1
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
2
|
Kuś K, Carrique L, Kecman T, Fournier M, Hassanein SS, Aydin E, Kilchert C, Grimes JM, Vasiljeva L. DSIF factor Spt5 coordinates transcription, maturation and exoribonucleolysis of RNA polymerase II transcripts. Nat Commun 2025; 16:10. [PMID: 39746995 PMCID: PMC11695829 DOI: 10.1038/s41467-024-55063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Precursor messenger RNA (pre-mRNA) is processed into its functional form during RNA polymerase II (Pol II) transcription. Although functional coupling between transcription and pre-mRNA processing is established, the underlying mechanisms are not fully understood. We show that the key transcription termination factor, RNA exonuclease Xrn2 engages with Pol II forming a stable complex. Xrn2 activity is stimulated by Spt5 to ensure efficient degradation of nascent RNA leading to Pol II dislodgement from DNA. Our results support a model where Xrn2 first forms a stable complex with the elongating Pol II to achieve its full activity in degrading nascent RNA revising the current 'torpedo' model of termination, which posits that RNA degradation precedes Xrn2 engagement with Pol II. Spt5 is also a key factor that attenuates the expression of non-coding transcripts, coordinates pre-mRNA splicing and 3'-end processing. Our findings indicate that engagement with the transcribing Pol II is an essential regulatory step modulating the activity of RNA enzymes such as Xrn2, thus advancing our understanding of how RNA maturation is controlled during transcription.
Collapse
Affiliation(s)
- Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Loic Carrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sayed Hassanein
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2025; 437:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
4
|
Kopczyńska M, Saha U, Romanenko A, Nojima T, Gdula MR, Kamieniarz-Gdula K. Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide. Nucleic Acids Res 2024:gkae1240. [PMID: 39718990 DOI: 10.1093/nar/gkae1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA). However, in higher eukaryotes, the end of mRNA is separated from the sites of transcription termination by hundreds to thousands of base pairs. Currently used genomic annotations only take account of the end of the mature transcript - the sites where pre-mRNA cleavage occurs, while the regions in which transcription terminates are unannotated. Here, we describe the evidence for a marker of transcription termination, which could be widely applicable in genomic studies. Pol II termination regions can be determined genome-wide by detecting Pol II phosphorylated on threonine 4 of its C-terminal domain (Pol II CTD-T4ph). Pol II in this state pauses before leaving the DNA template. Up to date this potent mark has been underused because the evidence for its place and role in termination is scattered across multiple publications. We summarize the observations regarding Pol II CTD-T4ph in termination regions and present bioinformatic analyses that further support Pol II CTD-T4ph as a global termination mark in animals.
Collapse
Affiliation(s)
- Magda Kopczyńska
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Upasana Saha
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Takayuki Nojima
- Medical institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michał R Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Papantonis A, Antebi A, Partridge L, Beyer A. Age-associated changes in transcriptional elongation and their effects on homeostasis. Trends Cell Biol 2024:S0962-8924(24)00247-2. [PMID: 39706758 DOI: 10.1016/j.tcb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Cellular homeostasis declines with age due to the declining fidelity of biosynthetic processes and the accumulation of molecular damage. Yet, it remains largely elusive how individual processes are affected during aging and what their specific contribution to age-related functional decline is. This review discusses a series of recent publications that has shown that transcription elongation is compromised during aging due to increasing DNA damage, stalling of RNA polymerase II (RNAPII), erroneous transcription initiation in gene bodies, and accelerated RNAPII elongation. Importantly, several of these perturbations likely arise from changes in chromatin organization with age. Thus, taken together, this work establishes a network of interlinked processes contributing to age-related decline in the quantity and quality of RNA production.
Collapse
Affiliation(s)
- Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Andreas Beyer
- Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Huang T, Zhong S, Sun J, Shen D, Zhang X, Zhao Q. Whole transcriptome analysis identifies differentially expressed mRNA, miRNA and lncRNA associated with male sterility in the silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101280. [PMID: 38964195 DOI: 10.1016/j.cbd.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Insect sterility technology is gradually being applied to the control of lepidoptera pests, and the target gene for male sterility is the core of this technology. JMS is a mutant silkworm that exhibits male sterility, and to elucidate its formation mechanism, this study conducted a full transcriptome analysis of the testes of JMS and its wild-type silkworms 48 h after pupation, identifying 205 DElncRNAs, 913 mRNAs, and 92 DEmiRNAs. The KEGG pathway enrichment analysis of the DEmRNAs revealed that they were involved in the biosynthesis of amino acids and ECM-receptor interactions. Combined with ceRNA regulatory network KEGG analysis suggests that pathways from amino acid biosynthesis to hydrolytic processes of protein synthesis may play a crucial role in the formation of JMS mutant variants. Our study deepens our understanding of the regulatory network of male sterility genes in silkworms; it also provides a new perspective for insect sterility technology.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Juan Sun
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
7
|
Fosseprez O, Cuvier O. Uncovering the functions and mechanisms of regulatory elements-associated non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195059. [PMID: 39226990 DOI: 10.1016/j.bbagrm.2024.195059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.
