins such as FABPs and perilipins to reduce ubiquitination and increase their protein stability. Furthermore, the severity of NAFLD induced by an HFD and NASH induced by a fructose/palmitate/cholesterol/trans-fat (FPC) diet was significantly ameliorated in hepatocyte-specific USP15 knockout mice. Thus, our findings reveal an unrecognized function of USP15 in the lipid accumulation of livers, which exacerbates NAFLD to NASH by overriding nutrients and inducing inflammation. Therefore, targeting USP15 can be used in the prevention and treatment of NAFLD and NASH.
Collapse
Affiliation(s)
- Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, South Korea
| | - Min-Seon Hwang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan-Ho Lee
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, South Korea
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
17
|
Chen W, Ni D, Zhang H, Li X, Jiang Y, Wu J, Gu Y, Gao M, Shi W, Song J, Shi W. Over-expression of USP15/MMP3 predict poor prognosis and promote growth, migration in non-small cell lung cancer cells. Cancer Genet 2023; 272-273:9-15. [PMID: 36640492 DOI: 10.1016/j.cancergen.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Aberrant ubiquitin modifications caused by an imbalance in the activities of ubiquitinases and de-ubiquitinases are emerging as important mechanisms underlying non-small cell lung cancer (NSCLC) progression. The deubiquitinating enzyme ubiquitin-specific peptidase 15 (USP15) has been identified as an important factor in oncogenesis and a potential therapeutic target. However, the expression profile and function of USP15 in NSCLC remain elusive. In the present study, we investigated the expression pattern and the potential biological functions of USP15 in NSCLC both in cells and animal models. Our data revealed that USP15 was highly expressed in NSCLC tissues and cells compared with normal counterpart. We subsequently knocked down USP15 expression in two NSCLC cell lines, which significantly suppressed cell proliferation. In addition, knocking down USP15 expression reduced NSCLC cell migration and invasion according to the results from Matrigel-Transwell analysis. NSCLC animal model results showed that USP15 knockdown also reduced NSCLC size. Biochemical analysis revealed that USP15 knockdown inhibited matrix metalloproteinase (MMP)3 and MMP9 expression. Furthermore, high levels of USP15 and MMP3 expression were associated with poor prognosis in NSCLC. In conclusion, the results from the present study suggest that the high expression of USP15 promotes NSCLC tumorigenesis. Therefore, it is proposed that USP15 and MMPs may represent novel biomarkers for NSCLC progression and prognosis.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China; Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Daguang Ni
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Hailin Zhang
- Department of Pneumology, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Youqin Jiang
- Department of Radiotherapy, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Yan Gu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Mingcheng Gao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Woda Shi
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224002, China.
| | - Wenyu Shi
- Medical School of Nantong University, Nantong, 226007, China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
18
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
19
|
Chauhan W, Zennadi R. Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants (Basel) 2023; 12:antiox12030740. [PMID: 36978988 PMCID: PMC10045360 DOI: 10.3390/antiox12030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic inheritable disease characterized by severe anemia, increased hemolysis, and recurrent, painful vaso-occlusive crises due to the polymerization of hemoglobin S (HbS)-generated oxidative stress. Up until now, only four drugs are approved for SCD in the US. However, each of these drugs affects only a limited array of SCD pathologies. Importantly, curative therapies, such as gene therapy, or hematopoietic stem cell transplantation are not available for every patient because of their high costs, availability of donor matching, and their serious adverse effects. Therefore, there is an unmet medical need for novel therapeutic strategies that target broader SCD sequelae. SCD phenotypic severity can be alleviated by increasing fetal hemoglobin (HbF) expression. This results in the inhibition of HbS polymerization and thus sickling, and a reduction in oxidative stress. The efficacy of HbF is due to its ability to dilute HbS levels below the threshold required for polymerization and to influence HbS polymer stability in RBCs. Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)-complex signaling is one of the most important cytoprotective signaling controlling oxidative stress. Nrf2 is present in most organs and, after dissociation from Keap1, it accumulates in the cytoplasm, then translocates to the nucleus where it binds to the antioxidant response element (ARE) sequences and increases the expression of various cytoprotective antioxidant genes. Keeping this in mind, various researchers have proposed a role of multiple agents, more importantly tert-Butylhydroquinone (tBHQ), curcumin, etc., (having electrophilic properties) in inhibiting keap1 activity, so that Nrf2 can translocate to the nucleus to activate the gamma globin gene, thus maintaining alpha-hemoglobin-stabilizing protein (AHSP) and HbF levels. This leads to reduced oxidative stress, consequently minimizing SCD-associated complications. In this review, we will discuss the role of the Keap-1–Nrf2 complex in hemoglobinopathies, especially in SCD, and how this complex might represent a better target for more effective treatment options.
