1
|
Suzuki T, Chéret J, Scala FD, Rajabi-Estarabadi A, Akhundlu A, Demetrius DL, Gherardini J, Keren A, Harries M, Rodriguez-Feliz J, Epstein G, Lee W, Purba T, Gilhar A, Paus R. Interleukin-15 is a hair follicle immune privilege guardian. J Autoimmun 2024; 145:103217. [PMID: 38581915 DOI: 10.1016/j.jaut.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The autoimmunity-promoting cytokine, Interleukin-15 (IL-15), is often claimed to be a key pathogenic cytokine in alopecia areata (AA). Yet, rhIL-15 promotes human hair follicle (HF) growth ex vivo. We have asked whether the expression of IL-15 and its receptor (IL-15R) isoforms is altered in human AA and how IL-15 impacts on human HF immune privilege (HF-IP) in the presence/absence of interferon-γ (IFNγ), the well-documented key AA-pathogenic cytokine, as well as on hair regrowth after experimental AA induction in vivo. Quantitative immunohistomorphometry showed the number of perifollicular IL-15+ T cells in AA skin biopsies to be significantly increased compared to healthy control skin, while IL-15, IL-15Rα, and IL-15Rγ protein expression within the hair bulb were significantly down-regulated in AA HFs. In organ-cultured human scalp HFs, rhIL-15 significantly reduced hair bulb expression of MICA, the key "danger" signal in AA pathogenesis, and increased production of the HF-IP guardian, α-MSH. Crucially, ex vivo, rhIL-15 prevented IFNγ-induced HF-IP collapse, restored a collapsed HF-IP by IL-15Rα-dependent signaling (as documented by IL-15Rα-silencing), and protected AA-preventive immunoinhibitory iNKT10 cells from IFNγ-induced apoptosis. rhIL-15 even promoted hair regrowth after experimental AA induction in human scalp skin xenotransplants on SCID/beige mice in vivo. Our data introduce IL-15 as a novel, functionally important HF-IP guardian whose signaling is constitutively defective in scalp HFs of AA patients. Our data suggest that selective stimulation of intrafollicular IL-15Rα signaling could become a novel therapeutic approach in AA management, while blocking it pharmacologically may hinder both HF-IP restoration and hair re-growth and may thus make HFs more vulnerable to AA relapse.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fernanda D Scala
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ali Rajabi-Estarabadi
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Dermatology, Broward Health, Fort Lauderdale, FL, USA
| | - Aysun Akhundlu
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dana-Lee Demetrius
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | | | - Gorana Epstein
- Foundation for Hair Restoration, 33143, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Talveen Purba
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; CUTANEON - Skin & Hair Innovations, Hamburg, Germany.
| |
Collapse
|
2
|
Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14235787. [PMID: 36497266 PMCID: PMC9739887 DOI: 10.3390/cancers14235787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy approaches have advanced rapidly in recent years. While the greatest therapeutic advances so far have been achieved with T cell therapies such as immune checkpoint blockade and CAR-T, recent advances in NK cell therapy have highlighted the therapeutic potential of these cells. Chronic lymphocytic leukemia (CLL), the most prevalent form of leukemia in Western countries, is a very immunosuppressive disease but still shows significant potential as a target of immunotherapy, including NK-based therapies. In addition to their antileukemia potential, NK cells are important immune effectors in the response to infections, which represent a major clinical concern for CLL patients. Here, we review the interactions between NK cells and CLL, describing functional changes and mechanisms of CLL-induced NK suppression, interactions with current therapeutic options, and the potential for therapeutic benefit using NK cell therapies.
Collapse
Affiliation(s)
- Max Yano
- Medical Science Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (J.C.B.); (N.M.)