Collapse
Affiliation(s)
- Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| |
Collapse
|
8
|
Zhang X, Liang SB, Yi Z, Qiao Z, Xu B, Geng H, Wang H, Yin X, Tang M, Ge W, Xu YZ, Liang K, Fan YJ, Chen L. Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila. Nucleic Acids Res 2024; 52:13110-13127. [PMID: 39470713 PMCID: PMC11602159 DOI: 10.1093/nar/gkae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
R-loops are involved in many biological processes in cells, yet the regulatory principles for R-loops in vivo and their impact on development remain to be explored. Here, we modified the CUT&Tag strategy to profile R-loops in Drosophila at multiple developmental stages. While high GC content promotes R-loop formation in mammalian cells, it is not required in Drosophila. In contrast, RNAPII abundance appears to be a universal inducing factor for R-loop formation, including active promoters and enhancers, and H3K27me3 decorated repressive regions and intergenic repeat sequences. Importantly, such a regulatory relationship is dynamically maintained throughout development, and development-related transcription factors may regulate RNAPII activation and R-loop dynamics. By ablating Spt6, we further showed the global R-loop induction coupled with RNAPII pausing. Importantly, depending on the gene length, genes underwent up- or down-regulation, both of which were largely reversed by rnh1 overexpression, suggesting that R-loops play a significant role in the divergent regulation of transcription by Spt6 ablation. DNA damage, defects in survival, and cuticle development were similarly alleviated by rnh1 overexpression. Altogether, our findings indicate that dynamic R-loop regulation is dictated by RNAPII pausing and transcription activity, and plays a feedback role in gene regulation, genome stability maintenance, and Drosophila development.
Collapse
Affiliation(s)
- Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shao-Bo Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhuoyun Yi
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Qiao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Honghong Wang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinhua Yin
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingliang Tang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yong-Zhen Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Jie Fan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Tellier M, Ansa G, Murphy S. Isoginkgetin and Madrasin are poor splicing inhibitors. PLoS One 2024; 19:e0310519. [PMID: 39432454 PMCID: PMC11493277 DOI: 10.1371/journal.pone.0310519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
The production of eukaryotic mRNAs requires transcription by RNA polymerase (pol) II and co-transcriptional processing, including capping, splicing, and cleavage and polyadenylation. Pol II can positively affect co-transcriptional processing through interaction of factors with its carboxyl terminal domain (CTD), comprising 52 repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, and pol II elongation rate can regulate splicing. Splicing, in turn, can also affect transcriptional activity and transcription elongation defects are caused by some splicing inhibitors. Multiple small molecule inhibitors of splicing are now available, some of which specifically target SF3B1, a U2 snRNP component. SF3B1 inhibition results in a general downregulation of transcription elongation, including premature termination of transcription caused by increased use of intronic poly(A) sites. Here, we have investigated the effect of Madrasin and Isoginkgetin, two non-SF3B1 splicing inhibitors, on splicing and transcription. Surprisingly, we found that both Madrasin and Isoginkgetin affect transcription before any effect on splicing, indicating that their effect on pre-mRNA splicing is likely to be indirect. Both small molecules promote a general downregulation of transcription. Based on these and other published results, we conclude that these two small molecules should not be considered as primarily pre-mRNA splicing inhibitors.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gilbert Ansa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Sun Q, Yang Z, Qiu M, Wang S, Zhao X, Pang W, Liu R, Wang Y, Wang H, Hao J, Gao M. Inflammatory factor TNFα-induced circDMD mediates R-loop formation to promote tumorigenesis. Int J Biol Macromol 2024; 280:135689. [PMID: 39288863 DOI: 10.1016/j.ijbiomac.2024.135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Chronic inflammation has been associated with the development of cancer in various anatomical sites. However, the crosstalk between inflammatory factors and circular RNAs (circRNAs) in tumorigenesis is unclear. Here, we revealed that circDMD was upregulated in Tumor necrosis factor alpha-like (TNFα)-induced HeLa cells. circDMD promoted the expression and nuclear translocation of Nuclear factor kappa B subunit (NF-κB) to activate downstream factors. circDMD absorbed miR-4711-5p to increase Lysine demethylase 5 A (KDM5A) expression, which reduced Suppressor of cytokine signaling 1 (SOCS1) to decrease the ubiquitination of Rela proto-oncogene (P65). In addition, circDMD promoted Fms related receptor tyrosine kinase 4 (VEGFR3) expression through the formation of an R-loop in its promoter. circDMD promoted tumor proliferation, metastasis and autophagy by activating the NF-κB pathways in vitro and in tumors derived from HeLa cells in vivo. Taken together, our results indicated that the expression of circDMD is induced by TNFα and contributes to tumorigenesis in cervical cancer (CC), which might help elucidate the regulatory effects of circRNAs on tumorigenesis.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhen Yang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China.
