1
|
Ali N, Vora C, Mathuria A, Kataria N, Mani I. Advances in CRISPR-Cas systems for gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:59-81. [PMID: 39266188 DOI: 10.1016/bs.pmbts.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.
Collapse
Affiliation(s)
- Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Park SY, Qiu J, Wei S, Peterson FC, Beltrán J, Medina-Cucurella AV, Vaidya AS, Xing Z, Volkman BF, Nusinow DA, Whitehead TA, Wheeldon I, Cutler SR. An orthogonalized PYR1-based CID module with reprogrammable ligand-binding specificity. Nat Chem Biol 2024; 20:103-110. [PMID: 37872402 PMCID: PMC10746540 DOI: 10.1038/s41589-023-01447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Plants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal '*' module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality. We used this module to create PYR1*MANDI/HAB1* and PYR1*AZIN/HAB1*, which possess nanomolar sensitivities to their activating ligands mandipropamid and azinphos-ethyl. Experiments in Arabidopsis thaliana and Saccharomyces cerevisiae demonstrate the sensitive detection of banned organophosphate contaminants using living biosensors and the construction of multi-input/output genetic circuits. Our new modules enable ligand-programmable multi-channel CID systems for plant and eukaryotic synthetic biology that can empower new plant-based and microbe-based sensing modalities.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Jingde Qiu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Shuang Wei
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jesús Beltrán
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | | | - Aditya S Vaidya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Zenan Xing
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Ian Wheeldon
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA.
- Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA.
| | - Sean R Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Han MH, Issagulova D, Park M. Interplay between epigenome and 3D chromatin structure. BMB Rep 2023; 56:633-644. [PMID: 38052424 PMCID: PMC10761748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the threedimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions. [BMB Reports 2023; 56(12): 633-644].
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dariya Issagulova
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
6
|
Chung YC, Tu LC. Interplay of dynamic genome organization and biomolecular condensates. Curr Opin Cell Biol 2023; 85:102252. [PMID: 37806293 DOI: 10.1016/j.ceb.2023.102252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
After 60 years of chromatin investigation, our understanding of chromatin organization has evolved from static chromatin fibers to dynamic nuclear compartmentalization. Chromatin is embedded in a heterogeneous nucleoplasm in which molecules are grouped into distinct compartments, partitioning nuclear space through phase separation. Human genome organization affects transcription which controls euchromatin formation by excluding inactive chromatin. Chromatin condensates have been described as either liquid-like or solid-like. In this short review, we discuss the dynamic nature of chromatin from the perspective of biomolecular condensates and highlight new live-cell synthetic tools to probe and manipulate chromatin organization and associated condensates.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Tortora MMC, Brennan LD, Karpen G, Jost D. HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation. Proc Natl Acad Sci U S A 2023; 120:e2211855120. [PMID: 37549295 PMCID: PMC10438847 DOI: 10.1073/pnas.2211855120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/28/2023] [Indexed: 08/09/2023] Open
Abstract
The spatial segregation of pericentromeric heterochromatin (PCH) into distinct, membrane-less nuclear compartments involves the binding of Heterochromatin Protein 1 (HP1) to H3K9me2/3-rich genomic regions. While HP1 exhibits liquid-liquid phase separation properties in vitro, its mechanistic impact on the structure and dynamics of PCH condensate formation in vivo remains largely unresolved. Here, using a minimal theoretical framework, we systematically investigate the mutual coupling between self-interacting HP1-like molecules and the chromatin polymer. We reveal that the specific affinity of HP1 for H3K9me2/3 loci facilitates coacervation in nucleo and promotes the formation of stable PCH condensates at HP1 levels far below the concentration required to observe phase separation in purified protein assays in vitro. These heterotypic HP1-chromatin interactions give rise to a strong dependence of the nucleoplasmic HP1 density on HP1-H3K9me2/3 stoichiometry, consistent with the thermodynamics of multicomponent phase separation. The dynamical cross talk between HP1 and the viscoelastic chromatin scaffold also leads to anomalously slow equilibration kinetics, which strongly depend on the genomic distribution of H3K9me2/3 domains and result in the coexistence of multiple long-lived, microphase-separated PCH compartments. The morphology of these complex coacervates is further found to be governed by the dynamic establishment of the underlying H3K9me2/3 landscape, which may drive their increasingly abnormal, aspherical shapes during cell development. These findings compare favorably to 4D microscopy measurements of HP1 condensate formation in live Drosophila embryos and suggest a general quantitative model of PCH formation based on the interplay between HP1-based phase separation and chromatin polymer mechanics.
