1
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Wang X, Zhang Y. Multi-omics joint screening of biomarkers related to M2 macrophages in gastric cancer. Discov Oncol 2024; 15:738. [PMID: 39623254 PMCID: PMC11612128 DOI: 10.1007/s12672-024-01623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Due to high mortality rate and limited treatments in gastric cancer (GC), call for deeper exploration of M2 macrophages as biomarkers is needed. METHODS The data for this study were obtained from the Gene Expression Omnibus (GEO) and Genomic Data Commons (GDC). The Seurat package was utilized for single-cell RNA sequencing (scRNA-seq) analysis. FindAllMarkers was used to identify genes highly expressed among different cell subsets. DESeq2 package was leveraged to screen differentially expressed genes (DEGs), while limma package was utilized for identifying differentially expressed proteins (DEPs). Enrichment analyses of the genes were conducted using KOBAS-i database. MultipleROC was applied to evaluate the diagnostic potential of biomarkers, and rms package was utilized to construct diagnostic models. hTFtarget database was utilized to predict potential transcription factors (TFs). Finally, cell-based assays were performed to validate the expression and potential biological functions of the screened key markers. RESULTS This study found that M2 macrophages were enriched in protein, endoplasmic reticulum, and virus-related pathways. A total of 4146 DEGs and 1946 DEPs were obtained through screening, with 254 common DEGs/DEPs. The results of gene function enrichment analysis suggested that it may affect the occurrence and development of GC through DNA replication and cell cycle. This study identified three biomarkers, HSPH1, HSPD1, and IFI30, and constructed a diagnostic model based on these three genes. The AUC value greater than 0.8 proved the reliability of the model. Through screening TFs, SPI1 and KLF5 were found to be the common TFs for the three biomarkers. The expression of the three genes IFI30, HSPD1 and HSPH1 was up-regulated in GC cells, and IFI30 may play a facilitating role in the migration and invasion of GC cells. CONCLUSION This study identified three biomarkers and constructed a diagnostic model, providing a new perspective for the research and treatment of GC.
Collapse
Affiliation(s)
- Xilong Wang
- Tumor Hematology Department, Liaoyang Central Hospital, Liaoyang, 111000, China
| | - Ying Zhang
- General Surgery Department, Liaoyang Central Hospital, Liaoyang, 111000, China.
| |
Collapse
|
4
|
Omkar S, Mitchem MM, Hoskins JR, Shrader C, Kline JT, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. PLoS Genet 2024; 20:e1011338. [PMID: 39652584 DOI: 10.1371/journal.pgen.1011338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Megan M Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
5
|
Ghosh S, Clore GM. Decoding chaperone complexes: Insights from NMR spectroscopy. BIOPHYSICS REVIEWS 2024; 5:041308. [PMID: 39679202 PMCID: PMC11637561 DOI: 10.1063/5.0233299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Molecular chaperones play a key role in protein homeostasis by preventing misfolding and aggregation, assisting in proper protein folding, and sometimes even disaggregating formed aggregates. Chaperones achieve this through a range of transient weak protein-protein interactions, which are difficult to study using traditional structural and biophysical techniques. Nuclear magnetic resonance (NMR) spectroscopy, however, is well-suited for studying such dynamic states and interactions. A wide range of NMR experiments have been particularly valuable in understanding the mechanisms of chaperone function, as they can characterize disordered protein structures, detect weak and nonspecific interactions involving sparsely populated states, and probe the conformational dynamics of proteins and their complexes. Recent advances in NMR have significantly enhanced our knowledge of chaperone mechanisms, especially chaperone-client interactions, despite the inherent challenges posed by the flexibility and complexity of these systems. In this review, we highlight contributions of NMR to the chaperone field, focusing on the work carried out in our laboratory, which have provided insights into how chaperones maintain function within the cellular environment and interact with various protein substrates.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
6
|
Zhong S, Li X, Li C, Bai H, Chen J, Gan L, Zhu J, Oh T, Yan X, Zhu J, Li N, Koiwa H, Meek T, Peng X, Yu B, Zhang Z, Zhang X. SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis. Nat Cell Biol 2024; 26:2129-2143. [PMID: 39472512 PMCID: PMC11631688 DOI: 10.1038/s41556-024-01530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/12/2024] [Indexed: 11/02/2024]
