1
|
Kim Y, Min S, Kim S, Lee S, Park YJ, Heo Y, Park S, Park T, Lee JH, Kang H, Ji JH, Cho H. PARP1-TRIM44-MRN loop dictates the response to PARP inhibitors. Nucleic Acids Res 2024; 52:11720-11737. [PMID: 39217466 PMCID: PMC11514498 DOI: 10.1093/nar/gkae756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seo Yun Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeon-Ji Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yungyeong Heo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sang Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, TX 78229-3000, USA
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen M, Schultz C. A Genetically Encoded Sensor for Real-Time Monitoring of Poly-ADP-Ribosylation Dynamics In Vitro and in Cells. ACS Sens 2024; 9:5246-5252. [PMID: 39351594 PMCID: PMC11520908 DOI: 10.1021/acssensors.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hydrolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for understanding the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semiquantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
Affiliation(s)
- Alix Thomas
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Kapil Upadhyaya
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Daniel Bejan
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Hayden Adoff
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Michael Cohen
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Carsten Schultz
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| |
Collapse
|
3
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Huang X, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. Mol Cell 2024; 84:3916-3931.e7. [PMID: 39383878 DOI: 10.1016/j.molcel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike Parp2-/- mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and Parp2EA/EA) succumb to Tp53- and Chk2-dependent erythropoietic failure in utero, mirroring Lig1-/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Dipika Gupta
- New York University School of Medicine, New York, NY 10016, USA
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Xiaoyu Huang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Strasbourg drug discovery and development Institute (IMS), UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Eli Rothenberg
- New York University School of Medicine, New York, NY 10016, USA
| | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Immunology & Microbiology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Hrychova K, Burdova K, Polackova Z, Giamaki D, Valtorta B, Brazina J, Krejcikova K, Kuttichova B, Caldecott K, Hanzlikova H. Dispensability of HPF1 for cellular removal of DNA single-strand breaks. Nucleic Acids Res 2024; 52:10986-10998. [PMID: 39162207 PMCID: PMC11472159 DOI: 10.1093/nar/gkae708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins. We found that HPF1 loss did not generally increase cellular sensitivity to agents that typically induce DNA single-strand breaks (SSBs) repaired by PARP1. SSBR kinetics in HPF1-deficient cells were largely unaffected, though its absence partially influenced the accumulation of SSB intermediates after exposure to specific genotoxins in certain cell lines, likely due to altered ADP-ribosylation of chromatin. Despite reduced serine mono-ADP-ribosylation, HPF1-deficient cells maintained robust poly-ADP-ribosylation at SSB sites, possibly reflecting PARP1 auto-poly-ADP-ribosylation at non-serine residues. Notably, poly-ADP-ribose chains were sufficient to recruit the DNA repair factor XRCC1, which may explain the relatively normal SSBR capacity in HPF1-deficient cells. These findings suggest that HPF1 and histone serine ADP-ribosylation are largely dispensable for PARP1-dependent SSBR in response to genotoxic stress, highlighting the complexity of mechanisms that maintain genomic stability and chromatin remodeling.
Collapse
Affiliation(s)
- Kristyna Hrychova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
| | - Kamila Burdova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Zuzana Polackova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Despoina Giamaki
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Beatrice Valtorta
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Katerina Krejcikova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Barbora Kuttichova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Hana Hanzlikova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
5
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
6
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Rack JGM, Voorneveld J, Longarini EJ, Wijngaarden S, Zhu K, Peters A, Sia JJ, Prokhorova E, Ahel D, Matić I, Filippov DV, Ahel I. Reversal of tyrosine-linked ADP-ribosylation by ARH3 and PARG. J Biol Chem 2024; 300:107838. [PMID: 39342999 DOI: 10.1016/j.jbc.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids, and a variety of small chemical compounds. The spatiotemporal signaling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Among these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment, and reversal are still lacking. Here we present a re-analysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched among ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of the (ADP-ribosyl)hydrolase ARH3. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.