Collapse
Affiliation(s)
- Maxime M. C. Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| | - Lucy D. Brennan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Gary Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of BioEngineering and BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| |
Collapse
|
9
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Wang Z, Zhang C, Guo J, Wang W, Si Q, Chen C, Luo Y, Duan Z. Exosomal miRNA-223-3p derived from tumor associated macrophages promotes pulmonary metastasis of breast cancer 4T1 cells. Transl Oncol 2023; 35:101715. [PMID: 37329828 PMCID: PMC10366638 DOI: 10.1016/j.tranon.2023.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Research about the effect of exosomes derived from tumor associated macrophages (TAM-exos) in the distant organ metastasis of breast cancer is limited. In this study, we found that TAM-exos could promote the migration of 4T1 cells. Through comparing the expression of microRNAs in 4T1 cells, TAM-exos, and exosomes from bone marrow derived macrophages (BMDM-exos) by sequencing, miR-223-3p and miR-379-5p were screened out as two noteworthy differentially expressed microRNAs. Furthermore, miR-223-3p was confirmed to be the reason for the improved migration and metastasis of 4T1 cells. The expression of miR-223-3p was also increased in 4T1 cells isolated from the lung of tumor-bearing mice. Cbx5, which has been reported to be closely related with metastasis of breast cancer, was identified to be the target of miR-223-3p. Based on the information of breast cancer patients from online databases, miR-223-3p had a negative correlation with the overall survival rate of breast cancer patients within a three-year follow-up, while Cbx5 showed an opposite relationship. Taken together, miR-223-3p in TAM-exos can be delivered into 4T1 cells and exosomal miR-223-3p promotes pulmonary metastasis of 4T1 cells by targeting Cbx5.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chen Zhang
- Department of Immunology, Nankai University, Tianjin 300071, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- BioMetas(Shanghai) Limited, 201203, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
11
|
Erdel F. Phase transitions in heterochromatin organization. Curr Opin Struct Biol 2023; 80:102597. [PMID: 37087823 DOI: 10.1016/j.sbi.2023.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Heterochromatin formation has been proposed to involve phase transitions on the level of the three-dimensional folding of heterochromatin regions and the liquid-liquid demixing of heterochromatin proteins. Here, I outline the hallmarks of such transitions and the current challenges to detect them in living cells. I further discuss the abundance and properties of prominent heterochromatin proteins and relate them to their potential role in driving phase transitions. Recent data from mouse fibroblasts indicate that pericentric heterochromatin is organized via a reordering transition on the level of heterochromatin regions that does not necessarily involve liquid-liquid demixing of heterochromatin proteins. Evaluating key hallmarks of the different candidate phase transition mechanisms across cell types and species will be needed to complete the current picture.
Collapse
Affiliation(s)
- Fabian Erdel
- MCD, Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Li Y, Matsunaga S. Various Strategies for Improved Signal-to-Noise Ratio in CRISPR-Based Live Cell Imaging. CYTOLOGIA 2023. [DOI: 10.1508/cytologia.88.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Fan R, Zhou Y, Chen X, Zhong X, He F, Peng W, Li L, Wang X, Xu Y. Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis. Microbiol Spectr 2023; 11:e0328822. [PMID: 36629433 PMCID: PMC9927323 DOI: 10.1128/spectrum.03288-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here, we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed tomography (micro-CT) and histological analysis showed that under stimulation with P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by human periodontal ligament cells ([hPDLCs]) in vitro, which subsequently resulted in apoptosis and inflammatory cytokine release, which was accomplished by the microRNA-size small RNA (msRNA) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, chromobox 5 (CBX5) was identified as the downstream target of screened-out sRNA45033. Using a dual-luciferase reporter assay, overexpression, and knockdown methods, sRNA45033 was confirmed to target CBX5 to regulate hPDLC apoptosis. In addition, CUT&Tag (cleavage under targets and tagmentation) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence during the development of periodontitis. IMPORTANCE P. gingivalis is a bacterium often associated with periodontitis. This study demonstrates that (i) sRNA45033 in P. gingivalis OMVs targets CBX5, (ii) CBX5 regulates the methylation of p53 DNA and its expression, which is associated with apoptosis, and (iii) a novel mechanism of interaction between hosts and pathogens is mediated by OMVs in the occurrence of periodontitis.