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.C.B.); (N.M.)
| |
Collapse
|
3
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zveik O, Rechtman A, Haham N, Adini I, Canello T, Lavon I, Brill L, Vaknin-Dembinsky A. Sera of Neuromyelitis Optica Patients Increase BID-Mediated Apoptosis in Astrocytes. Int J Mol Sci 2022; 23:ijms23137117. [PMID: 35806122 PMCID: PMC9266359 DOI: 10.3390/ijms23137117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica (NMO) is a rare disease usually presenting with bilateral or unilateral optic neuritis with simultaneous or sequential transverse myelitis. Autoantibodies directed against aquaporin-4 (AQP4-IgG) are found in most patients. They are believed to cross the blood−brain barrier, target astrocytes, activate complement, and eventually lead to astrocyte destruction, demyelination, and axonal damage. However, it is still not clear what the primary pathological event is. We hypothesize that the interaction of AQP4-IgG and astrocytes leads to DNA damage and apoptosis. We studied the effect of sera from seropositive NMO patients and healthy controls (HCs) on astrocytes’ immune gene expression and viability. We found that sera from seropositive NMO patients led to higher expression of apoptosis-related genes, including BH3-interacting domain death agonist (BID), which is the most significant differentiating gene (p < 0.0001), and triggered more apoptosis in astrocytes compared to sera from HCs. Furthermore, NMO sera increased DNA damage and led to a higher expression of immunological genes that interact with BID (TLR4 and NOD-1). Our findings suggest that sera of seropositive NMO patients might cause astrocytic DNA damage and apoptosis. It may be one of the mechanisms implicated in the primary pathological event in NMO and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nitzan Haham
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Irit Adini
- Department of Surgery, Harvard Medical School, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA;
| | - Tamar Canello
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Iris Lavon
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-677-7741
| |
Collapse
|
5
|
Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsa M, Pallmer K, Oduro JD, Cicin-Sain L, Ikuta K, Ludewig B, Oxenius A. Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog 2018; 14:e1006993. [PMID: 29652930 PMCID: PMC5919076 DOI: 10.1371/journal.ppat.1006993] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) infection induces an atypical CD8 T cell response, termed inflationary, that is characterised by accumulation and maintenance of high numbers of effector memory like cells in circulation and peripheral tissues—a feature being successfully harnessed for vaccine purposes. Although stability of this population depends on recurrent antigen encounter, the requirements for prolonged survival in peripheral tissues remain unknown. Here, we reveal that murine CMV-specific inflationary CD8 T cells are maintained in an antigen-independent manner and have a half-life of 12 weeks in the lung tissue. This half-life is drastically longer than the one of phenotypically comparable inflationary effector cells. IL-15 alone, and none of other common γ-cytokines, was crucial for survival of inflationary cells in peripheral organs. IL-15, mainly produced by non-hematopoietic cells in lung tissue and being trans-presented, promoted inflationary T cell survival by increasing expression of Bcl-2. These results indicate that inflationary CD8 T cells are not just simply effector-like cells, rather they share properties of both effector and memory CD8 T cells and they appear to be long-lived cells compared to the effector cells from acute virus infections. A majority of the human population is infected with cytomegalovirus (CMV), which results in lifelong persistence due to viral latency. CMV induces remarkably strong and sustained effector memory-like CD8 T cell responses in circulation and peripheral tissues, also referred to as memory CD8 T cell "inflation". In tissues, these effector memory-like cells contribute to immunosurveillance and early control of CMV reactivation events. Due to the high numbers and effector-like functional properties of inflationary CD8 T cells in peripheral tissues, CMV-based vectors are gaining substantial interest in the context of T cell based vaccines that protect peripheral tissues against infections or tumors. Here, we investigated how the stable peripheral pool of inflationary CD8 T cells is maintained and show that inflationary CD8 T cells are long-lived T cells and have a markedly prolonged half-life compared to effector CD8 T cells. In peripheral organs such as lung, IL-15 cytokine is pivotal in promoting maintenance of inflationary cells by inducing expression of the anti-apoptotic molecule Bcl-2. We show that IL-15 is mainly expressed by non-hematopoietic cells in lung tissue and that IL-15 is trans-presented to the inflationary CD8 T cells in vivo. Thus, CMV-driven inflationary CD8 T cell responses represent a unique T cell subset in peripheral tissues that is regulated differently compared to TRM CD8 T cells emerging after vaccination or acute infections.