Collapse
Affiliation(s)
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jia Jhing Sia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Matić
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Weijers SA, Vermeulen M, Kliza KW. The quest to identify ADP-ribosylation readers: methodological advances. Trends Biochem Sci 2024:S0968-0004(24)00205-6. [PMID: 39304454 DOI: 10.1016/j.tibs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
ADP-ribosylation regulates numerous fundamental cellular processes in health and disease. However, the limited availability of suitable tools and methods prevents the identification and characterization of certain components of the ADP-ribosylation signaling network and, consequently, efficient utilization of their biomedical potential. Identification of ADP-ribose (ADPr) readers has been particularly impeded by challenges associated with the development of ADPr-based enrichment probes. These difficulties were finally overcome in several recent studies describing various approaches to identifying ADPr readers in an unbiased, proteome-wide manner. In this review we discuss these different strategies and their limitations, benefits and drawbacks, and summarize how these technologies contribute to a dissection of ADP-ribosylation signaling networks. We also address unmet technological needs and future directions to investigate interactions with ADPr linkages.
Collapse
Affiliation(s)
- Suzanne A Weijers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Katarzyna W Kliza
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
9
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
10
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39221603 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Coulson-Gilmer C, Littler S, Barnes B, Brady R, Anagho H, Pillay N, Dey M, Macmorland W, Bronder D, Nelson L, Tighe A, Lin WH, Morgan R, Unwin R, Nielsen M, McGrail J, Taylor S. Intrinsic PARG inhibitor sensitivity is mimicked by TIMELESS haploinsufficiency and rescued by nucleoside supplementation. NAR Cancer 2024; 6:zcae030. [PMID: 39015544 PMCID: PMC11249981 DOI: 10.1093/narcan/zcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
A subset of cancer cells are intrinsically sensitive to inhibitors targeting PARG, the poly(ADP-ribose) glycohydrolase that degrades PAR chains. Sensitivity is accompanied by persistent DNA replication stress, and can be induced by inhibition of TIMELESS, a replisome accelerator. However, the nature of the vulnerability responsible for intrinsic sensitivity remains undetermined. To understand PARG activity dependency, we analysed Timeless model systems and intrinsically sensitive ovarian cancer cells. We show that nucleoside supplementation rescues all phenotypes associated with PARG inhibitor sensitivity, including replisome speed and fork stalling, S-phase completion and mitotic entry, proliferation dynamics and clonogenic potential. Importantly nucleoside supplementation restores PARG inhibitor resistance despite the continued presence of PAR chains, indicating that sensitivity does not correlate with PAR levels. In addition, we show that inhibition of thymidylate synthase, an enzyme required for dNTP homeostasis, induces PARG-dependency. Together, these observations suggest that PARG inhibitor sensitivity reflects an inability to control replisome speed and/or maintain helicase-polymerase coupling in response to nucleotide imbalances.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Holda A Anagho
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nisha Pillay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - William Macmorland
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniel Bronder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Wei-Hsiang Lin
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Richard D Unwin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
12
|
Alirzayeva H, Loureiro R, Koyuncu S, Hommen F, Nabawi Y, Zhang WH, Dao TTP, Wehrmann M, Lee HJ, Vilchez D. ALS-FUS mutations cause abnormal PARylation and histone H1.2 interaction, leading to pathological changes. Cell Rep 2024; 43:114626. [PMID: 39167487 DOI: 10.1016/j.celrep.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.
