1
|
Liu Z, Liang W, Pan Y. Complement-coagulation crosstalk in idiopathic membranous nephropathy: The potential pathogenesis and therapeutic perspective. Autoimmun Rev 2025; 24:103763. [PMID: 39914678 DOI: 10.1016/j.autrev.2025.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Idiopathic membranous nephropathy (IMN) is a glomerular disease that is prevalent in elderly males. The pathogenesis of IMN includes abnormal autoimmunity and complement activation, both of which leading to the damage of the glomerular filtration structure. Meanwhile, due to the pathological changes in the kidney, certain coagulation-related proteins are leaked from urine, resulting in the imbalance of coagulation homeostasis. Recent studies have indicated the interaction between complement and coagulation systems, while the aberration of both is common in IMN. In this review, we summarize the subsistent and underlying pathogenesis that ensue from complement-coagulation crosstalk and present the emerging evidence in this evolving field.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
2
|
Gadeberg TAF, Jørgensen MH, Olesen HG, Lorentzen J, Harwood SL, Almeida AV, Fruergaard MU, Jensen RK, Kanis P, Pedersen H, Tranchant E, Petersen SV, Thøgersen IB, Kragelund BB, Lyons JA, Enghild JJ, Andersen GR. Cryo-EM analysis of complement C3 reveals a reversible major opening of the macroglobulin ring. Nat Struct Mol Biol 2025:10.1038/s41594-024-01467-4. [PMID: 39849196 DOI: 10.1038/s41594-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/03/2024] [Indexed: 01/25/2025]
Abstract
The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(H2O), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(H2O) analog, C3MA, is indistinguishable from C3b. In contrast, the reaction intermediate C3* adopts a conformation dramatically different from both C3 and C3MA. In C3*, unlocking of the macroglobulin (MG) 3 domain creates a large opening in the MG ring through which the anaphylatoxin (ANA) domain translocates through a transient opening. C3MA formation is inhibited by an MG3-specific nanobody and prevented by linking the ANA domain to the C3 β-chain. Our study reveals an unexpected dynamic behavior of C3 and forms the basis for elucidation of the in vivo contribution of C3 hydrolysis and for controlling complement upon intravascular hemolysis and surface-contact-induced activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philipp Kanis
- Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Emil Tranchant
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Birthe Brandt Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Anthony Lyons
- Department of Molecular Biology and Genetics, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus, Denmark
| | | | | |
Collapse
|
3
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
4
|
Gong AY, Qiao YJ, Chen M, Alam Z, Malhotra DK, Dworkin L, Ju W, Gunning WT. Glomerular injury induced by vinyl carbamate in A/J inbred mice: a novel model of membranoproliferative glomerulonephritis. Front Pharmacol 2024; 15:1462936. [PMID: 39309006 PMCID: PMC11412833 DOI: 10.3389/fphar.2024.1462936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Ethyl carbamate (EC) is a process contaminant found in fermented foods and alcoholic beverages. Metabolic conversion of ethyl carbamate generates vinyl carbamate (VC), a carcinogenic metabolite. EC, as a Group 2A probable human carcinogen, and the more potent VC, are known to cause tumors in rodents. However, their effects on the kidney are unknown and were explored here. Female A/J inbred mice received an intraperitoneal injection of vehicle or VC. Beginning 5 weeks after VC injection, mice showed signs of moribund state. Mouse necropsies revealed renal glomerular injury that histopathologically recapitulated human membranoproliferative glomerulonephritis (MPGN), as evidenced by light microscopy, immunostaining for immunoglobulins and complements, and electron microscopy. To determine the molecular pathomechanisms, a post-hoc analysis was performed on a publicly available RNA-Seq transcriptome of kidneys from control rats and rats treated with fermented wine containing high concentrations of EC. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes revealed that the complement and coagulation cascades were a top predicted biological process involved. Furthermore, pathway-based data integration and visualization revealed that key regulators of complement activation were altered by high EC treatment. Among these, complement factors (CF) D and H, critical positive and negative regulators of the alternative pathway, respectively, were most affected, with CFD induced by 3.49-fold and CFH repressed by 5.9-fold, underscoring a hyperactive alternative pathway. Consistently, exposure of primary glomerular endothelial cells to EC or VC resulted in induction of CFD and repression of CFH, accompanied by increased fixation of C3 and C5b9. This effect seems to be mediated by Ras, one of the top genes that interact with both EC and VC, as identified by analyzing the chemical-gene/protein interactions database. Indeed, EC or VC-elicited complement activation was associated with activation of Ras signaling, but was abolished by the Ras inhibitor farnesyl thiosalicylic acid. Collectively, our findings suggest that VC, a metabolite of EC, induces glomerular injury in mice akin to human MPGN, possibly via perturbing the expression of complement regulators, resulting in an effect that favors activation of the alternative complement pathway.
Collapse
Affiliation(s)
- Athena Y. Gong
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, United States
- Michigan O’Brien Kidney National Resource Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Ying Jin Qiao
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mengxuan Chen
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Zubia Alam
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Deepak K. Malhotra
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Wenjun Ju
- Michigan O’Brien Kidney National Resource Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - William T. Gunning
- Department of Pathology, Medical College of Ohio at University of Toledo, Toledo, OH, United States
| |
Collapse
|
5
|
Kleer JS, Klehr J, Dubler D, Infanti L, Chizzolini C, Huynh-Do U, Ribi C, Trendelenburg M. Factor H-related protein 1 in systemic lupus erythematosus. Front Immunol 2024; 15:1447991. [PMID: 39136026 PMCID: PMC11317429 DOI: 10.3389/fimmu.2024.1447991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Factor H (FH) is a major soluble inhibitor of the complement system and part of a family comprising five related proteins (FHRs 1-5). Deficiency of FHR1 was described to be linked to an elevated risk of systemic lupus erythematosus (SLE). As FHR1 can partially antagonize the functionality of FH, an altered FHR1/FH ratio could not only enhance SLE vulnerability but also affect the disease expression. This study focuses on the analysis of FH and FHR1 at a protein level, and the occurrence of anti-FH autoantibodies (anti-FH) in a large cohort of SLE patients to explore their association with disease activity and/or expression. Methods We assessed FH and FHR1 levels in plasma from 378 SLE patients compared to 84 healthy controls (normal human plasma, NHP), and sera from another cohort of 84 healthy individuals (normal human serum, NHS), using RayBio® CFH and CFHR1 ELISA kits. Patients were recruited by the Swiss SLE Cohort Study (SSCS). Unmeasurable FHR1 levels were all confirmed by Western blot, and in a subgroup of patients by PCR. Anti-FH were measured in SLE patients with non-detectable FHR1 levels and matched control patients using Abnova's CFH IgG ELISA kit. Results Overall, FH and FHR1 levels were significantly higher in healthy controls, but there was no significant difference in FHR1/FH ratios between SLE patients and NHPs. However, SLE patients showed a significantly higher prevalence of undetectable FHR1 compared to all healthy controls (35/378 SLE patients versus 6/168 healthy controls; p= 0.0214, OR=2.751, 95% CI = 1.115 - 8.164), with a consistent trend across all ethnic subgroups. Levels of FH and FHR1, FHR1/FH ratios and absence of FHR1 were not consistently associated with disease activity and/or specific disease manifestations, but absence of FHR1 (primarily equivalent to CFHR1 deficiency) was linked to the presence of anti-FH in SLE patients (p=0.039). Conclusions Deficiency of FHR1 is associated with a markedly elevated risk of developing SLE. A small proportion of FHR1-deficient SLE patients was found to have autoantibodies against FH but did not show clinical signs of microangiopathy.