Collapse
|
20
|
Huang S, Li J, Wu S, Zheng Z, Wang C, Li H, Zhao L, Zhang X, Huang H, Huang C, Xie Q. C4orf19 inhibits colorectal cancer cell proliferation by competitively binding to Keap1 with TRIM25 via the USP17/Elk-1/CDK6 axis. Oncogene 2023; 42:1333-1346. [PMID: 36882524 DOI: 10.1038/s41388-023-02656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract, and has been attracted a great deal attention and extensive investigation due to its high morbidity and mortality rates. The C4orf19 gene encodes a protein with uncharacterized function. Our preliminary exploration of the TCGA database indicated that C4orf19 is markedly downregulated in CRC tissues in comparison to that observed in normal colonic tissues, suggesting its potential association with CRC behaviors. Further studies showed a significant positive correlation between C4orf19 expression levels and CRC patient prognosis. Ectopic expression of C4orf19 inhibited the growth of CRC cells in vitro and tumorigenic ability in vivo. Mechanistic studies showed that C4orf19 binds to Keap1 at near the Lys615, which prevents the ubiquitination of Keap1 by TRIM25, thus protecting the Keap1 protein from degradation. The accumulated Keap1 results in USP17 degradation and in turn leading to the degradation of Elk-1, further attenuates its regulated CDK6 mRNA transcription and protein expression, as well as its mediated proliferation of CRC cells. Collectively, the present studies characterize function of C4orf19 as a tumor suppressor for CRC cell proliferation by targeting Keap1/USP17/Elk-1/CDK6 axis.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jizhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
21
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
22
|
Wang M, Li B, Liu Y, Zhang M, Huang C, Cai T, Jia Y, Huang X, Ke H, Liu S, Yang S. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14:1107507. [PMID: 36814500 PMCID: PMC9939528 DOI: 10.3389/fphar.2023.1107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Sleep disorders are common clinical psychosomatic disorders that can co-exist with a variety of conditions. In humans and animal models, sleep deprivation (SD) is closely related with gastrointestinal diseases. Shu-Xie Decoction (SX) is a traditional Chinese medicine (TCM) with anti-nociceptive, anti-inflammatory, and antidepressant properties. SX is effective in the clinic for treating patients with abnormal sleep and/or gastrointestinal disorders, but the underlying mechanisms are not known. This study investigated the mechanisms by which SX alleviates SD-induced colon injury in vivo. Methods: C57BL/6 mice were placed on an automated sleep deprivation system for 72 h to generate an acute sleep deprivation (ASD) model, and low-dose SX (SXL), high-dose SX (SXH), or S-zopiclone (S-z) as a positive control using the oral gavage were given during the whole ASD-induced period for one time each day. The colon length was measured and the colon morphology was visualized using hematoxylin and eosin (H&E) staining. ROS and the redox biomarkers include reduced glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected. Quantitative real-time PCR (qRT-PCR), molecular docking, immunofluorescence and western blotting assays were performed to detect the antioxidant signaling pathways. Results: ASD significantly increased FBG levels, decreased colon length, moderately increased the infiltration of inflammatory cells in the colon mucosa, altered the colon mucosal structure, increased the levels of ROS, GSH, MDA, and SOD activity compared with the controls. These adverse effects were significantly alleviated by SX treatment. ASD induced nuclear translocation of NRF2 in the colon mucosal cells and increased the expression levels of p62, NQO1, and HO1 transcripts and proteins, but these effects were reversed by SX treatment. Conclusion: SX decoction ameliorated ASD-induced oxidative stress and colon injury by suppressing the p62/KEAP1/NRF2/HO1/NQO1 signaling pathway. In conclusion, combined clinical experience, SX may be a promising drug for sleep disorder combined with colitis.