Collapse
Affiliation(s)
- Nicolas S. Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Suzanne P. M. Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jennifer D. Oduro
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Viant C, Guia S, Hennessy RJ, Rautela J, Pham K, Bernat C, Goh W, Jiao Y, Delconte R, Roger M, Simon V, Souza-Fonseca-Guimaraes F, Grabow S, Belz GT, Kile BT, Strasser A, Gray D, Hodgkin PD, Beutler B, Vivier E, Ugolini S, Huntington ND. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. J Exp Med 2017; 214:491-510. [PMID: 28057804 PMCID: PMC5294858 DOI: 10.1084/jem.20160869] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells with antitumor functions. Using an N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a strain with an NK cell deficiency caused by a hypomorphic mutation in the Bcl2 (B cell lymphoma 2) gene. Analysis of these mice and the conditional deletion of Bcl2 in NK cells revealed a nonredundant intrinsic requirement for BCL2 in NK cell survival. In these mice, NK cells in cycle were protected against apoptosis, and NK cell counts were restored in inflammatory conditions, suggesting a redundant role for BCL2 in proliferating NK cells. Consistent with this, cycling NK cells expressed higher MCL1 (myeloid cell leukemia 1) levels in both control and BCL2-null mice. Finally, we showed that deletion of BIM restored survival in BCL2-deficient but not MCL1-deficient NK cells. Overall, these data demonstrate an essential role for the binding of BCL2 to BIM in the survival of noncycling NK cells. They also favor a model in which MCL1 is the dominant survival protein in proliferating NK cells.
Collapse
Affiliation(s)
- Charlotte Viant
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Sophie Guia
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Robert J Hennessy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Kim Pham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Claire Bernat
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Yuhao Jiao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rebecca Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Michael Roger
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Vanina Simon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Fernando Souza-Fonseca-Guimaraes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Benjamin T Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Daniel Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Phillip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France.,Service Immunologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (APHM), 13288 Marseille, France
| | - Sophie Ugolini
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 13288 Marseille, France
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia .,Department of Medical Biology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Lin SJ, Huang YC, Cheng PJ, Lee PT, Hsiao HS, Kuo ML. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood. Cytokine 2016; 76:348-355. [PMID: 26481260 DOI: 10.1016/j.cyto.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics/Gynecology, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Tzu Lee
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsiu-Shan Hsiao
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
8
|
Jiao J, Ooka K, Fey H, Fiel MI, Rahmman AH, Kojima K, Hoshida Y, Chen X, de Paula T, Vetter D, Sastre D, Lee KH, Lee Y, Bansal M, Friedman SL, Merad M, Aloman C. Interleukin-15 receptor α on hepatic stellate cells regulates hepatic fibrogenesis in mice. J Hepatol 2016; 65:344-353. [PMID: 27154062 PMCID: PMC5048472 DOI: 10.1016/j.jhep.2016.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Interleukin-15 (IL-15) and its high affinity receptor interleukin-15 receptor alpha (IL-15Rα) are widely expressed in immune cells and hepatic resident cells. IL-15 signaling has important functions in homeostasis of natural killer (NK), natural killer T (NKT) and cytotoxic T (CD8(+) T) cells, and in liver regeneration. We hypothesized that IL-15 has a protective role in liver fibrosis progression by maintaining NK cell homeostasis. METHODS Fibrosis was induced using two mechanistically distinct models. Congenic bone marrow transplantation was used to evaluate the contribution of IL-15 signaling from various compartments to NK, CD8(+) T and NKT cell homeostasis and fibrogenesis. The gene expression profile of hepatic stellate cell (HSC) from IL-15Rα knockout (IL-15RαKO) mice and wild-type mice were captured using microarray analysis and validated in isolated HSC. Quantitative real-time PCR was used to assess repressors of collagen transcription. RESULTS IL-15RαKO mice exhibited more fibrosis in both models. IL-15 signaling from specific types of hepatic cells had divergent roles in maintaining liver NK, CD8(+) T and NKT cells, with a direct and protective role on radio-resistant non-parenchymal cells beyond the control of NK homeostasis. HSCs isolated from IL-15RαKO mice demonstrated upregulation of collagen production. Finally, IL-15RαKO HSC with or without transforming growth factor beta (TGF-β) stimulation exhibited increased expression of fibrosis markers and decreased collagen transcription repressors expression. CONCLUSIONS IL-15Rα signaling has a direct anti-fibrotic effect independent of preserving NK homeostasis. These findings establish a rationale to further explore the anti-fibrotic potential of enhancing IL-15 signaling in HSCs. LAY SUMMARY We investigated how a cellular protein, Interleukin-15 (IL-15), decreases the amount of scar tissue that is formed upon liver injury. We found that IL-15 and its receptor decrease the amount of scar tissue that is created by specialized liver cells (called stellate cells) and increase the number of a specific subgroup of immune cells (natural killer cells) that are known to eliminate stellate cells. TRANSCRIPT PROFILING ACCESSION NUMBER GSE45612, GSE 68001 and GSE 25097.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kohtaro Ooka
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Holger Fey
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H. Rahmman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kensuke Kojima
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xintong Chen
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana de Paula
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Vetter
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sastre
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ka Hin Lee
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Youngmin Lee
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meena Bansal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Costica Aloman
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Division of Digestive Diseases, Rush University, Chicago, IL, USA
| |
Collapse
|
9
|
Delconte RB, Shi W, Sathe P, Ushiki T, Seillet C, Minnich M, Kolesnik TB, Rankin LC, Mielke LA, Zhang JG, Busslinger M, Smyth MJ, Hutchinson DS, Nutt SL, Nicholson SE, Alexander WS, Corcoran LM, Vivier E, Belz GT, Carotta S, Huntington ND. The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity 2016; 44:103-115. [PMID: 26795246 DOI: 10.1016/j.immuni.2015.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.