Collapse
Affiliation(s)
- Jessica S. Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Juliane Klehr
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Denise Dubler
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, University Hospital, Geneva, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, University Hospital, Bern, Switzerland
| | - Camillo Ribi
- Division of Immunology and Allergy, Department of Internal Medicine, University Hospital, Lausanne, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
6
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
7
|
Peterson SL, Krishnan A, Patel D, Khanehzar A, Lad A, Shaughnessy J, Ram S, Callanan D, Kunimoto D, Genead MA, Tolentino MJ. PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2024; 17:517. [PMID: 38675477 PMCID: PMC11053938 DOI: 10.3390/ph17040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.
Collapse
Affiliation(s)
- Sheri L. Peterson
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Anitha Krishnan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - David Callanan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Derek Kunimoto
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Mohamed A. Genead
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
8
|
Obata S, Vaz de Castro PAS, Riella LV, Cravedi P. Recurrent C3 glomerulopathy after kidney transplantation. Transplant Rev (Orlando) 2024; 38:100839. [PMID: 38412598 DOI: 10.1016/j.trre.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The complement system is part of innate immunity and is pivotal in protecting the body against pathogens and maintaining host homeostasis. Activation of the complement system is triggered through multiple pathways, including antibody deposition, a mannan-binding lectin, or activated complement deposition. C3 glomerulopathy (C3G) is a rare glomerular disease driven by complement dysregulation with high post-transplantation recurrence rates. Its treatment is mainly based on immunosuppressive therapies, specifically mycophenolate mofetil and glucocorticoids. Recent years have seen significant progress in understanding complement biology and its role in C3G pathophysiology. New complement-tergeting treatments have been developed and initial trials have shown promising results. However, challenges persist in C3G, with recurrent post-transplantation cases leading to suboptimal outcomes. This review discusses the pathophysiology and management of C3G, with a focus on its recurrence after kidney transplantation.
Collapse
Affiliation(s)
- Shota Obata
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Pedro A S Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Brazil
| | - Leonardo V Riella
- Division of Nephrology and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Paolo Cravedi
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| |
Collapse
|
9
|
Li Y, Moein Moghimi S, Simberg D. Complement-dependent uptake of nanoparticles by blood phagocytes: brief overview and perspective. Curr Opin Biotechnol 2024; 85:103044. [PMID: 38091875 PMCID: PMC11214757 DOI: 10.1016/j.copbio.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Immune recognition and uptake of nanoparticles remain the hot topic in nanomedicine research. Complement is the central player in the immune recognition of engineered nanoparticles. Here, we summarize the accumulated knowledge on the role of complement in the interactions of nanomaterials with blood phagocytes. We describe the interplay between surface properties, complement opsonization, and immune uptake, primarily of iron oxide nanoparticles. We discuss the rigor of the published research and further identify the following knowledge gaps: 1) the role of complement in the variability of uptake of nanomaterials in healthy and diseased subjects, and 2) modulation of complement interactions to improve the performance of nanomaterials. Addressing these gaps is critical to improving translational chances of nanomaterials for drug delivery and imaging applications.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Hauer JJ, Zhang Y, Goodfellow R, Taylor A, Meyer NC, Roberts S, Shao D, Fergus L, Borsa NG, Hall M, Nester CM, Smith RJ. Defining Nephritic Factors as Diverse Drivers of Systemic Complement Dysregulation in C3 Glomerulopathy. Kidney Int Rep 2024; 9:464-477. [PMID: 38344720 PMCID: PMC10851021 DOI: 10.1016/j.ekir.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 09/19/2024] Open
Abstract
Introduction C3 glomerulopathy (C3G) is an ultrarare renal disease characterized by deposition of complement component C3 in the glomerular basement membrane (GBM). Rare and novel genetic variation in complement genes and autoantibodies to complement proteins are commonly identified in the C3G population and thought to drive the underlying complement dysregulation that results in renal damage. However, disease heterogeneity and rarity make accurately defining characteristics of the C3G population difficult. Methods Here, we present a retrospective analysis of the Molecular Otolaryngology and Renal Research Laboratories C3G cohort. This study integrated complement biomarker testing and in vitro tests of autoantibody function to achieve the following 3 primary goals: (i) define disease profiles of C3G based on disease drivers, complement biomarkers, and age; (ii) determine the relationship between in vitro autoantibody tests and in vivo complement dysregulation; and (iii) evaluate the association between autoantibody function and disease progression. Results The largest disease profiles of C3G included patients with autoantibodies to complement proteins (48%) and patients for whom no genetic and/or acquired drivers of disease could be identified (43%). The correlation between the stabilization of convertases by complement autoantibodies as measured by in vitro modified hemolytic assays and systemic biomarkers that reflect in vivo complement dysregulation was remarkably strong. In patients positive for autoantibodies, the degree of stabilization capacity predicted worse renal function. Conclusion This study implicates complement autoantibodies as robust drivers of systemic complement dysregulation in approximately 50% of C3G but also highlights the need for continued discovery-based research to identify novel drivers of disease.
Collapse
Affiliation(s)
- Jill J. Hauer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Renee Goodfellow
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Taylor
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicole C. Meyer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah Roberts
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dingwu Shao
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lauren Fergus
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Monica Hall
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carla M. Nester
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics and Internal Medicine, Divisions of Nephrology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics and Internal Medicine, Divisions of Nephrology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
12
|
Loh JM, Aghababa H, Proft T. Eluding the immune system's frontline defense: Secreted complement evasion factors of pathogenic Gram-positive cocci. Microbiol Res 2023; 277:127512. [PMID: 37826985 DOI: 10.1016/j.micres.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Jacelyn Ms Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
13
|
González-Del-Barrio L, Pérez-Alós L, Cyranka L, Rosbjerg A, Nagy S, Prohászka Z, Garred P, Bayarri-Olmos R. MAP-2:CD55 chimeric construct effectively modulates complement activation. FASEB J 2023; 37:e23256. [PMID: 37823685 DOI: 10.1096/fj.202300571r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.