Collapse
Affiliation(s)
- Mengyuan Wang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bo Li
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Yijiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengting Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Teng Cai
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yibing Jia
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Huang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongfei Ke
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Shuyu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| |
Collapse
|
23
|
Meng Y, Sun H, Li Y, Zhao S, Su J, Zeng F, Deng G, Chen X. Targeting Ferroptosis by Ubiquitin System Enzymes: A Potential Therapeutic Strategy in Cancer. Int J Biol Sci 2022; 18:5475-5488. [PMID: 36147464 PMCID: PMC9461661 DOI: 10.7150/ijbs.73790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by the excessive accumulation of iron-dependent lipid peroxidation. Therapy-resistant tumor cells, particularly those in the mesenchymal-like state and prone to metastasis, are highly susceptible to ferroptosis, suggesting that induction of ferroptosis in tumor cells is a promising strategy for cancer therapy. Although ferroptosis is regulated at various levels, ubiquitination is key to post-translational regulation of ferroptotic cell death. E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are the most remarkable ubiquitin system enzymes, whose dysregulation accounts for the progression of multiple cancers. E3s are involved in the attachment of ubiquitin to substrates for their degradation, and this process is reversed by DUBs. Accumulating evidence has highlighted the important role of ubiquitin system enzymes in regulating the sensitivity of ferroptosis. Herein, we will portray the regulatory networks of ferroptosis mediated by E3s or DUBs and discuss opportunities and challenges for incorporating this regulation into cancer therapy.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyan Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yayun Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Furong Zeng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Activation of the membrane-bound Nrf1 transcription factor by USP19, a ubiquitin-specific protease C-terminally anchored in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119299. [PMID: 35613680 DOI: 10.1016/j.bbamcr.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
The membrane-bound transcription factor Nrf1 (encoded by Nfe2l1) is activated by sensing glucose deprivation, cholesterol abundance, proteasomal inhibition and oxidative stress and then mediates distinct signaling responses to maintain cellular homeostasis. Herein, we found that Nrf1 stability and transactivity are both enhanced by USP19, a ubiquitin-specific protease tail-anchored in the endoplasmic reticulum (ER) through its C-terminal transmembrane domain. Further experiments revealed that USP19 directly interacts with Nrf1 in proximity to the ER and topologically acts as a deubiquitinating enzyme to remove ubiquitin moieties from this protein, which allow it to circumvent potential proteasomal degradation. This USP19-mediated effect takes place only after Nrf1 is retro-translocated by p97 out of the ER membrane to dislocate the cytoplasmic side. Conversely, knockout of USP19 causes significant decreases in the abundance of Nrf1 and the entrance of its active isoform into the nucleus, which result in the downregulation of its target proteasomal subunits and a modest reduction in USP19-/--derived tumor growth in xenograft mice when compared with wild-type controls. Altogether, these results demonstrate that USP19 serves as a novel mechanistic modulator of Nrf1, but not Nrf2, thereby enabling Nrf1 to be rescued from the putative ubiquitin-directed ER-associated degradation pathway. In turn, our additional experimental evidence has revealed that transcriptional expression of endogenous USP19 and its promoter-driven reporter genes is differentially regulated by Nrf2, as well by Nrf1, at distinct layers within a complex hierarchical regulatory network.
Collapse
|
25
|
Jiang Z, Yang X, Han Y, Li J, Hu C, Liu C, Xiao W. Sarmentosin promotes USP17 and regulates Nrf2-mediated mitophagy and cellular oxidative stress to alleviate APAP-induced acute liver failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154337. [PMID: 35849971 DOI: 10.1016/j.phymed.2022.154337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND An overdose of acetaminophen (APAP), the main cause of acute liver failure (ALF), induces oxidative stress that ultimately causes mitochondrial impairment and hepatotoxicity. The nuclear factor erythroid 2-related factor 2 (Nrf2) was widely recognized as an anti-oxidative stress mechanism. The present study was aimed at investigating whether sarmentosin, extract from traditional Chinese medicine, protects the liver against APAP-induced injury via activating Nrf2 and subsequently decreasing oxidative stress. METHODS Male ICR mice were treated with sarmentosin oral administration for 1 week and injected APAP (300 mg/kg. i.p.) for acute liver injury model. The liver and serum of mice for histological and biochemistry analysis. AML12 and LO2 cells were used in vitro assays. RESULTS We found that sarmentosin moderately increased accumulation of Nrf2 via upregulating USP17-mediated ubiquitin inhibition at the early stage of hepatocytes damage. The Nrf2 separating from bonding protein Keap1 translocated into nucleus and activated downstream gene of antioxidants. Mitophagy, a unique autophagy can remove Reactive Oxygen Species (ROS) damaged mitochondria, was elevated in this progress to maintain mitochondria function and ROS homeostasis. CONCLUSION In summary, our research revealed that sarmentosin could alleviate APAP-induced liver acute injury through USP17-mediated Nrf2 overexpression and PINK1-dependent mitophagy.
Collapse
Affiliation(s)
- Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jie Li
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chen Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chundi Liu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wei Xiao
- Economic and Technological Development Zone, Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangning Industrial City, Lianyungang Jiangsu 222001, China.
| |
Collapse
|
26
|
Proanthocyanidins Activate Nrf2/ARE Signaling Pathway in Intestinal Epithelial Cells by Inhibiting the Ubiquitinated Degradation of Nrf2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8562795. [PMID: 36033575 PMCID: PMC9410805 DOI: 10.1155/2022/8562795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
Nrf2 plays a key role in the antioxidant system, and many antioxidants can activate the Nrf2/ARE signaling pathway and alleviate oxidative stress. However, the underlying mechanisms of antioxidants, such as proanthocyanidin- (PC-) induced Nrf2 activation, remain poorly understood. In this study, PC was used on MODE-K cells at different concentrations (0, 1, 2.5, and 5 μg/mL) and different times (0, 3, 6, 12, and 24 h); then, immunoprecipitation, immunofluorescence, and Western blotting were performed to test Nrf2, Bach1, Keap1, HO-1, and NQO1 protein expressions in MODE-K cells. Results showed that PC increased Nrf2, HO-1, and NQO1 protein expressions, decreased Keap1 and Bach1 protein expressions, and enhanced ARE gene activity. PC also decreased the ubiquitinated degradation of the Nrf2 protein, increased Nrf2 protein stability, and increased Nrf2 protein expression by inhibiting Keap1-dependent Nrf2 protein degradation, promoted Nrf2 entry into the nucleus, competed with Bach1, and activated ARE elements, which in turn initiated the Nrf2/ARE signaling pathway. Thus, we conclude that PC activates the Nrf2/ARE signaling pathway in intestinal epithelial cells by inhibiting the ubiquitinated degradation of Nrf2, increasing Nrf2 protein stability and expression, and then regulating key antioxidant enzymes such as HO-1 and NQO1 to initiate cytoprotective effects.
