1
|
Chung YC, Cheng LT, Chu CY, Afzal H, Doan TD. Flagellin Enhances the Immunogenicity of Pasteurella multocida Lipoprotein E Subunit Vaccine. Avian Dis 2024; 68:183-191. [PMID: 39400212 DOI: 10.1637/aviandiseases-d-24-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024]
Abstract
Fowl cholera, caused by Pasteurella multocida infection, poses challenges for prevention because of its many serotypes. Bacterins are currently widely used for vaccination against fowl cholera, but protection is limited to homologous strains. Live attenuated vaccines of P. multocida provide some heterologous protection, but side effects are considerable. More recently, protein-based antigens are promising subunit vaccines when their low immunogenicity has been addressed with effective adjuvants. Bacterial flagellin has been widely considered a promising adjuvant for vaccines. In this study, we tested the adjutancy of flagellin in a subunit vaccine against P. multocida in a mice and chicken models. For vaccine formulation, the antigen fPlpE (P. multocida liporotein E) was combined with fFliC (Salmonella Typhimurium flagellin). The recombinant proteins of fPlpE and fFliC were successfully expressed using the Escherichia coli system as the expected sizes of 55 kDa and 70 kDa, respectively. The fFliC elicited strong expression levels of proinflammatory cytokine (IL-1β, IL-8, and IL-6) when stimulated in native chicken peripheral blood mononuclear cells. Immunization of mice and chickens with the subunit vaccines containing fFliC accelerated the antibody response. In the challenge tests, fFliC increased vaccine protective efficacy against the heterologous strain P. multocida A1 and highly virulent strain Chu01 in mice and chickens, respectively. These data indicated potential possibilities of using fFliC as an immunostimulant adjuvant in developing a subunit vaccine against fowl cholera.
Collapse
Affiliation(s)
- Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Haroon Afzal
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Thu-Dung Doan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan,
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
3
|
Peng Z, Yue Y, Xiong S. Mycobacterial PPE36 Modulates Host Inflammation by Promoting E3 Ligase Smurf1-Mediated MyD88 Degradation. Front Immunol 2022; 13:690667. [PMID: 35237255 PMCID: PMC8882603 DOI: 10.3389/fimmu.2022.690667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) PPE36, a cell-wall-associated protein, is highly specific and conserved for the Mtb complex group. Although PPE36 has been proven essential for iron utilization, little is known about it in regulating host immune responses. Here we exhibited that PPE36 was preferentially enriched in Mtb virulent strains and could efficiently inhibit host inflammatory responses and increase bacterial loads in infected macrophages and mice. In exploring the underlying mechanisms, we found that PPE36 could robustly inhibit the activation of inflammatory NF-κB and MAPK (Erk, p38, and Jnk) pathways by promoting E3 ligase Smurf1-mediated ubiquitination and proteasomal degradation of MyD88 protein. Our research revealed a previously unknown function of PPE36 on modulating host immune responses and provided some clues to the development of novel tuberculosis treatment strategies based on immune regulation.
Collapse
Affiliation(s)
- Zhangli Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Gong Z, Han S, Liang T, Zhang H, Sun Q, Pan H, Wang H, Yang J, Cheng L, Lv X, Yue Q, Fan L, Xie J. Mycobacterium tuberculosis effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization. J Cell Physiol 2021; 236:7405-7420. [PMID: 33959974 DOI: 10.1002/jcp.30411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. Macrophage polarization is crucial for the innate immunity against M. tuberculosis. However, how M. tuberculosis interferes with macrophage polarization is elusive. We demonstrated here that M. tuberculosis PPE36 (Rv2108) blocked macrophage M1 polarization, preventing the cytokine storm, and alleviating inflammatory damage to mouse immune organs. PPE36 inhibited the polarization of THP-1 cell differentiation to M1 macrophages, reduced mitochondrial dehydrogenase activity, inhibited the expression of CD16, and repressed the expression of pro-inflammatory cytokines IL-6 and TNF-α, as well as chemokines CXCL9, CXCL10, CCL3, and CCL5. Intriguingly, in the mouse infection model, PPE36 significantly alleviated the inflammatory damage of immune organs caused by a cytokine storm. Furthermore, we found that PPE36 inhibited the polarization of macrophages into mature M1 macrophages by suppressing the ERK signaling. The study provided novel insights into the function and mechanism of action of M. tuberculosis effector PPE36 both at the cellular and animal level.