Collapse
Affiliation(s)
- Lydia González-Del-Barrio
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Simon Nagy
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
14
|
Shahid K, Qayyum S. Eculizumab Versus Ravulizumab for the Treatment of Atypical Hemolytic Uremic Syndrome: A Systematic Review. Cureus 2023; 15:e46185. [PMID: 37905269 PMCID: PMC10613336 DOI: 10.7759/cureus.46185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a type of thrombotic microangiopathy and is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. The complement cascade plays an integral role in aHUS. Mutations in the complement cascade, especially in the alternative pathway (AP) lead to an unregulated and continuous activation of the cascade. Eculizumab and ravulizumab are humanized monoclonal antibodies that inhibit the complement cascade. This systematic analysis reviews the evidence for both antibodies to compare them in terms of safety and efficacy. This review will also assess the evidence for biomarker associations with interventions, the role of genetic mutations in the prognosis of disease, and the financial burden of both treatment options. An in-depth search was conducted across PubMed, Science Direct, and Cochrane Library following the PRISMA 2020 guidelines. Both eculizumab and ravulizumab were comparable in safety and efficacy but ravulizumab was preferred by patients and their caregivers as it posed a lower financial burden and had less frequent dosing. Soluble complement 5b-9 (sC5b), especially in urine, has the potential to be used as a biomarker to assess response to treatment. Genetic mutations, especially mutations in complement factor I (CFI), membrane cofactor protein (MCP), and complement factor H (CFH), were associated with a higher risk of recurrence, and therefore care should be taken when attempting to discontinue treatment in this subset of patients. Treatment with a monoclonal antibody should be initiated as soon as a genetic mutation is identified. Blinded, double-arm, clinical trials preferably with larger sample sizes are needed to effectively compare both the monoclonal antibodies.
Collapse
Affiliation(s)
- Kamran Shahid
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shahid Qayyum
- Nephrology, Diaverum Dialysis Center, Wadi Al Dawasir, SAU
| |
Collapse
|
15
|
Pedersen DV, Lorentzen J, Andersen GR. Structural studies offer a framework for understanding the role of properdin in the alternative pathway and beyond. Immunol Rev 2023; 313:46-59. [PMID: 36097870 PMCID: PMC10087229 DOI: 10.1111/imr.13129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.
Collapse
Affiliation(s)
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
16
|
Lerch M, Schanda K, Lafon E, Würzner R, Mariotto S, Dinoto A, Wendel EM, Lechner C, Hegen H, Rostásy K, Berger T, Wilflingseder D, Höftberger R, Reindl M. More Efficient Complement Activation by Anti–Aquaporin-4 Compared With Anti–Myelin Oligodendrocyte Glycoprotein Antibodies. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200059. [DOI: 10.1212/nxi.0000000000200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
Background and ObjectivesThe objective was to study complement-mediated cytotoxicity induced by immunoglobulin G (IgG) anti–aquaporin-4 antibodies (AQP4-IgG) and anti–myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) in human serum samples from patients suffering from the rare demyelinating diseases of the CNS neuromyelitis optica spectrum disorder (NMOSD) and MOG-IgG–associated disease (MOGAD).MethodsA cell-based assay with HEK293A cells expressing different MOG isoforms (MOGα1-3β1-3) or AQP4-M23 was used. Cells were incubated with human MOG-IgG or AQP4-IgG–positive serum samples together with active or heat-inactivated human complement, and complement-dependent cytotoxicity (CDC) was measured with a lactate dehydrogenase assay. To further quantify antibody-mediated cell damage, formation of the terminal complement complex (TCC) was analyzed by flow cytometry. In addition, immunocytochemistry of the TCC and complement component 3 (C3) was performed.ResultsAQP4-IgG–positive serum samples induced higher CDC and TCC levels than MOG-IgG–positive sera. Notably, both showed a correlation between antibody titers and CDC and also between titers and TCC levels. In addition, all 6 MOG isoforms tested (MOGα1-3β1-3) could induce at least some CDC; however, the strongest MOG-IgG–induced CDC levels were found on MOGα1, MOGα3, and MOGβ1. Different MOG-IgG binding patterns regarding recognition of different MOG isoforms were investigated, and it was found that MOG-IgG recognizing all 6 isoforms again induced highest CDC levels on MOGα1and MOGβ1. Furthermore, surface staining of TCC and C3 revealed positive staining on all 6 MOG isoforms tested, as well as on AQP4-M23.DiscussionBoth MOG-IgG and AQP4-IgG are able to induce CDC in a titer-dependent manner. However, AQP4-IgG showed markedly higher levels of CDC compared with MOG in vitro on target cells. This further highlights the role of complement in AQP4-IgG–mediated disease and diminishes the importance of complement activation in MOG-IgG–mediated autoimmune disease.
Collapse
|
17
|
Abstract
The complement and hemostatic systems are complex systems, and both involve enzymatic cascades, regulators, and cell components-platelets, endothelial cells, and immune cells. The two systems are ancestrally related and are defense mechanisms that limit infection by pathogens and halt bleeding at the site of vascular injury. Recent research has uncovered multiple functional interactions between complement and hemostasis. On one side, there are proteins considered as complement factors that activate hemostasis, and on the other side, there are coagulation proteins that modulate complement. In addition, complement and coagulation and their regulatory proteins strongly interact each other to modulate endothelial, platelet and leukocyte function and phenotype, creating a potentially devastating amplifying system that must be closely regulated to avoid unwanted damage and\or disseminated thrombosis. In view of its ability to amplify all complement activity through the C3b-dependent amplification loop, the alternative pathway of complement may play a crucial role in this context. In this review, we will focus on available and emerging evidence on the role of the alternative pathway of complement in regulating hemostasis and vice-versa, and on how dysregulation of either system can lead to severe thromboinflammatory events.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
18
|
Lucientes-Continente L, Márquez-Tirado B, Goicoechea de Jorge E. The Factor H protein family: The switchers of the complement alternative pathway. Immunol Rev 2023; 313:25-45. [PMID: 36382387 PMCID: PMC10099856 DOI: 10.1111/imr.13166] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.