Collapse
|
27
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
28
|
Ge F, Li Y, Yuan T, Wu Y, He Q, Yang B, Zhu H. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today 2022; 27:2603-2613. [DOI: 10.1016/j.drudis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
29
|
Liu W, Zhao Y, Wang G, Feng S, Ge X, Ye W, Wang Z, Zhu Y, Cai W, Bai J, Zhou X. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol 2022; 53:102344. [PMID: 35636015 PMCID: PMC9144049 DOI: 10.1016/j.redox.2022.102344] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor that mainly occurs in adolescents. It is accompanied by a high rate of lung metastasis, and high mortality. Recent studies have suggested the important roles of tripartite motif-containing (TRIM) family proteins in regulating various substrates and signaling pathways in different tumors. However, the detailed functional role of TRIM family proteins in the progression of OS is still unknown and requires further investigations. In this study, we found that tripartite motif-containing 22 (TRIM22) was downregulated in OS tissues and was hence associated with better prognosis. In vitro and in vivo functional analysis demonstrated that TRIM22 inhibits proliferation and metastasis of OS cells. Nuclear factor erythroid 2-related factor 2 (NRF2), a redox regulator, was identified as a novel target for TRIM22. TRIM22 interacts with and accelerates the degradation of NRF2 by inducing its ubiquitination dependent on its E3 ligase activity but independent of Kelch-like ECH-associated protein 1 (KEAP1). Further, a series of gain- and loss-of-function experiments showed that knockdown or overexpression of NRF2 reversed the functions of knockdown or overexpression of TRIM22 in OS. Mechanistically, TRIM22 inhibited OS progression through NRF2-mediated intracellular reactive oxygen species (ROS) imbalance. ROS production was significantly promoted and mitochondrial potential was remarkably inhibited when overexpressing TRIM22, thus activating AMPK/mTOR signaling. Moreover, TRIM22 was also found to inhibit Warburg effect in OS cells. Autophagy activation was found in OS cells which were overexpressed TRIM22, thus leading to autophagic cell death. Treatment with N-Acetylcysteine (NAC), a ROS scavenger or the autophagy inhibitor 3-Methyladenine (3-MA) abolished the decreased malignant phenotypes in TRIM22 overexpressing OS cells. In conclusion, our study indicated that TRIM22 inhibits OS progression by promoting proteasomal degradation of NRF2 independent of KEAP1, thereby activating ROS/AMPK/mTOR/Autophagy signaling that leads to autophagic cell death in OS. Therefore, our findings indicated that targeting TRIM22/NRF2 could be a promising therapeutic target for treating OS. TRIM22 inhibits proliferation and metastasis of OS cells. TRIM22 interacts with and accelerates NRF2 degradation by inducing its ubiquitination dependent on E3 ligase activity. TRIM22 inhibited OS progression through NRF2-mediated intracellular ROS imbalance. TRIM22 inhibits OS progression by promoting NRF2 degradation, thereby activating ROS/AMPK/mTOR/Autophagy signaling.
Collapse
|
30
|
Xu E, Yin C, Yi X, Liu Y. Inhibition of USP15 ameliorates high-glucose-induced oxidative stress and inflammatory injury in podocytes through regulation of the Keap1/Nrf2 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:765-775. [PMID: 34931430 DOI: 10.1002/tox.23441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is implicated in the pathogenesis of numerous diseases. However, whether USP15 plays a role in diabetic nephropathy remains undetermined. This project was designed to determine the potential role of USP15 in mediating high glucose (HG)-induced podocyte injury, a key event in the pathogenesis of diabetic nephropathy. We found that USP15 levels were elevated in podocytes after HG stimulation. Inhibition of USP15 led to decreases in HG-evoked apoptosis, oxidative stress, and inflammation in podocytes. Further investigation showed that inhibition of USP15 enhanced the activation of NF-E2-related factor 2 (Nrf2) and expression of Nrf2 target genes in HG-simulated podocytes. Moreover, depletion of Kelch-like ECH-associated protein 1 (Keap1) diminished the regulatory effect of USP15 inhibition on Nrf2 activation. In addition, Nrf2 suppression reversed USP15-inhibition-induced protective effects in HG-injured podocytes. Taken together, these data indicate that USP15 inhibition protects podocytes from HG-induced injury by enhancing Nrf2 activation via Keap1.