| | - Minghan Qiu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Shoujun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Xingli Zhao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Hematology, Oncology Center, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Wenwen Pang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Yayun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Huaqing Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Jie Hao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| | - Ming Gao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| |
Collapse
|
11
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
13
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
14
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
16
|
Rajendran P, Sekar R, Abdallah BM, Fathima JH S, Ali EM, Jayaraman S, Abdelsalam SA, Veeraraghavan V. Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review. Noncoding RNA Res 2024; 9:602-611. [PMID: 38532798 PMCID: PMC10963247 DOI: 10.1016/j.ncrna.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral Pathology & Microbiology, Meenakshi Ammal Dental College & Hospital, Alapakkam Main Road, Maduravoyal, Chennai, 95, TN, India
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Shazia Fathima JH
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Ragas Dental College and Hospitals, Chennai, 600119, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Selvaraj Jayaraman
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
17
|
Fianu I, Ochmann M, Walshe JL, Dybkov O, Cruz JN, Urlaub H, Cramer P. Structural basis of Integrator-dependent RNA polymerase II termination. Nature 2024; 629:219-227. [PMID: 38570683 PMCID: PMC11062913 DOI: 10.1038/s41586-024-07269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.
Collapse
Affiliation(s)
- Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Moritz Ochmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James L Walshe
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Joseph Neos Cruz
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
18
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
19
|
Liu L, Liu Z, Liu Q, Wu W, Lin P, Liu X, Zhang Y, Wang D, Prager BC, Gimple RC, Yu J, Zhao W, Wu Q, Zhang W, Wu E, Chen X, Luo J, Rich JN, Xie Q, Jiang T, Chen R. LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2'-O-methylation. Nat Commun 2023; 14:7526. [PMID: 37980347 PMCID: PMC10657414 DOI: 10.1038/s41467-023-43113-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/31/2023] [Indexed: 11/20/2023] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal of human cancers, containing glioma stem cells (GSCs) that display therapeutic resistance. Here, we report that the lncRNA INHEG is highly expressed in GSCs compared to differentiated glioma cells (DGCs) and promotes GSC self-renewal and tumorigenicity through control of rRNA 2'-O-methylation. INHEG induces the interaction between SUMO2 E3 ligase TAF15 and NOP58, a core component of snoRNP that guides rRNA methylation, to regulate NOP58 sumoylation and accelerate the C/D box snoRNP assembly. INHEG activation enhances rRNA 2'-O-methylation, thereby increasing the expression of oncogenic proteins including EGFR, IGF1R, CDK6 and PDGFRB in glioma cells. Taken together, this study identifies a lncRNA that connects snoRNP-guided rRNA 2'-O-methylation to upregulated protein translation in GSCs, supporting an axis for potential therapeutic targeting of gliomas.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ziyang Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinghua Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wei Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Peng Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Xing Liu
- Beijing Neurosurgical Institute, 100050, Beijing, China
| | - Yuechuan Zhang
- Department of Department of Orthopedics, Peking Union Medical College Hospital, 100730, Beijing, China
| | - Dongpeng Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Briana C Prager
- Department of Pathology, Case Western Reserve University, Cleveland, 44106, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, 44195, USA
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, 44106, USA
| | - Jichuan Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Weixi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, 15261, USA
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China
| | - Erzhong Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaomin Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianjun Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jeremy N Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, 15261, USA.
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, 100050, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
20
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Fragkos M, Choleza M, Papadopoulou P. The Role of γH2AX in Replication Stress-induced Carcinogenesis: Possible Links and Recent Developments. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:639-648. [PMID: 37927801 PMCID: PMC10619570 DOI: 10.21873/cdp.10266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cancer is a condition characterized by genomic instability and gross chromosomal aberrations. The inability of the cell to timely and efficiently complete its replication cycle before entering mitosis is one of the most common causes of DNA damage and carcinogenesis. Phosphorylation of histone 2AX (H2AX) on S139 (γH2AX) is an indispensable step in the response to DNA damage, as it is required for the assembly of repair factors at the sites of damage. γH2AX is also a marker of DNA replication stress, mainly due to fork collapse that often follows prolonged replication stalling or repair of arrested forks, which involves the generation of DNA breaks. Although the role of γH2AX in the repair of DNA breaks has been well defined, the function of γH2AX in replicative stress remains unclear. In this review, we present the recent advances in the field of replication stress, and highlight a novel function for γH2AX that is independent of its role in the response to DNA damage. We discuss studies that support a role for γΗ2ΑΧ early in the response to replicative stress, which does not involve the repair of DNA breaks. We also highlight recent data proposing that γH2AX acts as a chromatin remodeling component, implicated in the efficient resolution of stalled replication forks. Understanding the mechanism by which γH2AX enables cellular recovery after replication stress will allow identification of novel cancer biomarkers, as well as new targets for cancer therapies.