Abstract
The methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promote the solubility and stability of the MTC subunit B, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behaviour, exhibit reduced m6A levels. Reciprocally, MTC can recruit the microprocessor to the MIRNA loci, prompting co-transcriptional cleavage of primary miRNA substrates. Additionally, primary miRNA substrates carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain the microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
Collapse
Affiliation(s)
- Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xindi Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Lu Gan
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyun Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Taerin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Niankui Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Department of Horticulture, Texas A&M University, College Station, TX, USA
| | - Thomas Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Bin Yu
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
McFarland R, Noroozi R, Miller AP, Reichow SL. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. Nat Commun 2024; 15:10336. [PMID: 39609421 PMCID: PMC11604994 DOI: 10.1038/s41467-024-54647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration. This results in a profound structural transformation, from highly polydispersed caged-like native assemblies into an elongated fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of this variant facilitates interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveil several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, polydispersity, and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemistry, Portland State University, Portland, OR, USA
- Analytical and Formulation Sciences, KBI Biopharma, Boulder, CO, USA
| | - Rozhan Noroozi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|
8
|
Leinberger FH, Cassidy L, Edelmann D, Schmid NE, Oberpaul M, Blumenkamp P, Schmidt S, Natriashvili A, Ulbrich MH, Tholey A, Koch HG, Berghoff BA. Protein aggregation is a consequence of the dormancy-inducing membrane toxin TisB in Escherichia coli. mSystems 2024; 9:e0106024. [PMID: 39377584 PMCID: PMC11575346 DOI: 10.1128/msystems.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial dormancy is a valuable strategy to survive stressful conditions. Toxins from chromosomal toxin-antitoxin systems have the potential to halt cell growth, induce dormancy, and eventually promote a stress-tolerant persister state. Due to their potential toxicity when overexpressed, sophisticated expression systems are needed when studying toxin genes. Here, we present a moderate expression system for toxin genes based on an artificial 5' untranslated region. We applied the system to induce expression of the toxin gene tisB from the chromosomal type I toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB is a small hydrophobic protein that targets the inner membrane, resulting in depolarization and ATP depletion. We analyzed TisB-producing cells by RNA-sequencing and revealed several genes with a role in recovery from TisB-induced dormancy, including the chaperone genes ibpAB and spy. The importance of chaperone genes suggested that TisB-producing cells are prone to protein aggregation, which was validated by an in vivo fluorescent reporter system. We moved on to show that TisB is an essential factor for protein aggregation upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin in E. coli wild-type cells. The occurrence of protein aggregates correlates with an extended dormancy duration, which underscores their importance for the life cycle of TisB-dependent persister cells. IMPORTANCE Protein aggregates occur in all living cells due to misfolding of proteins. In bacteria, protein aggregation is associated with cellular inactivity, which is related to dormancy and tolerance to stressful conditions, including exposure to antibiotics. In Escherichia coli, the membrane toxin TisB is an important factor for dormancy and antibiotic tolerance upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin. Here, we show that TisB provokes protein aggregation, which, in turn, promotes an extended state of cellular dormancy. Our study suggests that protein aggregation is a consequence of membrane toxins with the potential to affect the duration of dormancy and the outcome of antibiotic therapy.