Collapse
Affiliation(s)
- Laura Lucientes-Continente
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Bárbara Márquez-Tirado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
19
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Pangburn MK. Initiation of the alternative pathway of complement and the history of "tickover". Immunol Rev 2023; 313:64-70. [PMID: 36089768 DOI: 10.1111/imr.13130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The evolutionary history of complement suggests that the alternative pathway arose prior to the arrival of the classical and lectin pathways. In these pathways, target specificity is provided by antibodies and sugar specific lectins. While these efficient initiation systems dominate activation on most targets, the alternative pathway produces most of the C3b and 80%-90% of the C5b-9. While the tickover process, originally proposed by Peter Lachmann, provided ancient hosts with a crude self/non-self-discriminatory system that initiated complement attack on everything foreign, tickover clearly plays a more minor role in complement activation in modern organisms possessing classical and lectin pathways. Spontaneous activation of the alternative pathway via tickover may play a major role in human pathologies where tissue damage is complement-mediated. The molecular mechanism of tickover is still not convincingly proven. Prevailing hypotheses include (a) spontaneous hydrolysis of the thioester in C3 forming the C3b-like C3(H2 O) in solution and (b) "enhanced tickover" in which surfaces cause specific or non-specific contact activated conformational changes in C3. Theoretical considerations, including computer simulations, suggest that the latter mechanism is more likely and that more research needs to be devoted to understanding interactions between biological surfaces and C3.
Collapse
Affiliation(s)
- Michael K Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, USA
| |
Collapse
|
21
|
Stenson EK, Kendrick J, Dixon B, Thurman JM. The complement system in pediatric acute kidney injury. Pediatr Nephrol 2022; 38:1411-1425. [PMID: 36203104 PMCID: PMC9540254 DOI: 10.1007/s00467-022-05755-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 10/24/2022]
Abstract
The complement cascade is an important part of the innate immune system. In addition to helping the body to eliminate pathogens, however, complement activation also contributes to the pathogenesis of a wide range of kidney diseases. Recent work has revealed that uncontrolled complement activation is the key driver of several rare kidney diseases in children, including atypical hemolytic uremic syndrome and C3 glomerulopathy. In addition, a growing body of literature has implicated complement in the pathogenesis of more common kidney diseases, including acute kidney injury (AKI). Complement-targeted therapeutics are in use for a variety of diseases, and an increasing number of therapeutic agents are under development. With the implication of complement in the pathogenesis of AKI, complement-targeted therapeutics could be trialed to prevent or treat this condition. In this review, we discuss the evidence that the complement system is activated in pediatric patients with AKI, and we review the role of complement proteins as biomarkers and therapeutic targets in patients with AKI.
Collapse
Affiliation(s)
- Erin K. Stenson
- grid.430503.10000 0001 0703 675XSection of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, 13121 E 17th Avenue, MS8414, Aurora, CO 80045 USA
| | - Jessica Kendrick
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Bradley Dixon
- grid.430503.10000 0001 0703 675XRenal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO USA
| | - Joshua M. Thurman
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
22
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
24
|
Pedersen H, Jensen RK, Hansen AG, Petersen SV, Thiel S, Laursen NS, Andersen GR. Structure-Guided Engineering of a Complement Component C3-Binding Nanobody Improves Specificity and Adds Cofactor Activity. Front Immunol 2022; 13:872536. [PMID: 35935935 PMCID: PMC9352930 DOI: 10.3389/fimmu.2022.872536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 01/13/2023] Open
Abstract
The complement system is a part of the innate immune system, where it labels intruding pathogens as well as dying host cells for clearance. If complement regulation is compromised, the system may contribute to pathogenesis. The proteolytic fragment C3b of complement component C3, is the pivot point of the complement system and provides a scaffold for the assembly of the alternative pathway C3 convertase that greatly amplifies the initial complement activation. This makes C3b an attractive therapeutic target. We previously described a nanobody, hC3Nb1 binding to C3 and its degradation products. Here we show, that extending the N-terminus of hC3Nb1 by a Glu-Trp-Glu motif renders the resulting EWE-hC3Nb1 (EWE) nanobody specific for C3 degradation products. By fusing EWE to N-terminal CCP domains from complement Factor H (FH), we generated the fusion proteins EWEnH and EWEµH. In contrast to EWE, these fusion proteins supported Factor I (FI)-mediated cleavage of human and rat C3b. The EWE, EWEµH, and EWEnH proteins bound C3b and iC3b with low nanomolar dissociation constants and exerted strong inhibition of alternative pathway-mediated deposition of complement. Interestingly, EWEnH remained soluble above 20 mg/mL. Combined with the observed reactivity with both human and rat C3b as well as the ability to support FI-mediated cleavage of C3b, this features EWEnH as a promising candidate for in vivo studies in rodent models of complement driven pathogenesis.