Collapse
Affiliation(s)
- Michalis Fragkos
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Maria Choleza
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| |
Collapse
|
22
|
Miller CLW, Warner JL, Winston F. Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability. Trends Genet 2023; 39:858-872. [PMID: 37481442 PMCID: PMC10592469 DOI: 10.1016/j.tig.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Transcription elongation requires elaborate coordination between the transcriptional machinery and chromatin regulatory factors to successfully produce RNA while preserving the epigenetic landscape. Recent structural and genomic studies have highlighted that suppressor of Ty 6 (Spt6), a conserved histone chaperone and transcription elongation factor, sits at the crux of the transcription elongation process. Other recent studies have revealed that Spt6 also promotes DNA replication and genome integrity. Here, we review recent studies of Spt6 that have provided new insights into the mechanisms by which Spt6 controls transcription and have revealed the breadth of Spt6 functions in eukaryotic cells.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - James L Warner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
24
|
McCann JL, Cristini A, Law EK, Lee SY, Tellier M, Carpenter MA, Beghè C, Kim JJ, Sanchez A, Jarvis MC, Stefanovska B, Temiz NA, Bergstrom EN, Salamango DJ, Brown MR, Murphy S, Alexandrov LB, Miller KM, Gromak N, Harris RS. APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer. Nat Genet 2023; 55:1721-1734. [PMID: 37735199 PMCID: PMC10562255 DOI: 10.1038/s41588-023-01504-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.
Collapse
Affiliation(s)
- Jennifer L McCann
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jae Jin Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Anthony Sanchez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bojana Stefanovska
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Daniel J Salamango
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret R Brown
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
25
|
Yin Y, Shen X. Noncoding RNA-chromatin association: Functions and mechanisms. FUNDAMENTAL RESEARCH 2023; 3:665-675. [PMID: 38933302 PMCID: PMC11197541 DOI: 10.1016/j.fmre.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2024] Open
Abstract
Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs (ncRNAs). Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play important roles in physiological and pathological processes. Notably, a large subset of ncRNAs is enriched on chromatin and participates in regulating gene expression and the dynamics of chromatin structure and status. In this review, we summarize recent advances in the functional study of chromatin-associated ncRNAs and mechanistic insights into how these ncRNAs associate with chromatin. We also discuss the potential future challenges which still need to be overcome in this field.
Collapse
Affiliation(s)
- Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Liu X, Liu X, Du Y, Zou D, Tian C, Li Y, Lan X, David CJ, Sun Q, Chen M. Aberrant accumulation of Kras-dependent pervasive transcripts during tumor progression renders cancer cells dependent on PAF1 expression. Cell Rep 2023; 42:112979. [PMID: 37572321 DOI: 10.1016/j.celrep.2023.112979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
KRAS is the most commonly mutated oncogene in human cancer, and mutant KRAS is responsible for over 90% of pancreatic ductal adenocarcinoma (PDAC), the most lethal cancer. Here, we show that RNA polymerase II-associated factor 1 complex (PAF1C) is specifically required for survival of PDAC but not normal adult pancreatic cells. We show that PAF1C maintains cancer cell genomic stability by restraining overaccumulation of enhancer RNAs (eRNAs) and promoter upstream transcripts (PROMPTs) driven by mutant Kras. Loss of PAF1C leads to cancer-specific lengthening and accumulation of pervasive transcripts on chromatin and concomitant aberrant R-loop formation and DNA damage, which, in turn, trigger cell death. We go on to demonstrate that the global transcriptional hyperactivation driven by Kras signaling during tumorigenesis underlies the specific demand for PAF1C by cancer cells. Our work provides insights into how enhancer transcription hyperactivation causes general transcription factor addiction during tumorigenesis.
Collapse
Affiliation(s)
- Xinhong Liu
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangzheng Liu
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yingxue Du
- Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Di Zou
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Tian
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yong Li
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xun Lan
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Charles J David
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qianwen Sun
- Tsinghua University School of Life Sciences, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mo Chen
- State Key Laboratory of Molecular Oncology, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Wooten M, Takushi B, Ahmad K, Henikoff S. Aclarubicin stimulates RNA polymerase II elongation at closely spaced divergent promoters. SCIENCE ADVANCES 2023; 9:eadg3257. [PMID: 37315134 DOI: 10.1126/sciadv.adg3257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Anthracyclines are a class of widely prescribed anticancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we used Cleavage Under Targets and Tagmentation (CUT&Tag) to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation affect chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of noncanonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the cancer-killing activity of aclarubicin is driven by the disruption of nucleosomes and RNA polymerase II.