Collapse
Affiliation(s)
- Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Nicole E Schmid
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Markus Oberpaul
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Department of Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Sebastian Schmidt
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Maximilian H Ulbrich
- Internal Medicine IV, Department of Medicine, University Medical Center, and Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
9
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Mechanisms of Action of HSP110 and Its Cognate Family Members in Carcinogenesis. Onco Targets Ther 2024; 17:977-989. [PMID: 39553399 PMCID: PMC11568853 DOI: 10.2147/ott.s496403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Tumors, as chronic malignant diseases that account for about 20% of all deaths worldwide, are the number one threat to human health. Until now there is no reliable treatment for most types of tumors. Tumorigenesis and cellular carcinogenesis remain difficult challenges due to their complex etiology and unknown mechanisms. As stress process regulating molecules and protein folding promoters, heat shock proteins (HSPs) play an important role in cancer development. Most studies have shown that HSPs are one of the major anticancer drug targets. HSPs are not only modulators of the cellular stress response, but are also closely associated with tumor initiation, progression, and drug resistance, so understanding the mechanism of the HSP family involved in cellular carcinogenesis is an important part of understanding tumorigenesis and enabling anticancer drug development. In this review, we discuss the functions and mechanisms of key members of the HSP family (HSP70, HSP90, and HSP110) in participating in the process of tumorigenesis and cell carcinogenesis, and look forward to the prospect of key members of the HSP family in targeted cancer therapy.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| |
Collapse
|
10
|
Buggiani J, Meinnel T, Giglione C, Frottin F. Advances in nuclear proteostasis of metazoans. Biochimie 2024; 226:148-164. [PMID: 38642824 DOI: 10.1016/j.biochi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The proteostasis network and associated protein quality control (PQC) mechanisms ensure proteome functionality and are essential for cell survival. A distinctive feature of eukaryotic cells is their high degree of compartmentalization, requiring specific and adapted proteostasis networks for each compartment. The nucleus, essential for maintaining the integrity of genetic information and gene transcription, is one such compartment. While PQC mechanisms have been investigated for decades in the cytoplasm and the endoplasmic reticulum, our knowledge of nuclear PQC pathways is only emerging. Recent developments in the field have underscored the importance of spatially managing aberrant proteins within the nucleus. Upon proteotoxic stress, misfolded proteins and PQC effectors accumulate in various nuclear membrane-less organelles. Beyond bringing together effectors and substrates, the biophysical properties of these organelles allow novel PQC functions. In this review, we explore the specificity of the nuclear compartment, the effectors of the nuclear proteostasis network, and the PQC roles of nuclear membrane-less organelles in metazoans.
Collapse
Affiliation(s)
- Julia Buggiani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Frottin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Akber U, Jung JH, Yoon H, Seo J, Park CS. CRBN modulates synuclein fibrillation via degradation of DNAJB1 in mouse model of Parkinson disease. NPJ Parkinsons Dis 2024; 10:194. [PMID: 39443520 PMCID: PMC11500381 DOI: 10.1038/s41531-024-00801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cereblon (CRBN) is a substrate recruiter for CRL4CRBN E3 ubiquitin ligase system playing a plethora of pivotal roles for biological systems. Here, we identified DNAJB1 (DJ1) as endogenous substrate of CRBN and report how CRBN influences the aggregation and toxicity of alpha-synuclein (α-SYN) via modulation of DJ1. CRBN interferes with molecular activities of DJ1 in vitro, in cells, and in vivo resulting in a reduced disaggregation of α-SYN fibrils, increased formation of preformed fibrils (PFFs) of α-SYN, and high susceptibility of mice to MPTP and PFF-induced neurotoxicity. Depletion of Crbn improves the behavioral and biochemical responses of mice towards neurotoxic insult. Finally, we designed a peptide inhibitor to inhibit the recruitment of DJ1 to CRBN for ubiquitination, resulting in an enhanced supply of DJ1 to counteract the toxicity of aggregated α-SYN. Our data has important implications for development of CRBN-targeting therapies that could prevent or delay progression of neurodegenerative synucleinopathy.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun-Hyung Jung
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heewoong Yoon
- Department of Chemistry, Peptide Drug Discovery Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Peptide Drug Discovery Laboratory, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
13
|
Zhong S, Li X, Li C, Bai H, Chen J, Gan L, Zhu J, Oh T, Yan X, Zhu J, Li N, Koiwa H, Meek T, Peng X, Yu B, Zhang Z, Zhang X. Reciprocal regulation of m 6 A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610644. [PMID: 39257768 PMCID: PMC11383662 DOI: 10.1101/2024.08.31.610644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Methyltransferase complex (MTC) deposits N 6-adenosine (m 6 A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m 6 A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m 6 A modifications at their single-stranded basal regions are enriched by m 6 A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
Collapse
|
14
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
16
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
19
|
Omkar S, Shrader C, Hoskins JR, Kline JT, Mitchem MM, Nitika, Fornelli L, Wickner S, Truman AW. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598777. [PMID: 38915721 PMCID: PMC11195281 DOI: 10.1101/2024.06.13.598777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.