Collapse
Affiliation(s)
- Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nick Stub Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Gregers Rom Andersen,
| |
Collapse
|
25
|
Hota S, Hussain MS, Kumar M. ErpY-like Lipoprotein of Leptospira Outsmarts Host Complement Regulation by Acquiring Complement Regulators, Activating Alternative Pathways, and Intervening in the Membrane Attack Complex. ACS Infect Dis 2022; 8:982-997. [PMID: 35422118 DOI: 10.1021/acsinfecdis.1c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The survival of pathogenic Leptospira in the host depends on its proficiency to circumvent the immune response. These pathogens evade the complement system in serum by enticing and amassing the serum complement regulators onto their surface. ErpY-like lipoprotein, a surface-exposed protein of Leptospira spp., is conserved in the pathogenic Leptospira serovars. The recombinant form of this protein interacts with multiple extracellular matrix (ECM) components and serum proteins such as soluble complement regulators factor H (FH) and factor I (FI). Here, we document that the supplementation of rErpY-like protein (10 μg/mL) in human serum inhibits complement-mediated bacterial cell lysis and augments the viability of Escherichia coli and saprophytic Leptospira biflexa by more than two-fold. Complement regulators FH and FI, when bound to rErpY-like protein, preserve their respective cofactor and protease activity and cleave the complement component C3b. The supplementation of rErpY-like protein (40 μg/mL) in serum ensued in an ∼90% reduction of membrane attack complex (C5b-9/MAC) deposition through the alternative pathway (AP) of complement activation. However, rErpY-like protein could moderately reduce (∼16%) MAC deposition in serum through the classical pathway (CP). In addition, the rErpY-like protein solely initiated the AP, suggesting its role in the rapid consumption and depletion of the complement components. Blocking the pathogenic Leptospira interrogans surface with anti-rErpY-like antibodies resulted in an increase in MAC formation on the bacterial surface, indicating a specific role of the ErpY-like lipoprotein in complement-mediated immune evasion. This study underscores the role of the ErpY-like lipoprotein of Leptospira in complement evasion.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Md Saddam Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
26
|
Bansal L, Nichols EM, Howsmon DP, Neisen J, Bessant CM, Cunningham F, Petit-Frere S, Ludbrook S, Damian V. Mathematical Modeling of Complement Pathway Dynamics for Target Validation and Selection of Drug Modalities for Complement Therapies. Front Pharmacol 2022; 13:855743. [PMID: 35517827 PMCID: PMC9061988 DOI: 10.3389/fphar.2022.855743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Motivation: The complement pathway plays a critical role in innate immune defense against infections. Dysregulation between activation and regulation of the complement pathway is widely known to contribute to several diseases. Nevertheless, very few drugs that target complement proteins have made it to the final regulatory approval because of factors such as high concentrations and dosing requirements for complement proteins and serious side effects from complement inhibition. Methods: A quantitative systems pharmacology (QSP) model of the complement pathway has been developed to evaluate potential drug targets to inhibit complement activation in autoimmune diseases. The model describes complement activation via the alternative and terminal pathways as well as the dynamics of several regulatory proteins. The QSP model has been used to evaluate the effect of inhibiting complement targets on reducing pathway activation caused by deficiency in factor H and CD59. The model also informed the feasibility of developing small-molecule or large-molecule antibody drugs by predicting the drug dosing and affinity requirements for potential complement targets. Results: Inhibition of several complement proteins was predicted to lead to a significant reduction in complement activation and cell lysis. The complement proteins that are present in very high concentrations or have high turnover rates (C3, factor B, factor D, and C6) were predicted to be challenging to engage with feasible doses of large-molecule antibody compounds (≤20 mg/kg). Alternatively, complement fragments that have a short half-life (C3b, C3bB, and C3bBb) were predicted to be challenging or infeasible to engage with small-molecule compounds because of high drug affinity requirements (>1 nM) for the inhibition of downstream processes. The drug affinity requirements for disease severity reduction were predicted to differ more than one to two orders of magnitude than affinities needed for the conventional 90% target engagement (TE) for several proteins. Thus, the QSP model analyses indicate the importance for accounting for TE requirements for achieving reduction in disease severity endpoints during the lead optimization stage.
Collapse
Affiliation(s)
- Loveleena Bansal
- Systems Modeling and Translational Biology, Computational Sciences, GSK, Upper Providence, Collegeville, PA, United States
| | | | - Daniel P Howsmon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica Neisen
- Immunology Research Unit, GSK, Stevenage, United Kingdom
| | | | | | | | - Steve Ludbrook
- Immunology Research Unit, GSK, Stevenage, United Kingdom
| | - Valeriu Damian
- Systems Modeling and Translational Biology, Computational Sciences, GSK, Upper Providence, Collegeville, PA, United States
| |
Collapse
|
27
|
Anliker M, Drees D, Loacker L, Hafner S, Griesmacher A, Hoermann G, Fux V, Schennach H, Hörtnagl P, Dopler A, Schmidt S, Bellmann-Weiler R, Weiss G, Marx-Hofmann A, Körper S, Höchsmann B, Schrezenmeier H, Schmidt CQ. Upregulation of Checkpoint Ligand Programmed Death-Ligand 1 in Patients with Paroxysmal Nocturnal Hemoglobinuria Explained by Proximal Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1248-1258. [PMID: 35173033 DOI: 10.4049/jimmunol.2100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.
Collapse
Affiliation(s)
- Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Daniela Drees
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Schmidt
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Astrid Marx-Hofmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany; .,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany;
| |
Collapse
|
28
|
Schriek P, Ching AC, Moily NS, Moffat J, Beattie L, Steiner TM, Hosking LM, Thurman JM, Holers VM, Ishido S, Lahoud MH, Caminschi I, Heath WR, Mintern JD, Villadangos JA. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 2022; 375:eabf7470. [PMID: 35143312 DOI: 10.1126/science.abf7470] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.
Collapse
Affiliation(s)
- Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alan C Ching
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nagaraj S Moily
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica Moffat
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laine M Hosking
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joshua M Thurman
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
29
|
de Latour RP, Hosokawa K, Risitano AM. Hemolytic paroxysmal nocturnal hemoglobinuria: 20 years of medical progress. Semin Hematol 2022; 59:38-46. [DOI: 10.1053/j.seminhematol.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
30
|
Holt MF, Michelsen AE, Shahini N, Bjørkelund E, Bendz CH, Massey RJ, Schjalm C, Halvorsen B, Broch K, Ueland T, Gullestad L, Nilsson PH, Aukrust P, Mollnes TE, Louwe MC. The Alternative Complement Pathway Is Activated Without a Corresponding Terminal Pathway Activation in Patients With Heart Failure. Front Immunol 2021; 12:800978. [PMID: 35003128 PMCID: PMC8738166 DOI: 10.3389/fimmu.2021.800978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/08/2021] [Indexed: 01/15/2023] Open
Abstract
Objective Dysregulation of the complement system has been described in patients with heart failure (HF). However, data on the alternative pathway are scarce and it is unknown if levels of factor B (FB) and the C3 convertase C3bBbP are elevated in these patients. We hypothesized that plasma levels of FB and C3bBbP would be associated with disease severity and survival in patients with HF. Methods We analyzed plasma levels of FB, C3bBbP, and terminal C5b-9 complement complex (TCC) in 343 HF patients and 27 healthy controls. Results Compared with controls, patients with HF had elevated levels of circulating FB (1.6-fold, p < 0.001) and C3bBbP (1.3-fold, p < 0.001). In contrast, TCC, reflecting the terminal pathway, was not significantly increased (p = 0.15 vs controls). FB was associated with NT-proBNP, troponin, eGFR, and i.e., C-reactive protein. FB, C3bBbP and TCC were not associated with mortality in HF during a mean follow up of 4.3 years. Conclusion Our findings suggest that in patients with HF, the alternative pathway is activated. However, this is not accompanied by activation of the terminal pathway.