Collapse
Affiliation(s)
- Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rute Loureiro
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Franziska Hommen
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yara Nabawi
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - William Hongyu Zhang
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thien T P Dao
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Markus Wehrmann
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Iebed D, Gökler T, van Ingen H, Conibear AC. Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch. Chembiochem 2024:e202400589. [PMID: 39186607 DOI: 10.1002/cbic.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three-dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein-protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome-binding domain of an intrinsically disordered protein - HMGN1 - using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over-predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
Collapse
Affiliation(s)
- Dina Iebed
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Tobias Gökler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anne C Conibear
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
14
|
Shubhanjali S, Mohapatra T, Khan R, Dixit M. Unveiling FRG1's DNA repair role in breast cancer. Sci Rep 2024; 14:19371. [PMID: 39169067 PMCID: PMC11339311 DOI: 10.1038/s41598-024-70368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The FRG1(FSHD region gene 1) gene has emerged as a pivotal tumor suppressor in both breast and prostate cancer. HPF1 (Histone PARylation Factor 1), a gene crucial in the base excision repair (BER) mechanism for single-stranded DNA (ssDNA) lesions, showcases a robust correlation with FRG1. This implies that FRG1 might have the capacity to influence BER via HPF1, potentially playing a role in tumorigenesis. Using a comprehensive approach that integrates in-silico analyses involving differential gene expression, KEGG (Kyoto Encyclopedia of Genes and Genomes), GO (Gene Ontology), and STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) databases, we unravelled the intricate network of genes and pathways influenced by FRG1, which includes BER. Our linear regression analysis unveiled a positive relationship between FRG1 and key genes crucial for BER. Notably, breast cancer patients with low FRG1 expression exhibited a significantly higher frequency of mutation in TP53. To enhance the accuracy of our analysis, we conducted qRT-PCR assays, which demonstrated that FRG1 affects the transcription of DNA base excision repair genes, showing differential expression in breast cancer cells. Moreover, through the Alkaline Comet Assay, a technique that quantifies DNA damage at the single-cell level, we observed diminished DNA repair capabilities when FRG1 levels are low. Risk scores were calculated using the Cox regression coefficients, and we found notable differences in Overall Survival (OS) and mRNA expression of DEGs in the low and high-risk groups. In summary, our findings shed light on the pivotal role of FRG1 in maintaining DNA repair efficiency within breast cancer cells.
Collapse
Affiliation(s)
- Shubhanjali Shubhanjali
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Talina Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rehan Khan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Manjusha Dixit
- School of Biological Sciences, National Institute of Science Education and Research, Room No. 204, PO: Jatani, Khurda, Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Fábián Z, Kakulidis ES, Hendriks IA, Kühbacher U, Larsen NB, Oliva-Santiago M, Wang J, Leng X, Dirac-Svejstrup AB, Svejstrup JQ, Nielsen ML, Caldecott K, Duxin JP. PARP1-dependent DNA-protein crosslink repair. Nat Commun 2024; 15:6641. [PMID: 39103378 PMCID: PMC11300803 DOI: 10.1038/s41467-024-50912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.
Collapse
Affiliation(s)
- Zita Fábián
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ellen S Kakulidis
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ulrike Kühbacher
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Nicolai B Larsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Marta Oliva-Santiago
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Junhui Wang
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Xueyuan Leng
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Keith Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Zhang H, Zha S. The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication. DNA Repair (Amst) 2024; 140:103690. [PMID: 38823186 DOI: 10.1016/j.dnarep.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.
Collapse
Affiliation(s)
- Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.
| |
Collapse
|
18
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
19
|
Anagho HA, Mullari M, Prósz AG, Buch-Larsen SC, Cho H, Locard-Paulet M, Szallasi Z, Nielsen ML. ADP-ribosylome analysis reveals homogeneous DNA-damage-induced serine ADP-ribosylation across wild-type and BRCA-mutant breast cancer cell lines. Cell Rep 2024; 43:114433. [PMID: 38985679 DOI: 10.1016/j.celrep.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.
Collapse
Affiliation(s)
- Holda Awah Anagho
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Meeli Mullari
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | | | - Sara Charlotte Buch-Larsen
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Hayoung Cho
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Michael Lund Nielsen
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Zentout S, Imburchia V, Chapuis C, Duma L, Schützenhofer K, Prokhorova E, Ahel I, Smith R, Huet S. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Proc Natl Acad Sci U S A 2024; 121:e2322689121. [PMID: 38865276 PMCID: PMC11194589 DOI: 10.1073/pnas.2322689121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.
Collapse
Affiliation(s)
- Siham Zentout
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Victor Imburchia
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Catherine Chapuis
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Rebecca Smith
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Sébastien Huet
- University of Rennes, CNRS, Institut de génétique et développement de Rennes–UMR 6290, Biologie, Santé, Innovation Technologique (BIOSIT)–UMS3480, RennesF-35000, France
| |
Collapse
|
22
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen MS, Schultz C. A genetically encoded sensor for real-time monitoring of poly-ADP-ribosylation dynamics in-vitro and in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598597. [PMID: 38915511 PMCID: PMC11195289 DOI: 10.1101/2024.06.11.598597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nico-tinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hy-drolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for under-standing the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semi-quantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
|
23
|
Wu CK, Shiu JL, Wu CL, Hung CF, Ho YC, Chen YT, Tung SY, Yeh CF, Shen CH, Liaw H, Su WP. APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res 2024; 52:5676-5697. [PMID: 38520407 PMCID: PMC11162786 DOI: 10.1093/nar/gkae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.