Collapse
Affiliation(s)
| | | | - Kami Ahmad
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
28
|
Henfrey C, Murphy S, Tellier M. Regulation of mature mRNA levels by RNA processing efficiency. NAR Genom Bioinform 2023; 5:lqad059. [PMID: 37305169 PMCID: PMC10251645 DOI: 10.1093/nargab/lqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Transcription and co-transcriptional processes, including pre-mRNA splicing and mRNA cleavage and polyadenylation, regulate the production of mature mRNAs. The carboxyl terminal domain (CTD) of RNA polymerase (pol) II, which comprises 52 repeats of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 peptide, is involved in the coordination of transcription with co-transcriptional processes. The pol II CTD is dynamically modified by protein phosphorylation, which regulates recruitment of transcription and co-transcriptional factors. We have investigated whether mature mRNA levels from intron-containing protein-coding genes are related to pol II CTD phosphorylation, RNA stability, and pre-mRNA splicing and mRNA cleavage and polyadenylation efficiency. We find that genes that produce a low level of mature mRNAs are associated with relatively high phosphorylation of the pol II CTD Thr4 residue, poor RNA processing, increased chromatin association of transcripts, and shorter RNA half-life. While these poorly-processed transcripts are degraded by the nuclear RNA exosome, our results indicate that in addition to RNA half-life, chromatin association due to a low RNA processing efficiency also plays an important role in the regulation of mature mRNA levels.
Collapse
Affiliation(s)
- Callum Henfrey
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
29
|
Chen W, Chen S, Tian Y, Liu Y, Chen C, Wang B, Chen C, Liu F. A LncRNA gene polymorphism (rs1814343) is associated with the risk of coronary artery lesions in southern Chinese Kawasaki disease patients. J Gene Med 2023:e3514. [PMID: 37097087 DOI: 10.1002/jgm.3514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a multisystemic angiitis, and its most disastrous complication is coronary artery lesions (CALs). Recently, the role of long non-coding RNAs (lncRNAs) in KD has been reported. rs1814343 is a lncRNA, but the relationship between the lncRNA rs1814343 polymorphism and KD risk remains elusive. METHODS We enrolled 1625 Kawasaki disease patients (583 patients with CAL and 1042 without CAL) and 1000 healthy controls from a southern Chinese population. We genotyped the rs1814343 C > T polymorphism in KD and control patients using the TaqMan method. The odds ratio (OR) and 95% confidence interval (CI) were used to estimate the strength of the association. RESULTS There was no significant association between the lncRNA rs1814343 C > T polymorphism and KD susceptibility. However, we stratified patients in this study by CAL and sex. First, compared with the control groups, we found that the rs1814343 genotype increased risk for KD patients with CAL (TT vs. CC + CT: OR = 1.36, 95% CI = 1.08-1.71, p = 0.009). Moreover, when KD patients were stratified by CAL, the TT genotypes of this lncRNA polymorphism contributed to a relatively higher occurrence of KD with CAL than that was found in the CC/CT genotype patients (TT vs. CC + CT: OR = 1.35, 95% CI = 1.07-1.69, p = 0.011). In addition, our research suggested that the TT variant genotype in the lncRNA rs1814343 had an obvious risk of KD with CAL susceptibility in male children. CONCLUSION The lncRNA rs1814343 C > T polymorphism was related to higher susceptibility of KD with CAL.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Cardiology and Paediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuo Chen
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Tian
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqing Liu
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cheng Chen
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingtong Wang
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chongfeng Chen
- Department of Cardiology and Paediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fucheng Liu
- Department of Cardiology and Paediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
32
|
Wagner EJ, Tong L, Adelman K. Integrator is a global promoter-proximal termination complex. Mol Cell 2023; 83:416-427. [PMID: 36634676 PMCID: PMC10866050 DOI: 10.1016/j.molcel.2022.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 01/13/2023]
Abstract
Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Sher S, Whipp E, Walker J, Zhang P, Beaver L, Williams K, Orwick S, Ravikrishnan J, Walker B, Perry E, Gregory C, Purcell M, Pan A, Yan P, Alinari L, Johnson AJ, Frigault MM, Greer JM, Hamdy A, Izumi R, Mo X, Sampath D, Woyach J, Blachly J, Byrd JC, Lapalombella R. VIP152 is a selective CDK9 inhibitor with pre-clinical in vitro and in vivo efficacy in chronic lymphocytic leukemia. Leukemia 2023; 37:326-338. [PMID: 36376377 PMCID: PMC9898036 DOI: 10.1038/s41375-022-01758-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is effectively treated with targeted therapies including Bruton tyrosine kinase inhibitors and BCL2 antagonists. When these become ineffective, treatment options are limited. Positive transcription elongation factor complex (P-TEFb), a heterodimeric protein complex composed of cyclin dependent kinase 9 (CDK9) and cyclin T1, functions to regulate short half-life transcripts by phosphorylation of RNA Polymerase II (POLII). These transcripts are frequently dysregulated in hematologic malignancies; however, therapies targeting inhibition of P-TEFb have not yet achieved approval for cancer treatment. VIP152 kinome profiling revealed CDK9 as the main enzyme inhibited at 100 nM, with over a 10-fold increase in potency compared with other inhibitors currently in development for this target. VIP152 induced cell death in CLL cell lines and primary patient samples. Transcriptome analysis revealed inhibition of RNA degradation through the AU-Rich Element (ARE) dysregulation. Mechanistically, VIP152 inhibits the assembly of P-TEFb onto the transcription machinery and disturbs binding partners. Finally, immune competent mice engrafted with CLL-like cells of Eµ-MTCP1 over-expressing mice and treated with VIP152 demonstrated reduced disease burden and improvement in overall survival compared to vehicle-treated mice. These data suggest that VIP152 is a highly selective inhibitor of CDK9 that represents an attractive new therapy for CLL.