Collapse
Affiliation(s)
- Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Courtney Shrader
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake T. Kline
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Megan M. Mitchem
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019 USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
20
|
Mahto FK, Bhattacharya A, Bhattacharya S. Molecular dynamics simulations shows real-time lid opening in Hsp70 chaperone. J Mol Graph Model 2024; 129:108726. [PMID: 38377794 DOI: 10.1016/j.jmgm.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The stress-inducible mammalian heat shock protein Hsp70 and its bacterial orthologue DnaK are highly conserved molecular chaperones and a crucial part of the machinery responsible for protein folding and homeostasis. Hsp70 is a three-domain, 70 kDa protein that cycles between an ATP-bound state in which all three domains are securely coupled into one unit and an ADP-bound state in which they are loosely attached via a flexible interdomain linker. The Hsp70 presents an alluring novel therapeutic target since it is crucial for maintaining cellular proteostasis and is particularly crucial to cancer cells. We have performed molecular dynamics simulations of the SBD (substrate binding domain) along with the Lid domain in response to experimental efforts to identify small molecule inhibitors that impair the functioning of Hsp70. Our intent has been to characterize the motion of the SBD/Lid allosteric machinery and in, addition, to identify the effect of the PET16 molecule on this motion. Interestingly, we noticed the opening of the entire Lid domain in the apo-form of the dimer. The configuration of the open structure was very different from previously published structures (PDB 4JN4) of the open and docked conformation of the ATP bound form. MD simulations revealed the Lid to be capable of far greater dynamical excursions than has been anticipated by experimental structural biology. This is of value in future drug discovery efforts targeted to modulating Hsp70 activity. The PET16 molecule appears to be weakly bound and its effect on the dynamics of the complex is yet to be elucidated.
Collapse
Affiliation(s)
- Farindra Kumar Mahto
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
21
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
22
|
Dupuy E, Collet JF. Entering deeper into the mysteries of the GroEL-GroES nanomachine. Curr Opin Microbiol 2024; 79:102480. [PMID: 38714141 DOI: 10.1016/j.mib.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.
Collapse
Affiliation(s)
- Emile Dupuy
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
23
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
24
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
25
|
Kumari S, Ali A, Kumar M. Nucleotide-induced ClpC oligomerization and its non-preferential association with ClpP isoforms of pathogenic Leptospira. Int J Biol Macromol 2024; 266:131371. [PMID: 38580013 DOI: 10.1016/j.ijbiomac.2024.131371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade β-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.
Collapse
Affiliation(s)
- Surbhi Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arfan Ali
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam 781022, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
26
|
Bertgen L, Bökenkamp JE, Schneckmann T, Koch C, Räschle M, Storchová Z, Herrmann JM. Distinct types of intramitochondrial protein aggregates protect mitochondria against proteotoxic stress. Cell Rep 2024; 43:114018. [PMID: 38551959 DOI: 10.1016/j.celrep.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Tim Schneckmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Christian Koch
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
27
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
28
|
Chan C, Groisman EA. Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis. PLoS Biol 2024; 22:e3002560. [PMID: 38574172 PMCID: PMC10994381 DOI: 10.1371/journal.pbio.3002560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
29
|
McFarland R, Reichow S. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586355. [PMID: 38585788 PMCID: PMC10996541 DOI: 10.1101/2024.03.22.586355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
αB-crystallin is an archetypical member of the small heat-shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we mutated a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin. This resulted in a profound structural transformation, from highly polydispersed caged-like native assemblies into a comparatively well-ordered helical fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of the induced fibrils facilitated interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveiled several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, dynamics and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
- Current: Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Steve Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
30
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
31
|
Pranjic M, Spät P, Semanjski Curkovic M, Macek B, Gruic-Sovulj I, Mocibob M. Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation. Int J Biol Macromol 2024; 262:130068. [PMID: 38340920 DOI: 10.1016/j.ijbiomac.2024.130068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate pairing of amino acids and tRNAs is a prerequisite for faithful translation of genetic information during protein biosynthesis. Here we present the effects of proteome-wide mistranslation of isoleucine (Ile) by canonical valine (Val) or non-proteinogenic norvaline (Nva) in a genetically engineered Escherichia coli strain with an editing-defective isoleucyl-tRNA synthetase (IleRS). Editing-defective IleRS efficiently mischarges both Val and Nva to tRNAIle and impairs the translational accuracy of Ile decoding. When mistranslation was induced by the addition of Val or Nva to the growth medium, an Ile-to-Val or Ile-to-Nva substitution of up to 20 % was measured by high-resolution mass spectrometry. This mistranslation level impaired bacterial growth, promoted the SOS response and filamentation during stationary phase, caused global proteome dysregulation and upregulation of the cellular apparatus for maintaining proteostasis, including the major chaperones (GroES/EL, DnaK/DnaJ/GrpE and HtpG), the disaggregase ClpB and the proteases (Lon, HslV/HslU, ClpA, ClpS). The most important consequence of mistranslation appears to be non-specific protein aggregation, which is effectively counteracted by the disaggregase ClpB. Our data show that E. coli can sustain high isoleucine mistranslation levels and remain viable despite excessive protein aggregation and severely impaired translational fidelity. However, we show that inaccurate translation lowers bacterial resilience to heat stress and decreases bacterial survival at elevated temperatures.