Collapse
Affiliation(s)
- Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shuang Han
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Tian Liang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Hongyang Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Qingyu Sun
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Huimin Pan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Haolin Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Jiao Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Liting Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Qijia Yue
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| |
Collapse
|
5
|
TLR-5 agonist Salmonella abortus equi flagellin FliC enhances FliC-gD-based DNA vaccination against equine herpesvirus 1 infection. Arch Virol 2019; 164:1371-1382. [PMID: 30888564 DOI: 10.1007/s00705-019-04201-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
Equine herpesvirus 1 (EHV-1) induces serious respiratory infections, viral abortion, neurological signs, and neonatal mortality in horses. Despite the use of vaccines, EHV-1 infection also causes a high annual economic burden to the equine industry. The poor immunogenicity of and protection conferred by EHV-1 vaccines are the major factors responsible for the spread of EHV-1 infection. The present study examined the immunogenicity of a novel DNA vaccine co-expressing FliC, a flagellin protein, in Salmonella abortus equi and the gD protein of EHV-1. Mice and horses were immunized intramuscularly with the vaccine, and mice were challenged with EHV-1. Immunofluorescence and western blotting revealed that FliC and gD can be efficiently expressed in cells. This novel vaccine significantly increased gD-specific antibody and interferon gamma (IFN-γ) levels in immunized mice and horses. Compared with controls, the viral load and morbidity were markedly reduced in FliC-gD-immunized mice after they were challenged with EHV-1. Furthermore, the immunogenicity of FliC-gD in a natural host was tested. Our results indicate that vaccinated mice and horses exhibit increased humoral and improved cellular immune responses.
Collapse
|
6
|
Tsybalova LM, Stepanova LA, Shuklina MA, Mardanova ES, Kotlyarov RY, Potapchuk MV, Petrov SA, Blokhina EA, Ravin NV. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One 2018; 13:e0201429. [PMID: 30138320 PMCID: PMC6107133 DOI: 10.1371/journal.pone.0201429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared. Methods Balb/c mice were immunized intranasally with recombinant proteins comprising either one viral protein (the ectodomain of the M2 protein, ‘M2e’) or two viral proteins (M2e and the hemagglutinin second subunit ‘HA2’ epitope) genetically fused with flagellin. Further, two different consensus variants of HA2 were used. Therefore, three experimental positives were used in addition to the negative control (Flg-his). The mucosal, humoral, and T-cell immune responses to these constructs were evaluated. Result We have demonstrated that insertion of the HA2 consensus polypeptide (aa 76–130), derived from either the first (HA2-1) or second (HA2-2) virus phylogenetic group, into the recombinant Flg4M2e protein significantly enhanced its immunogenicity and protective properties. Intranasal administration of the vaccine candidates (Flg-HA2-2-4M2e or Flg-HA2-1-4M2e) induced considerable mucosal and systemic responses directed at both the M2e-protein and, in general, the influenza A virus. However, the immune response elicited by the Flg-HA2-1-4M2e protein was weaker than the one generated by Flg-HA2-2-4M2e. These recombinant proteins containing both viral peptides provide complete protection from lethal challenge with various influenza viruses: A/H3N2; A/H2N2; and A/H5N1. Conclusion This study demonstrates that the intranasal administration of Flg-HA2-2-4M2e recombinant protein induces a strong immune response which provides broad protection against various influenza viruses. This construct is therefore a strong candidate for development as a universal vaccine.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- * E-mail:
| | - Liudmila A. Stepanova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Marina A. Shuklina
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Potapchuk
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Sergei A. Petrov
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Incorporation of membrane-anchored flagellin into Salmonella Gallinarum bacterial ghosts induces early immune responses and protection against fowl typhoid in young layer chickens. Vet Immunol Immunopathol 2018; 199:61-69. [DOI: 10.1016/j.vetimm.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 01/02/2023]
|
8
|
Il Kim M, Lee C, Park J, Jeon BY, Hong M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Sci Rep 2018; 8:5814. [PMID: 29643437 PMCID: PMC5895748 DOI: 10.1038/s41598-018-24254-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
Flagellin is a major component of the flagellar filament. Flagellin also functions as a specific ligand that stimulates innate immunity through direct interaction with Toll-like receptor 5 (TLR5) in the host. Because flagellin activates the immune response, it has been of interest to develop as a vaccine adjuvant in subunit vaccines or antigen fusion vaccines. Despite the widespread application of flagellin fusion in preventing infectious diseases, flagellin-antigen fusion designs have never been biophysically and structurally characterized. Moreover, flagellin from Salmonella species has been used extensively despite containing hypervariable regions not required for TLR5 that can cause an unexpected immune response. In this study, flagellin from Bacillus cereus (BcFlg) was identified as the smallest flagellin molecule containing only the conserved TLR5-activating D0 and D1 domains. The crystal structure of BcFlg was determined to provide a scheme for fusion designs. Through homology-based modeling and comparative structural analyses, diverse fusion strategies were proposed. Moreover, cellular and biophysical analysis of an array of fusion constructs indicated that insertion fusion at BcFlg residues 178–180 does not interfere with the protein stability or TLR5-stimulating capacity of flagellin, suggesting its usefulness in the development and optimization of flagellin fusion vaccines.