Collapse
Affiliation(s)
- Margrethe Flesvig Holt
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Negar Shahini
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Bjørkelund
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christina Holt Bendz
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Richard J. Massey
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Li Y, Wang G, Griffin L, Banda NK, Saba LM, Groman EV, Scheinman R, Moghimi SM, Simberg D. Complement opsonization of nanoparticles: Differences between humans and preclinical species. J Control Release 2021; 338:548-556. [PMID: 34481928 DOI: 10.1016/j.jconrel.2021.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn Griffin
- Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest V Groman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
32
|
Ma J, Liu Q, White JR. Novel methods to determine complement activation in human serum induced by the complex of Dezamizumab and serum amyloid P. J Biol Chem 2021; 297:101136. [PMID: 34461096 PMCID: PMC8463879 DOI: 10.1016/j.jbc.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Lack of simple and robust methods to determine complement activation in human serum induced by antigen–antibody complexes is a major hurdle for monitoring therapeutic antibody drug quality and stability. Dezamizumab is a humanized IgG1 monoclonal antibody that binds to serum amyloid P component (SAP) for potential treatment of systemic amyloidosis. The mechanism of action of Dezamizumab includes the binding of SAP, complement activation through classical pathway, and phagocytosis; however, the steps in this process cannot be easily monitored. We developed two novel methods to determine Dezamizumab-SAP complex-induced complement activation. Complement component 3 (C3) depletion was detected by homogeneous time-resolved fluorescence (HTRF), and C3a desArg fragment, formed after the cleavage of C3 to yield C3a followed by removal of its C-terminal arginine residue, was determined using Meso Scale Discovery (MSD) technology. We found that the presence of both Dezamizumab and SAP was required for complement activation via both methods. The optimal molar ratio of Dezamizumab:SAP was 6:1 in order to obtain maximal complement activation. The relative potency from both methods showed a good correlation to Dezamizumab-SAP-dependent complement component 1q (C1q) binding activity in Dezamizumab thermal-stressed samples. Both SAP and C1q binding, as determined by surface plasmon resonance and the two complement activation potency methods described here, reflect the mechanism of action of Dezamizumab. We conclude that these methods can be used to monitor Dezamizumab quality for drug release and stability testing, and the novel potency methods reported here can be potentially used to evaluate complement activity induced by other antigen–antibody complexes.
Collapse
Affiliation(s)
- Jianhong Ma
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA.
| | - Qi Liu
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| | - John R White
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| |
Collapse
|
33
|
Wahid AA, Dunphy RW, Macpherson A, Gibson BG, Kulik L, Whale K, Back C, Hallam TM, Alkhawaja B, Martin RL, Meschede I, Laabei M, Lawson ADG, Holers VM, Watts AG, Crennell SJ, Harris CL, Marchbank KJ, van den Elsen JMH. Insights Into the Structure-Function Relationships of Dimeric C3d Fragments. Front Immunol 2021; 12:714055. [PMID: 34434196 PMCID: PMC8381054 DOI: 10.3389/fimmu.2021.714055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.
Collapse
Affiliation(s)
- Ayla A. Wahid
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rhys W. Dunphy
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Alex Macpherson
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Beth G. Gibson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Liudmila Kulik
- Division of Rheumatology, University of Colorado, Aurora, CO, United States
| | | | - Catherine Back
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Thomas M. Hallam
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Bayan Alkhawaja
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Rebecca L. Martin
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - V. Michael Holers
- Division of Rheumatology, University of Colorado, Aurora, CO, United States
| | - Andrew G. Watts
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Susan J. Crennell
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Claire L. Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jean M. H. van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| |
Collapse
|
34
|
Wang M, Liu Z, Du J, Yuan Y, Jiao B, Zhang X, Hou X, Shen L, Guo J, Jiang H, Xia K, Tang J, Zhang R, Tang B, Wang J. Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:628710. [PMID: 34248812 PMCID: PMC8264193 DOI: 10.3389/fneur.2021.628710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence has revealed that immunity plays an important role in amyotrophic lateral sclerosis (ALS) progression. However, the results regarding the serum levels of immunoglobulin and complement are inconsistent in patients with ALS. Although immune dysfunctions have also been reported in patients with other neurodegenerative diseases, few studies have explored whether immune dysfunction in ALS is similar to that in other neurodegenerative diseases. Therefore, we performed this study to address these gaps. In the present study, serum levels of immunoglobulin and complement were measured in 245 patients with ALS, 65 patients with multiple system atrophy (MSA), 60 patients with Parkinson's disease (PD), and 82 healthy controls (HCs). Multiple comparisons revealed that no significant differences existed between patients with ALS and other neurodegenerative diseases in immunoglobulin and complement levels. Meta-analysis based on data from our cohort and eight published articles was performed to evaluate the serum immunoglobulin and complement between patients with ALS and HCs. The pooled results showed that patients with ALS had higher C4 levels than HCs. In addition, we found that the IgG levels were lower in early-onset ALS patients than in late-onset ALS patients and HCs, and the correlations between age at onset of ALS and IgG or IgA levels were significant positive. In conclusion, our data supplement existing literature on understanding the role of peripheral immunity in ALS.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Garland DL, Pierce EA, Fernandez-Godino R. Complement C5 is not critical for the formation of sub-RPE deposits in Efemp1 mutant mice. Sci Rep 2021; 11:10416. [PMID: 34001980 PMCID: PMC8128922 DOI: 10.1038/s41598-021-89978-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.
Collapse
Affiliation(s)
- Donita L Garland
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Eric A Pierce
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | | |
Collapse
|
36
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
37
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
38
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
39
|
Complement in sickle cell disease and targeted therapy: I know one thing, that I know nothing. Blood Rev 2021; 48:100805. [PMID: 33504459 DOI: 10.1016/j.blre.2021.100805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Sickle cell disease (SCD) is a common inherited clinical syndrome, characterized by the presence of hemoglobin S. Anemia, susceptibility to infections and episodes of vaso-occlusive crisis (VOC) are among its features. Since SCD complications (VOC or delayed hemolytic transfusion reaction/DHTR) lead to significant morbidity and mortality, a number of studies have addressed their pathophysiology Although SCD pathophysiology has been mainly attributed to the interaction between sickle cells and neutrophils, platelets or endothelial cells in small vessels leading to hemolysis, the role of complement activation has been increasingly investigated. Importantly, complement inhibition with eculizumab has shown beneficial effects in DHTR. Given the unmet clinical need of novel therapeutics in SCD, our review summarizes current understanding of (a) complement system for the clinician, (b) complement activation in SCD both in asymptomatic state and severe clinical manifestations, (c) probable underlying mechanisms of complement activation in SCD, and (d) new therapeutic perspective of complement inhibition.