Collapse
Affiliation(s)
- Marija Pranjic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Philipp Spät
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Maja Semanjski Curkovic
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Boris Macek
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia.
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia.
| |
Collapse
|
32
|
Kim H, Kim J, Son N, Kuo P, Morgan C, Chambon A, Byun D, Park J, Lee Y, Park YM, Fozard JA, Guérin J, Hurel A, Lambing C, Howard M, Hwang I, Mercier R, Grelon M, Henderson IR, Choi K. Control of meiotic crossover interference by a proteolytic chaperone network. NATURE PLANTS 2024; 10:453-468. [PMID: 38379086 DOI: 10.1038/s41477-024-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference. In Arabidopsis, crossover positions can be explained by a diffusion-mediated coarsening model, in which large, approximately evenly spaced foci of the pro-crossover E3 ligase HEI10 grow at the expense of smaller, closely spaced clusters. However, the mechanisms that control HEI10 dynamics during meiosis remain unclear. Here, through a forward genetic screen in Arabidopsis, we identified high crossover rate3 (hcr3), a dominant-negative mutant that reduces crossover interference and increases crossovers genome-wide. HCR3 encodes J3, a co-chaperone related to HSP40, which acts to target protein aggregates and biomolecular condensates to the disassembly chaperone HSP70, thereby promoting proteasomal degradation. Consistently, we show that a network of HCR3 and HSP70 chaperones facilitates proteolysis of HEI10, thereby regulating interference and the recombination landscape. These results reveal a new role for the HSP40/J3-HSP70 chaperones in regulating chromosome-wide dynamics of recombination via control of HEI10 proteolysis.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Namil Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Chris Morgan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngkyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John A Fozard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julie Guérin
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
33
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
34
|
Lechuga S, Marino-Melendez A, Naydenov NG, Zafar A, Braga-Neto MB, Ivanov AI. Regulation of Epithelial and Endothelial Barriers by Molecular Chaperones. Cells 2024; 13:370. [PMID: 38474334 PMCID: PMC10931179 DOI: 10.3390/cells13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Atif Zafar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Manuel B. Braga-Neto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| |
Collapse
|
35
|
Marszalek J, De Los Rios P, Cyr D, Mayer MP, Adupa V, Andréasson C, Blatch GL, Braun JEA, Brodsky JL, Bukau B, Chapple JP, Conz C, Dementin S, Genevaux P, Genest O, Goloubinoff P, Gestwicki J, Hammond CM, Hines JK, Ishikawa K, Joachimiak LA, Kirstein J, Liberek K, Mokranjac D, Nillegoda N, Ramos CHI, Rebeaud M, Ron D, Rospert S, Sahi C, Shalgi R, Tomiczek B, Ushioda R, Ustyantseva E, Ye Y, Zylicz M, Kampinga HH. J-domain proteins: From molecular mechanisms to diseases. Cell Stress Chaperones 2024; 29:21-33. [PMID: 38320449 PMCID: PMC10939069 DOI: 10.1016/j.cstres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - Douglas Cyr
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janice E A Braun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - J Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Conz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sébastien Dementin
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Lausanne University, Lausanne 1015, Switzerland
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94308, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Koji Ishikawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janine Kirstein
- Leibniz Institute on Aging - Fritz Lipmann Institute and Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, Jena 07745, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Dejana Mokranjac
- LMU Munich, Biocenter-Cell Biology, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Nadinath Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Centre for Dementia and Brain Repair at the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Mathieu Rebeaud
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - David Ron
- University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India; IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yihong Ye
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maciej Zylicz
- Foundation for Polish Science, Warsaw 02-611, Poland
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Che R, Liu Y, Yan S, Yang C, Sun Y, Liu C, Ma F. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1250-1263. [PMID: 37991990 DOI: 10.1111/tpj.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.