Collapse
Affiliation(s)
- Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ethan Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Janek Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Janani Ravikrishnan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brandi Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Perry
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Charles Gregory
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Matthew Purcell
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alexander Pan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | | - Xiaokui Mo
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Deepa Sampath
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
34
|
Almentina Ramos Shidi F, Cologne A, Delous M, Besson A, Putoux A, Leutenegger AL, Lacroix V, Edery P, Mazoyer S, Bordonné R. Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex. Nucleic Acids Res 2023; 51:712-727. [PMID: 36537210 PMCID: PMC9881141 DOI: 10.1093/nar/gkac1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Various genetic diseases associated with microcephaly and developmental defects are due to pathogenic variants in the U4atac small nuclear RNA (snRNA), a component of the minor spliceosome essential for the removal of U12-type introns from eukaryotic mRNAs. While it has been shown that a few RNU4ATAC mutations result in impaired binding of essential protein components, the molecular defects of the vast majority of variants are still unknown. Here, we used lymphoblastoid cells derived from RNU4ATAC compound heterozygous (g.108_126del;g.111G>A) twin patients with MOPD1 phenotypes to analyze the molecular consequences of the mutations on small nuclear ribonucleoproteins (snRNPs) formation and on splicing. We found that the U4atac108_126del mutant is unstable and that the U4atac111G>A mutant as well as the minor di- and tri-snRNPs are present at reduced levels. Our results also reveal the existence of 3'-extended snRNA transcripts in patients' cells. Moreover, we show that the mutant cells have alterations in splicing of INTS7 and INTS10 minor introns, contain lower levels of the INTS7 and INTS10 proteins and display changes in the assembly of Integrator subunits. Altogether, our results show that compound heterozygous g.108_126del;g.111G>A mutations induce splicing defects and affect the homeostasis and function of the Integrator complex.
Collapse
Affiliation(s)
- Fatimat Almentina Ramos Shidi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| | - Audric Cologne
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | | | - Vincent Lacroix
- INRIA Erable, CNRS LBBE UMR 5558, University Lyon 1, University of Lyon, 69622 Villeurbanne, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
- Clinical Genetics Unit, Department of Genetics, Centre de Référence Anomalies du Développement et Syndromes Polymalformatifs, Hospices Civils de Lyon, University Lyon 1, Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, GENDEV, 69500 Bron, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, 34293 Montpellier, France
| |
Collapse
|
35
|
Xie J, Libri D, Porrua O. Mechanisms of eukaryotic transcription termination at a glance. J Cell Sci 2023; 136:286227. [PMID: 36594557 DOI: 10.1242/jcs.259873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.
Collapse
Affiliation(s)
- Juanjuan Xie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| |
Collapse
|
36
|
Temporal regulation of head-on transcription at replication initiation sites. iScience 2022; 26:105791. [PMID: 36594032 PMCID: PMC9803852 DOI: 10.1016/j.isci.2022.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Head-on (HO) collisions between the DNA replication machinery and RNA polymerase over R-loop forming sequences (RLFS) are genotoxic, leading to replication fork blockage and DNA breaks. Current models suggest that HO collisions are avoided through replication initiation site (RIS) positioning upstream of active genes, ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription, or intragenic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a feature of RIS, suggesting that HO transcription units (HO TUs) capable of forming R-loops might occur. Through mining phased GRO-seq data, and developing an informatics strategy to stringently identify RIS, we demonstrate that HO TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship between transcription and replication, and supports the idea that HO collisions are avoided through transcriptional regulatory mechanisms.
Collapse
|
37
|
Bragado L, Magalnik M, Mammi P, Romero A, Gaioli N, Pozzi B, Srebrow A. SUMO conjugation regulates the activity of the Integrator complex. Nucleic Acids Res 2022; 50:12444-12461. [PMID: 36454007 PMCID: PMC9757034 DOI: 10.1093/nar/gkac1055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
RNA polymerase II (RNAPII) transcribes small nuclear RNA (snRNA) genes in close proximity to Cajal bodies, subnuclear compartments that depend on the SUMO isopeptidase USPL1 for their assembly. We show here that overexpression of USPL1 as well as of another nuclear SUMO isopeptidase, SENP6, alters snRNA 3'-end cleavage, a process carried out by the Integrator complex. Beyond its role in snRNA biogenesis, this complex is responsible for regulating the expression of different RNAPII transcripts. While several subunits of the complex are SUMO conjugation substrates, we found that the SUMOylation of the INTS11 subunit is regulated by USPL1 and SENP6. We defined Lys381, Lys462 and Lys475 as bona fide SUMO attachment sites on INTS11 and observed that SUMOylation of this protein modulates its subcellular localization and is required for Integrator activity. Moreover, while an INTS11 SUMOylation-deficient mutant is still capable of interacting with INTS4 and INTS9, its interaction with other subunits of the complex is affected. These findings point to a regulatory role for SUMO conjugation on Integrator activity and suggest the involvement of INTS11 SUMOylation in the assembly of the complex. Furthermore, this work adds Integrator-dependent RNA processing to the growing list of cellular processes regulated by SUMO conjugation.