Collapse
|
40
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|
41
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
42
|
Tzoumas N, Hallam D, Harris CL, Lako M, Kavanagh D, Steel DHW. Revisiting the role of factor H in age-related macular degeneration: Insights from complement-mediated renal disease and rare genetic variants. Surv Ophthalmol 2020; 66:378-401. [PMID: 33157112 DOI: 10.1016/j.survophthal.2020.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
43
|
Lammerts RGM, Talsma DT, Dam WA, Daha MR, Seelen MAJ, Berger SP, van den Born J. Properdin Pattern Recognition on Proximal Tubular Cells Is Heparan Sulfate/Syndecan-1 but Not C3b Dependent and Can Be Blocked by Tick Protein Salp20. Front Immunol 2020; 11:1643. [PMID: 32849563 PMCID: PMC7426487 DOI: 10.3389/fimmu.2020.01643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Proteinuria contributes to progression of renal damage, partly by complement activation on proximal tubular epithelial cells. By pattern recognition, properdin has shown to bind to heparan sulfate proteoglycans on tubular epithelium and can initiate the alternative complement pathway (AP). Properdin however, also binds to C3b(Bb) and properdin binding to tubular cells might be influenced by the presence of C3b(Bb) on tubular cells and/or by variability in properdin proteins in vitro. In this study we carefully evaluated the specificity of the properdin – heparan sulfate interaction and whether this interaction could be exploited in order to block alternative complement activation. Methods: Binding of various properdin preparations to proximal tubular epithelial cells (PTEC) and subsequent AP activation was determined in the presence or absence of C3 inhibitor Compstatin and properdin inhibitor Salp20. Heparan sulfate proteoglycan dependency of the pattern recognition of properdin was evaluated on PTEC knocked down for syndecan-1 by shRNA technology. Solid phase binding assays were used to evaluate the effectivity of heparin(oids) and recombinant Salp20 to block the pattern recognition of properdin. Results: Binding of serum-derived and recombinant properdin preparations to PTECs could be dose-dependently inhibited (P < 0.01) and competed off (P < 0.01) by recombinant Salp20 (IC50: ~125 ng/ml) but not by Compstatin. Subsequent properdin-mediated AP activation on PTECs could be inhibited by Compstatin (P < 0.01) and blocked by recombinant Salp20 (P < 0.05). Syndecan-1 deficiency in PTECs resulted in a ~75% reduction of properdin binding (P = 0.057). In solid-phase binding assays, properdin binding to C3b could be dose-dependently inhibited by recombinant Salp20> heparin(oid) > C3b. Discussion: In this study we showed that all properdin preparations recognize heparan sulfate/syndecan-1 on PTECs with and without Compstatin C3 blocking conditions. In contrast to Compstatin, recombinant Salp20 prevents heparan sulfate pattern recognition by properdin on PTECs. Both complement inhibitors prevented properdin-mediated C3 activation. Binding of properdin to C3b could also be blocked by heparin(oids) and recombinant Salp20. This work indicates that properdin serves as a docking station for AP activation on PTECs and a Salp20 analog or heparinoids may be viable inhibitors in properdin mediated AP activation.
Collapse
Affiliation(s)
- Rosa G M Lammerts
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ditmer T Talsma
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wendy A Dam
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marc A J Seelen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
44
|
Merle NS, Leon J, Poillerat V, Grunenwald A, Boudhabhay I, Knockaert S, Robe-Rybkine T, Torset C, Pickering MC, Chauvet S, Fremeaux-Bacchi V, Roumenina LT. Circulating FH Protects Kidneys From Tubular Injury During Systemic Hemolysis. Front Immunol 2020; 11:1772. [PMID: 32849636 PMCID: PMC7426730 DOI: 10.3389/fimmu.2020.01772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intravascular hemolysis of any cause can induce acute kidney injury (AKI). Hemolysis-derived product heme activates the innate immune complement system and contributes to renal damage. Therefore, we explored the role of the master complement regulator Factor H (FH) in the kidney's resistance to hemolysis-mediated AKI. Acute systemic hemolysis was induced in mice lacking liver expression of FH (hepatoFH-/-, ~20% residual FH) and in WT controls, by phenylhydrazine injection. The impaired complement regulation in hepatoFH-/- mice resulted in a delayed but aggravated phenotype of hemolysis-related kidney injuries. Plasma urea as well as markers for tubular (NGAL, Kim-1) and vascular aggression peaked at day 1 in WT mice and normalized at day 2, while they increased more in hepatoFH-/- compared to the WT and still persisted at day 4. These were accompanied by exacerbated tubular dilatation and the appearance of tubular casts in the kidneys of hemolytic hepatoFH-/- mice. Complement activation in hemolytic mice occurred in the circulation and C3b/iC3b was deposited in glomeruli in both strains. Both genotypes presented with positive staining of FH in the glomeruli, but hepatoFH-/- mice had reduced staining in the tubular compartment. Despite the clear phenotype of tubular injury, no complement activation was detected in the tubulointerstitium of the phenylhydrazin-injected mice irrespective of the genotype. Nevertheless, phenylhydrazin triggered overexpression of C5aR1 in tubules, predominantly in hepatoFH-/- mice. Moreover, C5b-9 was deposited only in the glomeruli of the hemolytic hepatoFH-/- mice. Therefore, we hypothesize that C5a, generated in the glomeruli, could be filtered into the tubulointerstitium to activate C5aR1 expressed by tubular cells injured by hemolysis-derived products and will aggravate the tissue injury. Plasma-derived FH is critical for the tubular protection, since pre-treatment of the hemolytic hepatoFH-/- mice with purified FH attenuated the tubular injury. Worsening of acute tubular necrosis in the hepatoFH-/- mice was trigger-dependent, as it was also observed in LPS-induced septic AKI model but not in chemotherapy-induced AKI upon cisplatin injection. In conclusion, plasma FH plays a key role in protecting the kidneys, especially the tubules, against hemolysis-mediated injury. Thus, FH-based molecules might be explored as promising therapeutic agents in a context of AKI.