Collapse
Affiliation(s)
- Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chi-Feng Hung
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Sheng-Yung Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Urology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
Kanev PB, Varhoshkova S, Georgieva I, Lukarska M, Kirova D, Danovski G, Stoynov S, Aleksandrov R. A unified mechanism for PARP inhibitor-induced PARP1 chromatin retention at DNA damage sites in living cells. Cell Rep 2024; 43:114234. [PMID: 38758646 DOI: 10.1016/j.celrep.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) not only suppress PARP1 catalytic activity but also prolong its association to damaged chromatin. Here, through live-cell imaging, we quantify the alterations in PARP1 dynamics and activity elicited by seven PARPis over a wide range of concentrations to deliver a unified mechanism of PARPi-induced PARP1 chromatin retention. We find that gross PARP1 retention at DNA damage sites is jointly governed by catalytic inhibition and allosteric trapping, albeit in a strictly independent manner-catalytic inhibition causes multiple unproductive binding-dissociation cycles of PARP1, while allosteric trapping prolongs the lesion-bound state of PARP1 to greatly increase overall retention. Importantly, stronger PARP1 retention produces greater temporal shifts in downstream DNA repair events and superior cytotoxicity, highlighting PARP1 retention, a complex but precisely quantifiable characteristic of PARPis, as a valuable biomarker for PARPi efficacy. Our approach can be promptly repurposed for interrogating the properties of DNA-repair-targeting compounds beyond PARPis.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Sylvia Varhoshkova
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Irina Georgieva
- Transmembrane Signaling Laboratory, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Maria Lukarska
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dilyana Kirova
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Georgi Danovski
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| |
Collapse
|
25
|
Smith-Pillet ES, Billur R, Langelier MF, Talele TT, Pascal JM, Black BE. A PARP2-specific active site α-helix melts to permit DNA damage-induced enzymatic activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594972. [PMID: 38826291 PMCID: PMC11142140 DOI: 10.1101/2024.05.20.594972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
PARP1 and PARP2 recognize DNA breaks immediately upon their formation, generate a burst of local PARylation to signal their location, and are co-targeted by all current FDA-approved forms of PARP inhibitors (PARPi) used in the cancer clinic. Recent evidence indicates that the same PARPi molecules impact PARP2 differently from PARP1, raising the possibility that allosteric activation may also differ. We find that unlike for PARP1, destabilization of the autoinhibitory domain of PARP2 is insufficient for DNA damage-induced catalytic activation. Rather, PARP2 activation requires further unfolding of an active site α-helix absent in PARP1. Only one clinical PARPi, Olaparib, stabilizes the PARP2 active site α-helix, representing a structural feature with the potential to discriminate small molecule inhibitors. Collectively, our findings reveal unanticipated differences in local structure and changes in activation-coupled backbone dynamics between PARP1 and PARP2.