Collapse
Affiliation(s)
- Erdi Xu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqing Yi
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Kang JS, Nam LB, Yoo OK, Lee K, Suh YA, Kim D, Kim WK, Lim CY, Lee H, Keum YS. BAP1 Downregulates NRF2 Target Genes and Exerts Anti-Tumorigenic Effects by Deubiquitinating KEAP1 in Lung Adenocarcinoma. Antioxidants (Basel) 2022; 11:antiox11010114. [PMID: 35052618 PMCID: PMC8773298 DOI: 10.3390/antiox11010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/30/2022] Open
Abstract
KELCH-ECH-associated protein 1 (KEAP1) is an adaptor protein of Cullin 3 (CUL3) E3 ubiquitin ligase that targets a redox sensitive transcription factor, NF-E2-related factor 2 (NRF2). BRCA1-associated protein 1 (BAP1) is a tumor suppressor and deubiquitinase whose mutations increase the risk of several types of familial cancers. In the present study, we have identified that BAP1 deubiquitinates KEAP1 by binding to the BTB domain. Lentiviral transduction of BAP1 decreased the expression of NRF2 target genes, suppressed the migration and invasion, and sensitized cisplatin-induced apoptosis in human lung adenocarcinoma (LUAD) A549 cells. Examination of the lung tissues in KrasG12D/+ mice demonstrated that the level of Bap1 and Keap1 mRNAs progressively decreases during lung tumor progression, and it is correlated with NRF2 activation and the inhibition of oxidative stress. Supporting this observation, lentiviral transduction of BAP1 decreased the growth of A549 xenografts in athymic nude mice. Transcriptome analysis of human lung tissues showed that the levels of Bap1 mRNA are significantly higher in normal samples than LUAD samples. Moreover, the expression of Bap1 mRNA is associated with a better survival of LUAD patients. Together, our study demonstrates that KEAP1 deubiquitination by BAP1 is novel tumor suppressive mechanism of LUAD.
Collapse
Affiliation(s)
- Jong-Su Kang
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Le Ba Nam
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Ok-Kyung Yoo
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Young-Ah Suh
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Gyeonggi-do, Korea;
| | - Dalyong Kim
- Department of Internal Medicine, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea; (D.K.); (W.K.K.)
| | - Woo Kyung Kim
- Department of Internal Medicine, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea; (D.K.); (W.K.K.)
| | - Chi-Yeon Lim
- Department of Biostatistics, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea;
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Gyeongsangnam-do, Korea;
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
- Correspondence: ; Tel.: +82-31-961-5215; Fax: +82-31-961-52
| |
Collapse
|
32
|
Niederkorn M, Ishikawa C, M. Hueneman K, Bartram J, Stepanchick E, R. Bennett J, E. Culver-Cochran A, Bolanos LC, Uible E, Choi K, Wunderlich M, Perentesis JP, M. Chlon T, Filippi MD, Starczynowski DT. The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia. Leukemia 2022; 36:438-451. [PMID: 34465865 PMCID: PMC8807387 DOI: 10.1038/s41375-021-01394-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is a deubiquitinating enzyme implicated in critical cellular and oncogenic processes. We report that USP15 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) as compared to normal hematopoietic progenitor cells. This high expression of USP15 in AML correlates with KEAP1 protein and suppression of NRF2. Knockdown or deletion of USP15 in human and mouse AML models significantly impairs leukemic progenitor function and viability and de-represses an antioxidant response through the KEAP1-NRF2 axis. Inhibition of USP15 and subsequent activation of NRF2 leads to redox perturbations in AML cells, coincident with impaired leukemic cell function. In contrast, USP15 is dispensable for human and mouse normal hematopoietic cells in vitro and in vivo. A preclinical small-molecule inhibitor of USP15 induced the KEAP1-NRF2 axis and impaired AML cell function, suggesting that targeting USP15 catalytic function can suppress AML. Based on these findings, we report that USP15 drives AML cell function, in part, by suppressing a critical oxidative stress sensor mechanism and permitting an aberrant redox state. Furthermore, we postulate that inhibition of USP15 activity with small molecule inhibitors will selectively impair leukemic progenitor cells by re-engaging homeostatic redox responses while sparing normal hematopoiesis.