Collapse
Affiliation(s)
- Nicolas S. Merle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Juliette Leon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Victoria Poillerat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Idris Boudhabhay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Samantha Knockaert
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Tania Robe-Rybkine
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Carine Torset
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Matthew C. Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, United Kingdom
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Assistance Publique – Hôpitaux de Paris, Service de Nephrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Veronique Fremeaux-Bacchi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Assistance Publique – Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
45
|
Röttgerding F, Kraiczy P. Immune Evasion Strategies of Relapsing Fever Spirochetes. Front Immunol 2020; 11:1560. [PMID: 32793216 PMCID: PMC7390862 DOI: 10.3389/fimmu.2020.01560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Relapsing fever (RF) is claimed a neglected arthropod-borne disease caused by a number of diverse human pathogenic Borrelia (B.) species. These RF borreliae are separated into the groups of tick-transmitted species including B. duttonii, B. hermsii, B. parkeri, B. turicatae, B. hispanica, B. persica, B. caucasica, and B. myiamotoi, and the louse-borne Borrelia species B. recurrentis. As typical blood-borne pathogens achieving high cell concentrations in human blood, RF borreliae (RFB) must outwit innate immunity, in particular complement as the first line of defense. One prominent strategy developed by RFB to evade innate immunity involves inactivation of complement by recruiting distinct complement regulatory proteins, e.g., C1 esterase inhibitor (C1-INH), C4b-binding protein (C4BP), factor H (FH), FH-like protein-1 (FHL-1), and factor H-related proteins FHR-1 and FHR-2, or binding of individual complement components and plasminogen, respectively. A number of multi-functional, complement and plasminogen-binding molecules from distinct Borrelia species have previously been identified and characterized, exhibiting considerable heterogeneity in their sequences, structures, gene localization, and their capacity to bind host-derived proteins. In addition, RFB possess a unique system of antigenic variation, allowing them to change the composition of surface-exposed variable major proteins, thus evading the acquired immune response of the human host. This review focuses on the current knowledge of the immune evasion strategies by RFB and highlights the role of complement-interfering and infection-associated molecules for the pathogenesis of RFB.
Collapse
Affiliation(s)
- Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
46
|
Pedersen DV, Rösner T, Hansen AG, Andersen KR, Thiel S, Andersen GR, Valerius T, Laursen NS. Recruitment of properdin by bi-specific nanobodies activates the alternative pathway of complement. Mol Immunol 2020; 124:200-210. [PMID: 32599335 DOI: 10.1016/j.molimm.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
The complement system represents a powerful part of the innate immune system capable of removing pathogens and damaged host cells. Nevertheless, only a subset of therapeutic antibodies are capable of inducing complement dependent cytotoxicity, which has fuelled the search for new strategies to potentiate complement activation. Properdin (FP) functions as a positive complement regulator by stabilizing the alternative pathway C3 convertase. Here, we explore a novel strategy for direct activation of the alternative pathway of complement using bi-specific single domain antibodies (nanobodies) that recruit endogenous FP to a cell surface. As a proof-of-principle, we generated bi-specific nanobodies with specificity toward FP and the validated cancer antigen epidermal growth factor receptor (EGFR) and tested their ability to activate complement onto cancer cell lines expressing EGFR. Treatment led to recruitment of FP, complement activation and significant deposition of C3 fragments on the cells in a manner sensitive to the geometry of FP recruitment. The bi-specific nanobodies induced complement dependent lysis of baby hamster kidney cells expressing human EGFR but were unable to lyse human tumour cells due to the presence of complement regulators. Our results confirm that FP can function as a surface bound focal point for initiation of complement activation independent of prior C3b deposition. However, recruitment of FP by bi-specific nanobodies appears insufficient for overcoming the inhibitory action of the negative complement regulators overexpressed by many human tumour cell lines. Our data provide general information on the efficacy of properdin as an initiator of complement but suggest that properdin recruitment on its own may have limited utility as a platform for potent complement activation on regulated cell surfaces.
Collapse
Affiliation(s)
- Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Annette G Hansen
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark.
| |
Collapse
|
47
|
Pedersen H, Jensen RK, Hansen AG, Gadeberg TAF, Thiel S, Laursen NS, Andersen GR. A C3-specific nanobody that blocks all three activation pathways in the human and murine complement system. J Biol Chem 2020; 295:8746-8758. [PMID: 32376685 DOI: 10.1074/jbc.ra119.012339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The complement system is a tightly controlled proteolytic cascade in the innate immune system, which tags intruding pathogens and dying host cells for clearance. An essential protein in this process is complement component C3. Uncontrolled complement activation has been implicated in several human diseases and disorders and has spurred the development of therapeutic approaches that modulate the complement system. Here, using purified proteins and several biochemical assays and surface plasmon resonance, we report that our nanobody, hC3Nb2, inhibits C3 deposition by all complement pathways. We observe that the hC3Nb2 nanobody binds human native C3 and its degradation products with low nanomolar affinity and does not interfere with the endogenous regulation of C3b deposition mediated by Factors H and I. Using negative stain EM analysis and functional assays, we demonstrate that hC3Nb2 inhibits the substrate-convertase interaction by binding to the MG3 and MG4 domains of C3 and C3b. Furthermore, we notice that hC3Nb2 is cross-reactive and inhibits the lectin and alternative pathway in murine serum. We conclude that hC3Nb2 is a potent, general, and versatile inhibitor of the human and murine complement cascades. Its cross-reactivity suggests that this nanobody may be valuable for analysis of complement activation within animal models of both acute and chronic diseases.
Collapse
Affiliation(s)
- Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Trine A F Gadeberg
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
48
|
Fromell K, Adler A, Åman A, Manivel VA, Huang S, Dührkop C, Sandholm K, Ekdahl KN, Nilsson B. Assessment of the Role of C3(H 2O) in the Alternative Pathway. Front Immunol 2020; 11:530. [PMID: 32296436 PMCID: PMC7136553 DOI: 10.3389/fimmu.2020.00530] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
In this study we investigate the hydrolysis of C3 to C3(H2O) and its ability to initiate activation via the alternative pathway (AP) of the complement system. The internal thioester bond within C3 is hydrolyzed by water in plasma because of its inherent lability. This results in the formation of non-proteolytically activated C3(H2O) which is believed have C3b-like properties and be able to form an active initial fluid phase C3 convertase together with Factor B (FB). The generation of C3(H2O) occurs at a low but constant rate in blood, but the formation can be greatly accelerated by the interaction with various surfaces or nucleophilic and chaotropic agents. In order to more specifically elucidate the relevance of the C3(H2O) for AP activation, formation was induced in solution by repeated freeze/thawing, methylamine or KCSN treatment and named C3(x) where the x can be any of the reactive nucleophilic or chaotropic agents. Isolation and characterization of C3(x) showed that it exists in several forms with varying attributes, where some have more C3b-like properties and can be cleaved by Factor I in the presence of Factor H. However, in common for all these variants is that they are less active partners in initial formation of the AP convertase compared with the corresponding activity of C3b. These observations support the idea that formation of C3(x) in the fluid phase is not a strong initiator of the AP. It is rather likely that the AP mainly acts as an amplification mechanism of complement activation that is triggered by deposition of target-bound C3b molecules generated by other means.
Collapse
Affiliation(s)
- Karin Fromell
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Anna Adler
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Amanda Åman
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Vivek Anand Manivel
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Dührkop
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Kerstin Sandholm
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| |
Collapse
|
49
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
50
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|