Collapse
Affiliation(s)
- Emily S. Smith-Pillet
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
- Graduate Program in Biochemistry, Biophysics, Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140-6059 USA
| | - Ramya Billur
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Université de Montréal Montréal, (Québec), H3C 3J7 Canada
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439 USA
| | - John M. Pascal
- Département de Biochimie et Médecine Moléculaire, Université de Montréal Montréal, (Québec), H3C 3J7 Canada
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute
- Graduate Program in Biochemistry, Biophysics, Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140-6059 USA
| |
Collapse
|
26
|
Longarini EJ, Matić I. Preserving ester-linked modifications reveals glutamate and aspartate mono-ADP-ribosylation by PARP1 and its reversal by PARG. Nat Commun 2024; 15:4239. [PMID: 38762517 PMCID: PMC11102441 DOI: 10.1038/s41467-024-48314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Ester-linked post-translational modifications, including serine and threonine ubiquitination, have gained recognition as important cellular signals. However, their detection remains a significant challenge due to the chemical lability of the ester bond. This is the case even for long-known modifications, such as ADP-ribosylation on aspartate and glutamate, whose role in PARP1 signaling has recently been questioned. Here, we present easily implementable methods for preserving ester-linked modifications. When combined with a specific and sensitive modular antibody and mass spectrometry, these approaches reveal DNA damage-induced aspartate/glutamate mono-ADP-ribosylation. This previously elusive signal represents an initial wave of PARP1 signaling, contrasting with the more enduring nature of serine mono-ADP-ribosylation. Unexpectedly, we show that the poly-ADP-ribose hydrolase PARG is capable of reversing ester-linked mono-ADP-ribosylation in cells. Our methodology enables broad investigations of various ADP-ribosylation writers and, as illustrated here for noncanonical ubiquitination, it paves the way for exploring other emerging ester-linked modifications.
Collapse
Affiliation(s)
- Edoardo José Longarini
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Ivan Matić
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
27
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
28
|
Rageul J, Lo N, Phi AL, Patel JA, Park JJ, Kim H. Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection. Cell Rep 2024; 43:113845. [PMID: 38393943 PMCID: PMC11029348 DOI: 10.1016/j.celrep.2024.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed mainly by poly(ADP-ribose) polymerase (PARP)1, is a key posttranslational modification involved in DNA replication and repair. Here, we report that TIMELESS (TIM), an essential scaffold of the replisome, is PARylated, which is linked to its proteolysis. TIM PARylation requires recognition of auto-modified PARP1 via two poly(ADP-ribose)-binding motifs, which primes TIM for proteasome-dependent degradation. Cells expressing the PARylation-refractory TIM mutant or under PARP inhibition accumulate TIM at DNA replication forks, causing replication stress and hyper-resection of stalled forks. Mechanistically, aberrant engagement of TIM with the replicative helicase impedes RAD51 loading and protection of reversed forks. Accordingly, defective TIM degradation hypersensitizes BRCA2-deficient cells to replication damage. Our study defines TIM as a substrate of PARP1 and elucidates how the control of replisome remodeling by PARylation is linked to stalled fork protection. Therefore, we propose a mechanism of PARP inhibition that impinges on the DNA replication fork instability caused by defective TIM turnover.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | - Natalie Lo
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Amy L Phi
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jinal A Patel
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
29
|
Velagapudi UK, Rouleau-Turcotte É, Billur R, Shao X, Patil M, Black BE, Pascal JM, Talele TT. Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks. Biochem J 2024; 481:437-460. [PMID: 38372302 PMCID: PMC11070930 DOI: 10.1042/bcj20230406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties.
Collapse
Affiliation(s)
- Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Ramya Billur
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Manisha Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| |
Collapse
|
30
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
31
|
Dhakar SS, Galera-Prat A, Lehtiö L. High-throughput screening assay for PARP-HPF1 interaction inhibitors to affect DNA damage repair. Sci Rep 2024; 14:3875. [PMID: 38365924 PMCID: PMC10873324 DOI: 10.1038/s41598-024-54123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
ADP-ribosyltransferases PARP1 and PARP2 play a major role in DNA repair mechanism by detecting the DNA damage and inducing poly-ADP-ribosylation dependent chromatin relaxation and recruitment of repair proteins. Catalytic PARP inhibitors are used as anticancer drugs especially in the case of tumors arising from sensitizing mutations. Recently, a study showed that Histone PARylation Factor (HPF1) forms a joint active site with PARP1/2. The interaction of HPF1 with PARP1/2 alters the modification site from Aspartate/Glutamate to Serine, which has been shown to be a key ADP-ribosylation event in the context of DNA damage. Therefore, disruption of PARP1/2-HPF1 interaction could be an alternative strategy for drug development to block the PARP1/2 activity. In this study, we describe a FRET based high-throughput screening assay to screen inhibitor libraries against PARP-HPF1 interaction. We optimized the conditions for FRET signal and verified the interaction by competing the FRET pair in multiple ways. The assay is robust and easy to automate. Validatory screening showed the robust performance of the assay, and we discovered two compounds Dimethylacrylshikonin and Alkannin, with µM inhibition potency against PARP1/2-HPF1 interaction. The assay will facilitate the discovery of inhibitors against HPF1-PARP1/2 complex and to develop potentially new effective anticancer agents.