Collapse
Affiliation(s)
- Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Melina Magalnik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Pablo Mammi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Agustín Romero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Nicolás Gaioli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Stein CB, Field AR, Mimoso CA, Zhao C, Huang KL, Wagner EJ, Adelman K. Integrator endonuclease drives promoter-proximal termination at all RNA polymerase II-transcribed loci. Mol Cell 2022; 82:4232-4245.e11. [PMID: 36309014 PMCID: PMC9680917 DOI: 10.1016/j.molcel.2022.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
RNA polymerase II (RNAPII) pausing in early elongation is critical for gene regulation. Paused RNAPII can be released into productive elongation by the kinase P-TEFb or targeted for premature termination by the Integrator complex. Integrator comprises endonuclease and phosphatase activities, driving termination by cleavage of nascent RNA and removal of stimulatory phosphorylation. We generated a degron system for rapid Integrator endonuclease (INTS11) depletion to probe the direct consequences of Integrator-mediated RNA cleavage. Degradation of INTS11 elicits nearly universal increases in active early elongation complexes. However, these RNAPII complexes fail to achieve optimal elongation rates and exhibit persistent Integrator phosphatase activity. Thus, only short transcripts are significantly upregulated following INTS11 loss, including transcription factors, signaling regulators, and non-coding RNAs. We propose a uniform molecular function for INTS11 across all RNAPII-transcribed loci, with differential effects on particular genes, pathways, or RNA biotypes reflective of transcript lengths rather than specificity of Integrator activity.
Collapse
Affiliation(s)
- Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew R Field
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
40
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 DOI: 10.1101/2021.10.30.465508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 PMCID: PMC10015438 DOI: 10.1038/s41594-022-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Basavappa MG, Ferretti M, Dittmar M, Stoute J, Sullivan MC, Whig K, Shen H, Liu KF, Schultz DC, Beiting DP, Lynch KW, Henao-Mejia J, Cherry S. The lncRNA ALPHA specifically targets chikungunya virus to control infection. Mol Cell 2022; 82:3729-3744.e10. [PMID: 36167073 PMCID: PMC10464526 DOI: 10.1016/j.molcel.2022.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Arthropod-borne viruses, including the alphavirus chikungunya virus (CHIKV), cause acute disease in millions of people and utilize potent mechanisms to antagonize and circumvent innate immune pathways including the type I interferon (IFN) pathway. In response, hosts have evolved antiviral counterdefense strategies that remain incompletely understood. Recent studies have found that long noncoding RNAs (lncRNAs) regulate classical innate immune pathways; how lncRNAs contribute to additional antiviral counterdefenses remains unclear. Using high-throughput genetic screening, we identified a cytoplasmic antiviral lncRNA that we named antiviral lncRNA prohibiting human alphaviruses (ALPHA), which is transcriptionally induced by alphaviruses and functions independently of IFN to inhibit the replication of CHIKV and its closest relative, O'nyong'nyong virus (ONNV), but not other viruses. Furthermore, we showed that ALPHA interacts with CHIKV genomic RNA and restrains viral RNA replication. Together, our findings reveal that ALPHA and potentially other lncRNAs can mediate non-canonical antiviral immune responses against specific viruses.
Collapse
Affiliation(s)
- Megha G Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan C Sullivan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kanupriya Whig
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; High-Throughput Screening Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Schultz
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; High-Throughput Screening Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; High-Throughput Screening Core, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Wu AC, Vivori C, Patel H, Sideri T, Moretto F, van Werven FJ. RSC and GRFs confer promoter directionality by restricting divergent noncoding transcription. Life Sci Alliance 2022; 5:e202201394. [PMID: 36114005 PMCID: PMC9481977 DOI: 10.26508/lsa.202201394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The directionality of gene promoters-the ratio of protein-coding over divergent noncoding transcription-is highly variable. How promoter directionality is controlled remains poorly understood. Here, we show that the chromatin remodelling complex RSC and general regulatory factors (GRFs) dictate promoter directionality by attenuating divergent transcription relative to protein-coding transcription. At gene promoters that are highly directional, depletion of RSC leads to a relative increase in divergent noncoding transcription and thus to a decrease in promoter directionality. We find that RSC has a modest effect on nucleosome positioning upstream in promoters at the sites of divergent transcription. These promoters are also enriched for the binding of GRFs such as Reb1 and Abf1. Ectopic targeting of divergent transcription initiation sites with GRFs or the dCas9 DNA-binding protein suppresses divergent transcription. Our data suggest that RSC and GRFs play a pervasive role in limiting divergent transcription relative to coding direction transcription. We propose that any DNA-binding factor, when stably associated with cryptic transcription start sites, forms a barrier which represses divergent transcription, thereby promoting promoter directionality.