Collapse
Affiliation(s)
- Madeline Niederkorn
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Chiharu Ishikawa
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kathleen M. Hueneman
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - James Bartram
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily Stepanchick
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Joshua R. Bennett
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ashley E. Culver-Cochran
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Lyndsey C. Bolanos
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Emma Uible
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Kwangmin Choi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Mark Wunderlich
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - John P. Perentesis
- grid.239573.90000 0000 9025 8099Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Timothy M. Chlon
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Marie-Dominique Filippi
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel T. Starczynowski
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
33
|
Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, Ji C, Wang Z, Bai J, Fan J, Yin G, Cai W. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res 2021; 71:e12769. [PMID: 34562326 DOI: 10.1111/jpi.12769] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) is a devastating trauma that leads to irreversible motor and sensory dysfunction and is, so far, without effective treatment. Recently, however, nano-sized extracellular vesicles derived from preconditioned mesenchymal stem cells (MSCs) have shown great promise in treating various diseases, including SCI. In this study, we investigated whether extracellular vesicles (MEVs) derived from MSCs pretreated with melatonin (MT), which is well recognized to be useful in treating diseases, including Alzheimer's disease, non-small cell lung cancer, acute ischemia-reperfusion liver injury, chronic kidney disease, and SCI, are better able to promote functional recovery in mice after SCI than extracellular vesicles derived from MSCs without preconditioning (EVs). MEVs were found to facilitate motor behavioral recovery more than EVs and to increase microglia/macrophages polarization from M1-like to M2-like in mice. Experiments in BV2 microglia and RAW264.7 macrophages confirmed that MEVs facilitate M2-like polarization and also showed that they reduce the production of reactive oxygen species (ROS) and regulate mitochondrial function. Proteomics analysis revealed that ubiquitin-specific protease 29 (USP29) was markedly increased in MEVs, and knockdown of USP29 in MEVs (shUSP29-MEVs) abolished MEVs-mediated benefits in vitro and in vivo. We then showed that USP29 interacts with, deubiquitinates and therefore stabilizes nuclear factor-like 2 (NRF2), thereby regulating microglia/macrophages polarization. In NRF2 knockout mice, MEVs failed to promote functional recovery and M2-like microglia/macrophages polarization. We also showed that MT reduced global N6-methyladenosine (m6 A) modification and levels of the m6 A "writer" methyltransferase-like 3 (METTL3). The stability of USP29 mRNA in MSCs was enhanced by treatment with MT, but inhibited by overexpression of METTL3. This study describes a very promising extracellular vesicle-based approach for treating SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct Target Ther 2021; 6:408. [PMID: 34836940 PMCID: PMC8626493 DOI: 10.1038/s41392-021-00787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection is the risk factors for nasopharyngeal carcinoma and cervical carcinoma, respectively. However, clinical analyses demonstrate that EBV or HPV is associated with improved response of patients, although underlying mechanism remains unclear. Here, we reported that the oncoproteins of DNA viruses, such as LMP1 of EBV and E7 of HPV, inhibit PERK activity in cancer cells via the interaction of the viral oncoproteins with PERK through a conserved motif. Inhibition of PERK led to increased level of reactive oxygen species (ROS) that promoted tumor and enhanced the efficacy of chemotherapy in vivo. Consistently, disruption of viral oncoprotein-PERK interactions attenuated tumor growth and chemotherapy in both cancer cells and tumor-bearing mouse models. Our findings uncovered a paradoxical effect of DNA tumor virus oncoproteins on tumors and highlighted that targeting PERK might be an attractive strategy for the treatment of NPC and cervical carcinoma.
Collapse
|
35
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
36
|
Zhang L, Gao X, Qin Z, Shi X, Xu K, Wang S, Tang M, Wang W, Gao S, Zuo L, Zhang L, Zhang W. USP15 participates in DBP-induced testicular oxidative stress injury through regulating the Keap1/Nrf2 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146898. [PMID: 34088152 DOI: 10.1016/j.scitotenv.2021.146898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Di-n-butylphthalate (DBP) has been listed as an environmental priority pollutant in China due to its distinct biotoxicity. Epidemiological studies have shown that exposure to DBP is closely related to a series of congenital and acquired defects in the male reproductive system. The oxidative stress injury caused by DBP plays an important role in these defects. Previous studies have demonstrated that the Keap1/Nrf2 antioxidative pathway plays a protective role in DBP-induced oxidative stress injury. However, the further molecular regulation mechanism of the activation of Nrf2 pathway remains unclear. Here, we demonstrate that DBP caused testicular oxidative stress injury and Nrf2 pathway was activated in response to the injury in vivo and in vitro. Moreover, we validated that reduced level of USP15 attenuates DBP-induced oxidative stress injury through restraining the ubiquitylation and degradation of Nrf2. Notably, USP15 is confirmed as a target of miR-135b-5p and miR-135b-5p mediated inhibition of USP15 is involved in the DBP-induced oxidative stress injury. Collectively, these findings indicated that decreased level of USP15 functions a significant protective effect on the oxidative stress injury of testis caused by DBP via regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Xian Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhiqiang Qin
- Department of Urology and Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Kai Xu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China.
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China.