Collapse
Affiliation(s)
- Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia; Department of Computing and Information Systems, The University of Melbourne, VIC 3010, Australia
| | - Priyanka Sathe
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Takashi Ushiki
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Martina Minnich
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmacological Science, Parkville, VIC 3052, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France; Immunologie, Hôpital de la Comception, Assistance Publique des Hôpitaux de Marseille, 13385 Marseille, France
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
10
|
Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F, Seillet C, Chopin M, Vandenberg CJ, Rankin LC, Mielke LA, Vikstrom I, Kolesnik TB, Nicholson SE, Vivier E, Smyth MJ, Nutt SL, Glaser SP, Strasser A, Belz GT, Carotta S, Huntington ND. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 2014; 5:4539. [DOI: 10.1038/ncomms5539] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
|
11
|
Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, Cohen JI, Frenkel EP, Bagwell JC, Sullivan JL, Biron CA, Spalding C, Zerbe CS, Uzel G, Holland SM, Orange JS. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood 2013; 121:2669-77. [PMID: 23365458 PMCID: PMC3617632 DOI: 10.1182/blood-2012-09-453969] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/17/2013] [Indexed: 11/20/2022] Open
Abstract
Mutations in the transcription factor GATA2 underlie the syndrome of monocytopenia and B- and natural killer (NK)-cell lymphopenia associated with opportunistic infections and cancers. In addition, patients have recurrent and severe viral infections. NK cells play a critical role in mediating antiviral immunity. Human NK cells are thought to mature in a linear fashion, with the CD56(bright) stage preceding terminal maturation to the CD56(dim) stage, considered the most enabled for cytotoxicity. Here we report an NK cell functional defect in GATA2-deficient patients and extend this genetic lesion to what is considered to be the original NK cell-deficient patient. In most cases, GATA2 deficiency is accompanied by a severe reduction in peripheral blood NK cells and marked functional impairment. The NK cells detected in peripheral blood of some GATA2-deficient patients are exclusively of the CD56(dim) subset, which is recapitulated on in vitro NK cell differentiation. In vivo, interferon α treatment increased NK cell number and partially restored function but did not correct the paucity of CD56(bright) cells. Thus, GATA2 is required for the maturation of human NK cells and the maintenance of the CD56(bright) pool in the periphery. Defects in GATA2 are a novel cause of profound NK cell dysfunction.