Collapse
Affiliation(s)
- Andrew Ck Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Vivori
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Theodora Sideri
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
44
|
Aoi Y, Shah AP, Ganesan S, Soliman SHA, Cho BK, Goo YA, Kelleher NL, Shilatifard A. SPT6 functions in transcriptional pause/release via PAF1C recruitment. Mol Cell 2022; 82:3412-3423.e5. [PMID: 35973425 PMCID: PMC9714687 DOI: 10.1016/j.molcel.2022.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 01/24/2023]
Abstract
It is unclear how various factors functioning in the transcriptional elongation by RNA polymerase II (RNA Pol II) cooperatively regulate pause/release and productive elongation in living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in the release of paused RNA Pol II into gene bodies through an impaired recruitment of PAF1C. Short genes demonstrate a release with increased mature transcripts, whereas long genes are released but fail to yield mature transcripts, due to a reduced processivity resulting from both SPT6 and PAF1C loss. Unexpectedly, SPT6 depletion causes an association of NELF with the elongating RNA Pol II on gene bodies, without any observed functional significance on transcriptional elongation pattern, arguing against a role for NELF in keeping RNA Pol II in the paused state. Furthermore, SPT6 depletion impairs heat-shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through PAF1C recruitment.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H A Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Byoung-Kyu Cho
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Young Ah Goo
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Neil L Kelleher
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
BRAT1 links Integrator and defective RNA processing with neurodegeneration. Nat Commun 2022; 13:5026. [PMID: 36028512 PMCID: PMC9418311 DOI: 10.1038/s41467-022-32763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs. We find that Integrator functions are disrupted by BRAT1 deletion. In particular, defects in BRAT1 impede proper 3' end processing of UsnRNAs and snoRNAs, replication-dependent histone pre-mRNA processing, and alter the expression of protein-coding genes. Importantly, impairments in Integrator function are also evident in patient-derived cells from BRAT1 related neurological disease. Collectively, our data suggest that defects in BRAT1 interfere with proper Integrator functions, leading to incorrect expression of RNAs and proteins, resulting in neurodegeneration.
Collapse
|
46
|
Tellier M, Zaborowska J, Neve J, Nojima T, Hester S, Fournier M, Furger A, Murphy S. CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation. EMBO Rep 2022; 23:e54520. [PMID: 35980303 PMCID: PMC9535751 DOI: 10.15252/embr.202154520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Jonathan Neve
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Takayuki Nojima
- Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Svenja Hester
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | | - Andre Furger
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
47
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
49
|
Sobhani N, Chahwan R, Roudi R, Morris R, Volinia S, Chai D, D’Angelo A, Generali D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers (Basel) 2022; 14:2952. [PMID: 35740618 PMCID: PMC9221286 DOI: 10.3390/cancers14122952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
For decades since the central dogma, cancer biology research has been focusing on the involvement of genes encoding proteins. It has been not until more recent times that a new molecular class has been discovered, named non-coding RNA (ncRNA), which has been shown to play crucial roles in shaping the activity of cells. An extraordinary number of studies has shown that ncRNAs represent an extensive and prevalent group of RNAs, including both oncogenic or tumor suppressive molecules. Henceforth, various clinical trials involving ncRNAs as extraordinary biomarkers or therapies have started to emerge. In this review, we will focus on the prognostic and diagnostic role of ncRNAs for breast cancer.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA;
| | - Stefano Volinia
- Department of Morphology, Embryology and Medical Oncology, Università Degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Dafei Chai
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA27AY, UK;
| | - Daniele Generali
- Department of Medical Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
50
|
Villa T, Porrua O. Pervasive transcription: a controlled risk. FEBS J 2022. [PMID: 35587776 DOI: 10.1111/febs.16530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Transcriptome-wide interrogation of eukaryotic genomes has unveiled the pervasive nature of RNA polymerase II transcription. Virtually, any DNA region with an accessible chromatin structure can be transcribed, resulting in a mass production of noncoding RNAs (ncRNAs) with the potential of interfering with gene expression programs. Budding yeast has proved to be a powerful model organism to understand the mechanisms at play to control pervasive transcription and overcome the risks of hazardous disruption of cellular functions. In this review, we focus on the actors and strategies yeasts employ to govern ncRNA production, and we discuss recent findings highlighting the dangers of losing control over pervasive transcription.
Collapse
Affiliation(s)
- Tommaso Villa
- Institut Jacques Monod CNRS, Université de Paris Cité France
| | - Odil Porrua
- Institut Jacques Monod CNRS, Université de Paris Cité France
| |
Collapse
|