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
37
|
The Multifaceted Roles of USP15 in Signal Transduction. Int J Mol Sci 2021; 22:ijms22094728. [PMID: 33946990 PMCID: PMC8125482 DOI: 10.3390/ijms22094728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination and deubiquitination are protein post-translational modification processes that have been recognized as crucial mediators of many complex cellular networks, including maintaining ubiquitin homeostasis, controlling protein stability, and regulating several signaling pathways. Therefore, some of the enzymes involved in ubiquitination and deubiquitination, particularly E3 ligases and deubiquitinases, have attracted attention for drug discovery. Here, we review recent findings on USP15, one of the deubiquitinases, which regulates diverse signaling pathways by deubiquitinating vital target proteins. Even though several basic previous studies have uncovered the versatile roles of USP15 in different signaling networks, those have not yet been systematically and specifically reviewed, which can provide important information about possible disease markers and clinical applications. This review will provide a comprehensive overview of our current understanding of the regulatory mechanisms of USP15 on different signaling pathways for which dynamic reverse ubiquitination is a key regulator.
Collapse
|
38
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|
39
|
Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, Hu T, Yu C, Jiang L, Liu J, Huang H. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis 2021; 12:329. [PMID: 33771975 PMCID: PMC7997968 DOI: 10.1038/s41419-021-03607-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.
Collapse
Affiliation(s)
- Xiaohong Xia
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuyi Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuning Liao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinchan He
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenlong Shao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tumei Hu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cuifu Yu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lili Jiang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
40
|
Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021; 10:antiox10040510. [PMID: 33805928 PMCID: PMC8064392 DOI: 10.3390/antiox10040510] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
- Correspondence:
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 11, 10125 Turin, Italy;
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| |
Collapse
|
41
|
TIFAB Regulates USP15-Mediated p53 Signaling during Stressed and Malignant Hematopoiesis. Cell Rep 2021; 30:2776-2790.e6. [PMID: 32101751 PMCID: PMC7384867 DOI: 10.1016/j.celrep.2020.01.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is implicated in myeloid malignancies with deletion of chromosome 5q. Employing a combination of proteomic and genetic approaches, we find that TIFAB regulates ubiquitin-specific peptidase 15 (USP15) ubiquitin hydrolase activity. Expression of TIFAB in hematopoietic stem/progenitor cells (HSPCs) permits USP15 signaling to substrates, including MDM2 and KEAP1, and mitigates p53 expression. Consequently, TIFAB-deficient HSPCs exhibit compromised USP15 signaling and are sensitized to hematopoietic stress by derepression of p53. In MLL-AF9 leukemia, deletion of TIFAB increases p53 signaling and correspondingly decreases leukemic cell function and development of leukemia. Restoring USP15 expression partially rescues the function of TIFAB-deficient MLL-AF9 cells. Conversely, elevated TIFAB represses p53, increases leukemic progenitor function, and correlates with MLL gene expression programs in leukemia patients. Our studies uncover a function of TIFAB as an effector of USP15 activity and rheostat of p53 signaling in stressed and malignant HSPCs. Niederkorn et al. identify TIFAB as a critical node in hematopoietic cells under stressed and oncogenic cell states. Their studies indicate that deregulation of the TIFAB-USP15 complex, as observed in del(5q) myelodysplasia or MLL-rearranged leukemia, modulates p53 activity and has critical functional consequences for stressed and malignant hematopoietic cells.
Collapse
|
42
|
Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 2021; 40:1706-1720. [PMID: 33531626 DOI: 10.1038/s41388-021-01660-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a key role in cancer progression and is tightly regulated by the proteasome pathway. E3 ligases that mediate NRF2 ubiquitination have been widely reported, but the mechanism of NRF2 deubiquitination remains largely unclear. Here, we identified ubiquitin-specific-processing protease 11 (USP11) in NRF2 complexes and confirmed an interaction between these two proteins. We further found that USP11 deubiquitinates NRF2; this modification stabilizes NRF2. Functionally, USP11 depletion contributes to the suppression of cell proliferation and induction of ferroptotic cell death due to ROS-mediated stress, which can be largely abrogated by overexpression of NRF2. Finally, immunohistochemical staining of USP11 and NRF2 was performed using a lung tissue microarray, which revealed that USP11 is highly expressed in patients with NSCLC and positively correlated with NRF2 expression. Together, USP11 stabilizes NRF2 and is thus an important player in cell proliferation and ferroptosis.
Collapse
Affiliation(s)
- Chunjie Meng
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Delin Chen
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jianyuan Luo
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
43
|
Krämer L, Groh C, Herrmann JM. The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 2020; 595:1223-1238. [PMID: 33249599 DOI: 10.1002/1873-3468.14010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lena Krämer
- Cell Biology, University of Kaiserslautern, Germany
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, Germany
| | | |
Collapse
|
44
|
Niederkorn M, Agarwal P, Starczynowski DT. TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 2020; 90:18-29. [PMID: 32910997 DOI: 10.1016/j.exphem.2020.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB. TIFA and TIFAB are important modifiers of the innate immune signaling through their regulation of TRAF proteins. Recent studies have also revealed distinct roles for TIFA and TIFAB in the context of immune cell function, chronic inflammation, hematopoiesis, and hematologic disorders. Collectively, these studies indicate the important role of TIFA- and TIFAB-dependent signaling in hematopoietic cells and their dysregulation in several human diseases. In this review, we summarize the molecular mechanisms and biological role of these FHA-domain homologues, placing them into the context of human disease.