Collapse
Affiliation(s)
- Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
9
|
Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 2017; 49:e373. [PMID: 28860663 PMCID: PMC5628280 DOI: 10.1038/emm.2017.172] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023] Open
Abstract
Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests.
Collapse
|
10
|
Rostami H, Ebtekar M, Ardestani MS, Yazdi MH, Mahdavi M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol Lett 2017; 187:19-26. [PMID: 28479111 DOI: 10.1016/j.imlet.2017.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
Vaccines currently available for AIDS show poor efficiency, demonstrating the need for new strategies to increase their immunogenicity. In this study, the HIV-1P24-Nef peptide was used as a model vaccine, followed by utilization of a novel strategy to increase its immunogenicity. There is a growing interest in using TLR agonists for vaccine formulations. Such molecules bind to their receptors on immune cells, especially the cell surface of antigen presenting cells, thereby activating these cells and inflammatory responses. In the present study, FLiC (flagellin molecule sequence from Pseudomonas aeruginosa) was used as a TLR5 agonist. In addition, PLGA nanoparticles were used as a transmitter system to enhance vaccine efficiency and its effective transfer to immune systems. In light of this, the P24-Nef peptide was conjugated to FLiC through chemical reactions. The HIV-1P24-Nef/FLiC conjugate was constructed as a nano-vaccine using PLGA particles. Subsequently, mice were immunized intradermally three times with three-week intervals with HIV-p24-Nef/FLiC/PLGA, HIV-p24-Nef/PLGA, FLiC/PLGA, PLGA, and PBS in two doses (20 and 5μg). Three weeks after the last booster injection, cell proliferation was assessed using the Brdu/ELISA assay, and cytotoxicity was evaluated by CFSE and splenocyte cytokine secretion (IL-4 and IFN-γ); in addition, IgG1 and IgG2a antibody isotype titers were determined using a commercial ELISA kit. Our results showed that Co-utilization of TLR5 and nano-particles not only improves vaccine immunogenicity but also decreases the immunogenic dose of vaccine candidate required. We showed that the immune system was effectively stimulated via the nano-vaccination strategy using the TLR5 agonists. The effect of this strategy showed variations in different parameters of the immune system; in this regard, cellular immune responses had a higher stimulation level, compared with humoral immune responses.
Collapse
Affiliation(s)
- Hajar Rostami
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Evidence Based Medicine Group, Pharmaceutical Biotechnology Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Song WS, Jeon YJ, Namgung B, Hong M, Yoon SI. A conserved TLR5 binding and activation hot spot on flagellin. Sci Rep 2017; 7:40878. [PMID: 28106112 PMCID: PMC5247705 DOI: 10.1038/srep40878] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022] Open
Abstract
Flagellin is a bacterial protein that polymerizes into the flagellar filament and is essential for bacterial motility. When flagellated bacteria invade the host, flagellin is recognized by Toll-like receptor 5 (TLR5) as a pathogen invasion signal and eventually evokes the innate immune response. Here, we provide a conserved structural mechanism by which flagellins from Gram-negative γ-proteobacteria and Gram-positive Firmicutes bacteria bind and activate TLR5. The comparative structural analysis using our crystal structure of a complex between Bacillus subtilis flagellin (bsflagellin) and TLR5 at 2.1 Å resolution, combined with the alanine scanning analysis of the binding interface, reveals a common hot spot in flagellin for TLR5 activation. An arginine residue (bsflagellin R89) of the flagellin D1 domain and its adjacent residues (bsflagellin E114 and L93) constitute a hot spot that provides shape and chemical complementarity to a cavity generated by the loop of leucine-rich repeat 9 in TLR5. In addition to the flagellin D1 domain, the D0 domain also contributes to TLR5 activity through structurally dispersed regions, but not a single focal area. These results establish the groundwork for the future design of flagellin-based therapeutics.