Collapse
|
12
|
Henningsson L, Jirholt P, Bogestal YR, Eneljung T, Adiels M, Lindholm C, McInnes I, Bulfone-Paus S, Lerner UH, Gjertsson I. Interleukin 15 Mediates Joint Destruction in Staphylococcus Aureus Arthritis. J Infect Dis 2012; 206:687-96. [DOI: 10.1093/infdis/jis295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Malamut G, El Machhour R, Montcuquet N, Martin-Lannerée S, Dusanter-Fourt I, Verkarre V, Mention JJ, Rahmi G, Kiyono H, Butz EA, Brousse N, Cellier C, Cerf-Bensussan N, Meresse B. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest 2010; 120:2131-43. [PMID: 20440074 DOI: 10.1172/jci41344] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/24/2010] [Indexed: 12/30/2022] Open
Abstract
Enteropathy-associated T cell lymphoma is a severe complication of celiac disease (CD). One mechanism suggested to underlie its development is chronic exposure of intraepithelial lymphocytes (IELs) to potent antiapoptotic signals initiated by IL-15, a cytokine overexpressed in the enterocytes of individuals with CD. However, the signaling pathway by which IL-15 transmits these antiapoptotic signals has not been firmly established. Here we show that the survival signals delivered by IL-15 to freshly isolated human IELs and to human IEL cell lines derived from CD patients with type II refractory CD (RCDII) - a clinicopathological entity considered an intermediary step between CD and enteropathy-associated T cell lymphoma - depend on the antiapoptotic factors Bcl-2 and/or Bcl-xL. The signals also required IL-15Rbeta, Jak3, and STAT5, but were independent of PI3K, ERK, and STAT3. Consistent with these data, IELs from patients with active CD and RCDII contained increased amounts of Bcl-xL, phospho-Jak3, and phospho-STAT5. Furthermore, incubation of patient duodenal biopsies with a fully humanized human IL-15-specific Ab effectively blocked Jak3 and STAT5 phosphorylation. In addition, treatment with this Ab induced IEL apoptosis and wiped out the massive IEL accumulation in mice overexpressing human IL-15 in their gut epithelium. Together, our results delineate the IL-15-driven survival pathway in human IELs and demonstrate that IL-15 and its downstream effectors are meaningful therapeutic targets in RCDII.
Collapse
|
14
|
Beisiegel M, Mollenkopf HJ, Hahnke K, Koch M, Dietrich I, Reece ST, Kaufmann SHE. Combination of host susceptibility and Mycobacterium tuberculosis virulence define gene expression profile in the host. Eur J Immunol 2010; 39:3369-84. [PMID: 19795415 DOI: 10.1002/eji.200939615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progression and outcome of tuberculosis is governed by extensive crosstalk between pathogen and host. Analyses of global changes in gene expression during immune response to infection with Mycobacterium tuberculosis (M.tb) can help identify molecular markers of disease state and progression. Global distribution of M.tb strains with different degrees of virulence and drug resistance, especially for the immunocompromised host, make closer analyses of host responses more pressing than ever. Here, we describe global transcriptional responses of inducible nitric oxide synthase-deficient (iNOS(-/-)) and WT mice infected with two related M.tb strains of markedly different virulence, namely the M.tb laboratory strains H37Rv and H37Ra. Both hosts exhibited highly similar resistance to infection with H37Ra. In contrast, iNOS(-/-) mice rapidly succumbed to H37Rv, whereas WT mice developed chronic course of disease. By differential analyses, virulence-specific changes in global host gene expression were analyzed to identify molecular markers characteristic for chronic versus acute infection. We identified several markers unique for different stages of disease progression and not previously associated with virulence-specific host responses in tuberculosis.
Collapse
Affiliation(s)
- Martin Beisiegel
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The activity of several potent adjuvants, including incomplete Freund's adjuvant, CpG oligodeoxynucleotides, and alum, has been shown to be due at least in part to the induction of cytokines, including type I interferons (IFNs), IFN-gamma, interleukin-2 (IL-2), and IL-12, that play key roles in the regulation of innate and adaptive immunity. The relatively short half-life of recombinant homologues of cytokines has limited their use as vaccine adjuvants. These difficulties have been overcome by encapsulation into liposomes and the use of cytokine expression vectors co-administered with DNA vaccines. Although a number of cytokines including IFN-alpha, IFN-gamma, IL-2, IL-12, IL-15, IL-18, IL-21, GM-CSF, and Flt-3 ligand have been shown to potentiate the immune response to vaccination in various experimental models, the full potential of cytokines as vaccine adjuvants remains to be established.