Collapse
Affiliation(s)
- Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
45
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
46
|
Sun B, Wang X, Liu X, Wang L, Ren F, Wang X, Leng X. Hippuric Acid Promotes Renal Fibrosis by Disrupting Redox Homeostasis via Facilitation of NRF2-KEAP1-CUL3 Interactions in Chronic Kidney Disease. Antioxidants (Basel) 2020; 9:antiox9090783. [PMID: 32854194 PMCID: PMC7555723 DOI: 10.3390/antiox9090783] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the accumulation of protein-bound uremic toxins (PBUTs), which play a pathophysiological role in renal fibrosis (a common pathological process resulting in CKD progression). Accumulation of the PBUT hippuric acid (HA) is positively correlated with disease progression in CKD patients, suggesting that HA may promote renal fibrosis. Oxidative stress is the most important factor affecting PBUTs nephrotoxicity. Herein, we assessed the ability of HA to promote kidney fibrosis by disrupting redox homeostasis. In HK-2 cells, HA increased fibrosis-related gene expression, extracellular matrix imbalance, and oxidative stress. Additionally, reactive oxygen species (ROS)-mediated TGFβ/SMAD signaling contributed to HA-induced fibrotic responses. HA disrupted antioxidant networks by decreasing the levels of nuclear factor erythroid 2-related factor 2 (NRF2), leading to ROS accumulation and fibrotic responses, as evidenced by NRF2 activation and knockdown. Moreover, NRF2 levels were reduced by NRF2 ubiquitination, which was regulated via increased interactions of Kelch-like ECH-associated protein 1 with Cullin 3 and NRF2. Finally, renal fibrosis and redox imbalance promoted by HA were confirmed in rats. Importantly, sulforaphane (NRF2 activator) reversed HA-promoted renal fibrosis. Thus, HA promotes renal fibrosis in CKD by disrupting NRF2-driven antioxidant system, indicating that NRF2 is a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Bowen Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Longjiao Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Correspondence: (X.W.); (X.L.); Tel.: +86-10-6273-8589 (X.W.); +86-10-6273-7761 (X.L.)
| | - Xiaojing Leng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (X.W.); (X.L.); Tel.: +86-10-6273-8589 (X.W.); +86-10-6273-7761 (X.L.)
| |
Collapse
|
47
|
The COP9 Signalosome: A Multi-DUB Complex. Biomolecules 2020; 10:biom10071082. [PMID: 32708147 PMCID: PMC7407660 DOI: 10.3390/biom10071082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1β-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation.
Collapse
|
48
|
Zhao Y, Huang X, Zhang Z, Zhang Y, Zhang G, Zan T, Li Q. USP15 Enhances Re-epithelialization Through Deubiquitinating EIF4A1 During Cutaneous Wound Repair. Front Cell Dev Biol 2020; 8:529. [PMID: 32671073 PMCID: PMC7332549 DOI: 10.3389/fcell.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Re-epithelialization is a fundamental process in wound healing that involves various cytokines and cells during cutaneous barrier reconstruction. Ubiquitin-specific peptidase 15 (USP15), an important member of the deubiquitinating enzymes (DUBs), removes ubiquitin chains from target proteins and maintains protein stability. However, the dynamic role of USP15 in epithelialization remains unclear. We aimed to investigate the regulatory function of USP15 in re-epithelialization. An excisional wound splinting model was established to evaluate the re-epithelialization rate in Usp15 knockout (KO) mice. Coimmunoprecipitation (Co-IP) and mass spectrum analyses were performed to identify USP15-interacting proteins. RNA-sequencing was performed for transcriptome analysis in keratinocytes and uploaded into NODE database (http://www.biosino.org/node, accession numbers: OEP000770 and OEP000763). First, a significant delay in epithelialization was observed in the Usp15 KO mice. Moreover, inhibition of cell migration and proliferation was observed in the USP15-silenced keratinocytes (HaCaTs). Moreover, we revealed for the first time that USP15 could interact with eukaryotic initiation factor 4A-1 (EIF4A1), thereby promoting translational efficacy in keratinocytes, which is essential for keratinocyte proliferation and migration. Conclusively, the USP15-EIF4A1 complex significantly accelerated re-epithelialization in wound healing. These observations helped elucidate the function and mechanisms of USP15 in modulating re-epithelialization in wound healing, providing a promising target for refractory wound treatment.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
50
|
Nordgren KKS, Wallace KB. Disruption of the Keap1/Nrf2-Antioxidant Response System After Chronic Doxorubicin Exposure In Vivo. Cardiovasc Toxicol 2020; 20:557-570. [DOI: 10.1007/s12012-020-09581-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|