Collapse
Affiliation(s)
- Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuerong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengqi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yubo Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
37
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
39
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
40
|
Henriksen C, Baek KT, Wacnik K, Gallay C, Veening JW, Foster SJ, Frees D. The ClpX chaperone and a hypermorphic FtsA variant with impaired self-interaction are mutually compensatory for coordinating Staphylococcus aureus cell division. Mol Microbiol 2024; 121:98-115. [PMID: 38041395 DOI: 10.1111/mmi.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.
Collapse
Affiliation(s)
- Camilla Henriksen
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| | - Kristoffer T Baek
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| | | | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dorte Frees
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
41
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
42
|
Ren Q, Zhang X, Sheng Y, Yu N, Li M, Chen Z. Phytic acid-Cu 2+ framework/Cu 2-xS nanocomposites with heat-shock protein down-modulation ability for enhanced multimodal combination therapy. J Colloid Interface Sci 2023; 652:2116-2126. [PMID: 37703681 DOI: 10.1016/j.jcis.2023.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Mild-temperature photothermal therapy (mPTT) has shown some advantages over traditional photothermal therapy, such as reducing the damage to surrounding healthy tissues and minimizing side effects. Nevertheless, cancer cells can easily repair damage caused by mild hyperthermia due to heat shock proteins (HSPs). Thus, it is imperative to maximize the mPTT efficiency by down-regulating HSPs overexpression and combining other cancer treatments. Herein, we report the synthesis of phytic acid (PA)-Cu2+ framework/copper sulfide (Cu2-xS) nanocomposites (abbreviated as PA-Cu/Cu2-xS NPs) as the novel therapeutic platform that can down-regulate HSPs overexpression for enhanced multimodal mPTT/chemodynamic therapy (CDT)/chemotherapy. PA-Cu/Cu2-xS NPs were prepared through self-assembly and in-situ vulcanization strategy, resulting in irregular-shaped particles with an approximate size of 100 nm. PA-Cu/Cu2-xS NPs display a plasmon effect from Cu2-xS, which enhances near-infrared (NIR) absorption and possesses excellent photothermal conversion efficiency (41.7%). Moreover, PA-Cu/Cu2-xS NPs exhibit Fenton-like reaction activity resulting from the Cu ions for CDT, and the reaction activity can be further improved 1.3 times due to mild hyperthermia during mPTT. Furthermore, the generated hydroxyl radical (•OH) can effectively decrease HSPs level to enhance mPTT. PA-Cu/Cu2-xS NPs can also serve as a drug delivery system, and they are capable of loading doxorubicin (DOX) with a loading ability (20.7%). Combining mPTT/CDT/chemotherapy exhibits significant inhibition of tumor growth. This approach can serve as a basis for designing more exquisite platforms that combine mPTT with other therapies to achieve more effective cancer treatment.
Collapse
Affiliation(s)
- Qian Ren
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaojing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
43
|
Wentink A, Rosenzweig R. Protein disaggregation machineries in the human cytosol. Curr Opin Struct Biol 2023; 83:102735. [PMID: 38000128 DOI: 10.1016/j.sbi.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Proteins carry out the vast majority of functions in cells, but can only do so when properly folded. Following stress or mutation, proteins can lose their proper fold, resulting in misfolding, inactivity, and aggregation-posing a threat to cellular health. In order to counteract protein aggregation, cells have evolved a remarkable subset of molecular chaperones, called protein disaggregases, which collaboratively possess the ability to forcibly untangle protein aggregates. Here, we review the different chaperone disaggregation machineries present in the human cytosol and their mechanisms of action. Understanding, how these disaggregases function, is both universally and clinically important, as protein aggregation has been linked to multiple, debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne Wentink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands.
| | - Rina Rosenzweig
- Chemical and Structural Biology Department, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
44
|
Cornejo FA, Muñoz-Villagrán C, Luraschi RA, Sandoval-Díaz MP, Cancino CA, Pugin B, Morales EH, Piotrowski JS, Sandoval JM, Vásquez CC, Arenas FA. Soft-metal(loid)s induce protein aggregation in Escherichia coli. Front Microbiol 2023; 14:1281058. [PMID: 38075883 PMCID: PMC10699150 DOI: 10.3389/fmicb.2023.1281058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 10/08/2024] Open
Abstract
Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.