Collapse
|
16
|
Penafuerte C, Bautista-Lopez N, Boulassel MR, Mohamed-Rachid B, Routy JP, Galipeau J. The human ortholog of granulocyte macrophage colony-stimulating factor and interleukin-2 fusion protein induces potent ex vivo natural killer cell activation and maturation. Cancer Res 2009; 69:9020-8. [PMID: 19920194 DOI: 10.1158/0008-5472.can-09-2322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Natural killer (NK) cells are appealing cellular pharmaceuticals for cancer therapy because of their innate ability to recognize and kill tumor cells. Therefore, the development of methods that can enhance the potency in their anticancer effect would be desirable. We have previously shown that a murine granulocyte macrophage colony-stimulating factor (GM-CSF)/interleukin 2 (IL-2) fusion protein displays novel antitumor properties in vivo compared with both cytokines in combination due to recruitment of NK cells. In the present work, we have found that human ortholog of the GM-CSF/IL-2 fusion protein (a.k.a. hGIFT2) induces robust NK cell activation ex vivo with significant secretion of RANTES and a 37-fold increase in IFNgamma production when compared with either IL-2 or GM-CSF single cytokine treatment or their combination. Moreover, hGIFT2 upregulates the expression of NK cell activating receptors NKp44, NKp46, and DNAM-1 (CD226), as well as CD69, CD107a, and IL-2Rbeta expression. In addition, hGIFT2 promotes NK cell maturation, based on the downregulation of CD117 expression and upregulation of CD11b. This phenotype correlates with significantly greater cytotoxicity against tumor cells. At the molecular level, hGIFT2 leads to a potent activation of Janus-activated kinases (JAK) downstream of both IL-2 and GM-CSF receptors (JAK1 and JAK2, respectively) and consequently leads to a hyperphosphorylation of signal transducers and activators of transcription (STAT)1, STAT3, and STAT5. In conclusion, hGIFT2 fusokine possesses unique biochemical properties distinct from IL-2 and GM-CSF, constitutes a novel and potent tool for ex vivo NK cell activation and maturation, and may be of use for cancer cell immunotherapy.
Collapse
Affiliation(s)
- Claudia Penafuerte
- Department of Medicine, Division of Experimental Medicine, McGill University, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Fibronectin maintains survival of mouse natural killer (NK) cells via CD11b/Src/beta-catenin pathway. Blood 2009; 114:4081-8. [PMID: 19738028 DOI: 10.1182/blood-2009-05-219881] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tissue microenvironment and stroma-derived extracellular matrix (ECM) molecules play important roles in the survival and differentiation of cells. Mouse natural killer (NK) cells usually die within 24 hours once isolated ex vivo. Exogenous cytokines such as interleukin-12 (IL-12) and IL-15 are required to maintain the survival and activity of mouse NK cells cultured in vitro. Whether and how ECM molecules such as fibronectin can support the survival of NK cells remain unknown. We demonstrate that fibronectin, just like IL-15, can maintain survival of mouse NK cells in vitro. Furthermore, we show that fibronectin binds to the CD11b on NK cells, and then CD11b recruits and activates Src. Src can directly interact with beta-catenin and trigger nuclear translocation of beta-catenin. The activation of beta-catenin promotes extracellular signal-related kinase (ERK) phosphorylation, resulting in the increased expression of antiapoptotic protein B-cell leukemia 2 (Bcl-2), which may contribute to the maintenance of NK-cell survival. Consistently, fibronectin cannot maintain the survival of CD11b(-) NK cells and beta-catenin-deficient NK cells in vitro, and the number of NK cells is dramatically decreased in the beta-catenin-deficient mice. Therefore, fibronectin can maintain survival of mouse NK cells by activating ERK and up-regulating Bcl-2 expression via CD11b/Src/beta-catenin pathway.
Collapse
|
18
|
Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. ACTA ACUST UNITED AC 2008; 206:25-34. [PMID: 19103877 PMCID: PMC2626663 DOI: 10.1084/jem.20082013] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self-major histocompatibility complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2(-/-)gamma c(-/-) mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor alpha (IL-15R alpha) significantly augmented human NK cells. IL-15-IL-15R alpha complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16(+)KIR(+) NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56(hi)CD16(-)KIR(-) to CD56(lo)CD16(+)KIR(-), and finally to CD56(lo)CD16(+)KIR(+). These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15-responsive cells during immunotherapy strategies.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Immunology Department, 2 Institut National de la Santé et de la Recherche Médicale U668, 3 INSERM U883, Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris 75724, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Apoptosis is a physiological process that an organism selectively eliminates cells that are no longer needed, or have been damaged, or are dangerous. Bcl-xL, an important member of the Bcl-2 family that plays indispensable roles in regulating cell survival and apoptosis, is frequently over-expressed in various kinds of human cancers. The inhibition of this molecule is associated with decreased tumorigenesis and resistance to conventional chemotherapy. This article briefly reviews some progresses in the study of Bcl-xL in the past few years.
Collapse
|