Collapse
Affiliation(s)
- Saurabh S Dhakar
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
32
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
33
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
34
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
35
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
37
|
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey B, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 2024; 52:801-815. [PMID: 38000390 PMCID: PMC10810221 DOI: 10.1093/nar/gkad1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bryan W Dorsey
- Ribon Therapeutics, 35 Cambridgepark Dr., Suite 300, Cambridge MA 02140, USA
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Al-Rahahleh RQ, Saville KM, Andrews JF, Wu Z, Koczor CA, Sobol RW. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573650. [PMID: 38234836 PMCID: PMC10793466 DOI: 10.1101/2023.12.29.573650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F. Andrews
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912
| | - Christopher A. Koczor
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
39
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
40
|
O’Sullivan J, Kothari C, Caron MC, Gagné JP, Jin Z, Nonfoux L, Beneyton A, Coulombe Y, Thomas M, Atalay N, Meng X, Milano L, Jean D, Boisvert FM, Kaufmann S, Hendzel M, Masson JY, Poirier G. ZNF432 stimulates PARylation and inhibits DNA resection to balance PARPi sensitivity and resistance. Nucleic Acids Res 2023; 51:11056-11079. [PMID: 37823600 PMCID: PMC10639050 DOI: 10.1093/nar/gkad791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.
Collapse
Affiliation(s)
- Julia O’Sullivan
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Zhigang Jin
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Yan Coulombe
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Mélissa Thomas
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - X Wei Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Larissa Milano
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| |
Collapse
|
41
|
Höpfner D, Cichy A, Pogenberg V, Krisp C, Mezouar S, Bach NC, Grotheer J, Zarza SM, Martinez E, Bonazzi M, Feige MJ, Sieber SA, Schlüter H, Itzen A. The DNA-binding induced (de)AMPylation activity of a Coxiella burnetii Fic enzyme targets Histone H3. Commun Biol 2023; 6:1124. [PMID: 37932372 PMCID: PMC10628234 DOI: 10.1038/s42003-023-05494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.
Collapse
Affiliation(s)
- Dorothea Höpfner
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Adam Cichy
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Group of Proteinchemistry, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Soraya Mezouar
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Nina C Bach
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Jan Grotheer
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Sandra Madariaga Zarza
- Aix-Marseille University, Institut de Recherche pour la Développement (IRD), Assistance Publique-Hôpitaux de Marseille (APHM), Microbes Evolution Phylogeny and Infections (MEPHI), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Martinez
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matteo Bonazzi
- Cellular and Molecular Biology of Bacterial Infections, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, UMR 9004 - Centre national de la recherche scientifique (CNRS), 1919 Route de Mende, 34293, Montpellier, France
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Stephan A Sieber
- Technical University of Munich (TUM), TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
42
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
43
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
45
|
Dauben H, Longarini EJ, Matic I. A chemical biology/modular antibody platform for ADP-ribosylation signaling. Trends Biochem Sci 2023; 48:910-911. [PMID: 37394344 PMCID: PMC10506589 DOI: 10.1016/j.tibs.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Helen Dauben
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ivan Matic
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
46
|
Groslambert J, Prokhorova E, Wondisford AR, Tromans-Coia C, Giansanti C, Jansen J, Timinszky G, Dobbelstein M, Ahel D, O'Sullivan RJ, Ahel I. The interplay of TARG1 and PARG protects against genomic instability. Cell Rep 2023; 42:113113. [PMID: 37676774 PMCID: PMC10933786 DOI: 10.1016/j.celrep.2023.113113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation. We reveal its function in the DNA damage response and show that the loss of TARG1 sensitizes cells to inhibitors of topoisomerase II, ATR, and PARP. Furthermore, we find a PARP1-mediated synthetic lethal interaction between TARG1 and PARG, driven by the toxic accumulation of ADP-ribosylation, that induces replication stress and genomic instability. Finally, we show that histone PARylation factor 1 (HPF1) deficiency exacerbates the toxicity and genomic instability induced by excessive ADP-ribosylation, suggesting a close crosstalk between components of the serine- and aspartate/glutamate-linked ADP-ribosylation pathways. Altogether, our data identify TARG1 as a potential biomarker for the response of cancer cells to PARP and PARG inhibition and establish that the interplay of TARG1 and PARG protects cells against genomic instability.