Collapse
Affiliation(s)
- Ruyi Fan
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xu Chen
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xianmei Zhong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Periodontics, Taizhou Stomatological Hospital, Taizhou, China
| | - Fanzhen He
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wenzao Peng
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
14
|
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell 2023; 83:442-451. [PMID: 36736311 PMCID: PMC10044466 DOI: 10.1016/j.molcel.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
The Central Dogma of the flow of genetic information is arguably the crowning achievement of 20th century molecular biology. Reversing the flow of information from RNA to DNA or chromatin has come to the fore in recent years, from the convergence of fundamental discoveries and synthetic biology. Inspired by the example of long noncoding RNAs (lncRNAs) in mammalian genomes that direct chromatin modifications and gene expression, synthetic biologists have repurposed prokaryotic RNA-guided genome defense systems such as CRISPR to edit eukaryotic genomes and epigenomes. Here we explore the parallels of these two fields and highlight opportunities for synergy and future breakthroughs.
Collapse
Affiliation(s)
- Howard Y Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Ma D, Yuan Q, Peng F, Paredes V, Zeng H, Yang Q, Peddi A, Patel A, Liu MS, Sun Z, Gao X. Engineered PROTAC-CID Systems for Mammalian Inducible Gene Regulation. J Am Chem Soc 2023; 145:1593-1606. [PMID: 36626587 PMCID: PMC10162582 DOI: 10.1021/jacs.2c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene regulation via chemically induced dimerization (CID) is useful for biomedical research. However, the number, type, versatility, and in vivo applications of CID tools remain limited. Here, we demonstrate the development of proteolysis-targeting chimera-based scalable CID (PROTAC-CID) platforms by systematically engineering the available PROTAC systems for inducible gene regulation and gene editing. Further, we show orthogonal PROTAC-CIDs that can fine-tune gene expression at gradient levels or multiplex biological signals with different logic gating operations. Coupling the PROTAC-CID platform with genetic circuits, we achieve digitally inducible expression of DNA recombinases, base- and prime-editors for transient genome manipulation. Finally, we package a compact PROTAC-CID system into adeno-associated viral vectors for inducible and reversible gene activation in vivo. This work provides a versatile molecular toolbox that expands the scope of chemically inducible gene regulation in human cells and mice.
Collapse
Affiliation(s)
- Dacheng Ma
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Fei Peng
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Victor Paredes
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Hongzhi Zeng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qiaochu Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Advaith Peddi
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Anika Patel
- Department of Computer Sciences, Rice University, Houston, Texas 77005, USA
| | - Megan S. Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
16
|
Peng Q, Huang Z, Sun K, Liu Y, Yoon CW, Harrison RES, Schmitt DL, Zhu L, Wu Y, Tasan I, Zhao H, Zhang J, Zhong S, Chien S, Wang Y. Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nat Commun 2022; 13:7933. [PMID: 36566209 PMCID: PMC9789998 DOI: 10.1038/s41467-022-35504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Genome architecture and organization play critical roles in cell life. However, it remains largely unknown how genomic loci are dynamically coordinated to regulate gene expression and determine cell fate at the single cell level. We have developed an inducible system which allows Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies (SIMBA) in living cells. In SIMBA, the human heterochromatin protein 1α (HP1α) is fused to mCherry and FRB, which can be induced to form biomolecular assemblies (BAs) with FKBP-scFv, guided to specific genomic loci by a nuclease-defective Cas9 (dCas9) or a transcriptional factor (TF) carrying tandem repeats of SunTag. The induced BAs can not only enhance the imaging signals at target genomic loci using a single sgRNA, either at repetitive or non-repetitive sequences, but also recruit epigenetic modulators such as histone methyltransferase SUV39H1 to locally repress transcription. As such, SIMBA can be applied to simultaneously visualize and manipulate, in principle, any genomic locus with controllable timing in living cells.
Collapse
Affiliation(s)
- Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.
| | - Ziliang Huang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Yahan Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Reed E S Harrison
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Danielle L Schmitt
- Department of Pharmacology, University of California, La Jolla, CA, 92093-0435, USA
| | - Linshan Zhu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, La Jolla, CA, 92093-0435, USA
| | - Sheng Zhong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA
- Department of Medicine, University of California, La Jolla, CA, 92093-0435, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
17
|
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. Capillary forces generated by biomolecular condensates. Nature 2022; 609:255-264. [PMID: 36071192 DOI: 10.1038/s41586-022-05138-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/25/2022] [Indexed: 12/21/2022]
Abstract
Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,The Howard Hughes Medical Institute, Princeton, NJ, USA.
| |
Collapse
|
18
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|