Collapse
Affiliation(s)
- Fabián A. Cornejo
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto A. Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María P. Sandoval-Díaz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camila A. Cancino
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | | | | | | | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A. Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
45
|
Katikaridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A. Structural basis of aggregate binding by the AAA+ disaggregase ClpG. J Biol Chem 2023; 299:105336. [PMID: 37827289 PMCID: PMC10641755 DOI: 10.1016/j.jbc.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a β-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Timo Jenne
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Division of Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
46
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
47
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
48
|
Cui S, Zhang T, Xiong X, Zhao J, Cao Q, Zhou H, Xia XG. Detergent-insoluble PFN1 inoculation expedites disease onset and progression in PFN1 transgenic rats. Front Neurosci 2023; 17:1279259. [PMID: 37817804 PMCID: PMC10560758 DOI: 10.3389/fnins.2023.1279259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Accumulating evidence suggests a gain of elusive toxicity in pathogenically mutated PFN1. The prominence of PFN1 aggregates as a pivotal pathological hallmark in PFN1 transgenic rats underscores the crucial involvement of protein aggregation in the initiation and progression of neurodegeneration. Detergent-insoluble materials were extracted from the spinal cords of paralyzed rats afflicted with ALS and were intramuscularly administered to asymptomatic recipient rats expressing mutant PFN1, resulting in an accelerated development of PFN1 inclusions and ALS-like phenotypes. This effect diminished when the extracts derived from wildtype PFN1 transgenic rats were employed, as detergent-insoluble PFN1 was detected exclusively in mutant PFN1 transgenic rats. Consequently, the factor influencing the progression of ALS pathology in recipient rats is likely associated with the presence of detergent-insoluble PFN1 within the extracted materials. Noteworthy is the absence of disease course modification upon administering detergent-insoluble extracts to rats that already displayed PFN1 inclusions, suggesting a seeding rather than augmenting role of such extracts in initiating neuropathological changes. Remarkably, pathogenic PFN1 exhibited an enhanced affinity for the molecular chaperone DNAJB6, leading to the sequestration of DNAJB6 within protein inclusions, thereby depleting its availability for cellular functions. These findings shed light on a novel mechanism that underscores the prion-like characteristics of pathogenic PFN1 in driving neurodegeneration in the context of PFN1-related ALS.
Collapse
Affiliation(s)
- Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
49
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
50
|
Velasco-Carneros L, Cuéllar J, Dublang L, Santiago C, Maréchal JD, Martín-Benito J, Maestro M, Fernández-Higuero JÁ, Orozco N, Moro F, Valpuesta JM, Muga A. The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70. Nat Commun 2023; 14:5436. [PMID: 37670029 PMCID: PMC10480186 DOI: 10.1038/s41467-023-41150-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
J-domain proteins tune the specificity of Hsp70s, engaging them in precise functions. Despite their essential role, the structure and function of many J-domain proteins remain largely unknown. We explore human DNAJA2, finding that it reversibly forms highly-ordered, tubular structures that can be dissociated by Hsc70, the constitutively expressed Hsp70 isoform. Cryoelectron microscopy and mutational studies reveal that different domains are involved in self-association. Oligomer dissociation into dimers potentiates its interaction with unfolded client proteins. The J-domains are accessible to Hsc70 within the tubular structure. They allow binding of closely spaced Hsc70 molecules that could be transferred to the unfolded substrate for its cooperative remodelling, explaining the efficient recovery of DNAJA2-bound clients. The disordered C-terminal domain, comprising the last 52 residues, regulates its holding activity and productive interaction with Hsc70. These in vitro findings suggest that the association equilibrium of DNAJA2 could regulate its interaction with client proteins and Hsc70.
Collapse
Affiliation(s)
- Lorea Velasco-Carneros
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jorge Cuéllar
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Leire Dublang
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - César Santiago
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, (UAB), 08193, Bellaterra (Barcelona), Spain
| | - Jaime Martín-Benito
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Moisés Maestro
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Natalia Orozco
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain.
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|