Collapse
Affiliation(s)
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Callum Tromans-Coia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Celeste Giansanti
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
47
|
Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O, Rack JGM, Baretić D, Crudgington DRK, Groslambert J, Fowler G, Wijngaarden S, Prokhorova E, Rehwinkel J, Schüler H, Filippov DV, Sanyal S, Ahel D, Nielsen ML, Smith R, Ahel I. PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. SCIENCE ADVANCES 2023; 9:eadi2687. [PMID: 37703374 PMCID: PMC10499325 DOI: 10.1126/sciadv.adi2687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.
Collapse
Affiliation(s)
- Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Johannes Gregor Matthias Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | - Gerissa Fowler
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
48
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
49
|
Torretta A, Chatzicharalampous C, Ebenwaldner C, Schüler H. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. J Biol Chem 2023; 299:105096. [PMID: 37507011 PMCID: PMC10470015 DOI: 10.1016/j.jbc.2023.105096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
PARP14/BAL2 is a large multidomain enzyme involved in signaling pathways with relevance to cancer, inflammation, and infection. Inhibition of its mono-ADP-ribosylating PARP homology domain and its three ADP-ribosyl binding macro domains has been regarded as a potential means of therapeutic intervention. Macrodomains-2 and -3 are known to stably bind to ADP-ribosylated target proteins, but the function of macrodomain-1 has remained somewhat elusive. Here, we used biochemical assays of ADP-ribosylation levels to characterize PARP14 macrodomain-1 and the homologous macrodomain-1 of PARP9. Our results show that both macrodomains display an ADP-ribosyl glycohydrolase activity that is not directed toward specific protein side chains. PARP14 macrodomain-1 is unable to degrade poly(ADP-ribose), the enzymatic product of PARP1. The F926A mutation of PARP14 and the F244A mutation of PARP9 strongly reduced ADP-ribosyl glycohydrolase activity of the respective macrodomains, suggesting mechanistic homology to the Mac1 domain of the SARS-CoV-2 Nsp3 protein. This study adds two new enzymes to the previously known six human ADP-ribosyl glycohydrolases. Our results have key implications for how PARP14 and PARP9 will be studied and how their functions will be understood.
Collapse
Affiliation(s)
- Archimede Torretta
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | | | - Carmen Ebenwaldner
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | - Herwig Schüler
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden.
| |
Collapse
|
50
|
Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton L, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins J, Ahel D, Sanyal S, Neuhaus D, Ahel I. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res 2023; 51:8217-8236. [PMID: 37326024 PMCID: PMC10450202 DOI: 10.1093/nar/gkad514] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
AlphaFold2 and related computational tools have greatly aided studies of structural biology through their ability to accurately predict protein structures. In the present work, we explored AF2 structural models of the 17 canonical members of the human PARP protein family and supplemented this analysis with new experiments and an overview of recent published data. PARP proteins are typically involved in the modification of proteins and nucleic acids through mono or poly(ADP-ribosyl)ation, but this function can be modulated by the presence of various auxiliary protein domains. Our analysis provides a comprehensive view of the structured domains and long intrinsically disordered regions within human PARPs, offering a revised basis for understanding the function of these proteins. Among other functional insights, the study provides a model of PARP1 domain dynamics in the DNA-free and DNA-bound states and enhances the connection between ADP-ribosylation and RNA biology and between ADP-ribosylation and ubiquitin-like modifications by predicting putative RNA-binding domains and E2-related RWD domains in certain PARPs. In line with the bioinformatic analysis, we demonstrate for the first time PARP14's RNA-binding capability and RNA ADP-ribosylation activity in vitro. While our insights align with existing experimental data and are probably accurate, they need further validation through experiments.
Collapse
Affiliation(s)
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laura E Easton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wing-Fung Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|