Collapse
Affiliation(s)
- Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Ji Jeon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byeol Namgung
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Kang X, Yang Y, Jiao Y, Song H, Song L, Xiong D, Wu L, Pan Z, Jiao X. HA1-2-fljB Vaccine Induces Immune Responses against Pandemic Swine-Origin H1N1 Influenza Virus in Mice. J Mol Microbiol Biotechnol 2016; 26:422-432. [DOI: 10.1159/000448895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
In 2009, a novel pandemic swine-origin influenza A (H1N1) virus caused a public emergency of international concern. Vaccination is the primary strategy for the control of influenza epidemics. However, the poor immunopotency of many vaccine antigens is a major barrier to the development of effective vaccines against influenza. Flagellin, a Toll-like receptor 5 (TLR5) ligand, has been used as an adjuvant to enhance the immunopotency of vaccines in preclinical studies. Here, we developed a recombinant candidate vaccine, HA1-2-fljB, in which the globular head of the hemagglutinin (HA) antigen (residues 62-284) from H1N1 virus was fused genetically to the N-terminus of <i>Salmonella typhimurium</i> fljB. The recombinant HA1-2-fljB protein was expressed efficiently in<i> Escherichia coli</i>, and the immunogenicity and protective efficacy of recombinant HA1-2-fljB were evaluated in a mouse model. Immunization with HA1-2-fljB elicited robust IgG antibodies and neutralizing antibodies and completely protected the mice against infection by swine-origin influenza A/swine/Jangsu/38/2010 (H1N1). These results suggest that HA antigen placed at the N-terminus of flagellin is also an excellent starting point for creating a fusion HA1-2-fljB protein as a candidate vaccine, and the recombinant HA1-2-fljB protein will contribute to the development of a more effective vaccine against swine-origin influenza virus infection.
Collapse
|
13
|
Chen YL, Chen YS, Hung YC, Liu PJ, Tasi HY, Ni WF, Hseuh PT, Lin HH. Improvement in T helper 1-related immune responses in BALB/c mice immunized with an HIV-1 gag plasmid combined with a chimeric plasmid encoding interleukin-18 and flagellin. Microbiol Immunol 2016; 59:483-94. [PMID: 26094825 DOI: 10.1111/1348-0421.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
Both flagellin (fliC) and IL-18 (INF-γ-inducing factor) have been developed as adjuvants for improving immunogenicity in DNA-vaccinated hosts. An HIV-1 gag plasmid encodes a protein harboring broad epitopes for cytotoxic T-lymphocytes. In this study, the immunogenicity of BALB/c mice immunized with an HIV-1 gag plasmid (pVAX/gag) combined with a chimeric plasmid encoding IL-18 fused to flagellin (pcDNA3/IL-18_fliC) or a single plasmid encoding IL-18 (pcDNA3/IL-18) and/or flagellin (pcDNA3/fliC) was assessed. Through in vitro transcription and translation, it was demonstrated that both mRNA and protein were appropriately expressed by each construct. The IL-18 and flagellin fusion protein, which could be detected in supernatants from transfected cells, was effective in inducing IFN-γ by lymphocytes. Following i.m. immunization, expressions of flagellin or IL-18 were detected in muscle cells by immunohistochemistry analysis from 72 hr. At 12 weeks post-immunization, both gag-specific IgG in sera and spleen cell proliferation were high in all murine groups. However, the IgG2a/IgG1 ratio, Th1 cytokine (IL-2 and IFN-γ) production and proportion of gag-specific CD3(+) CD8(+) IFN-γ-secreting cells were significantly higher in the murine group co-immunized with pVAX/gag plasmid and pcDNA3/IL-18_fliC than in the mice immunized with pVAX/gag plasmid combined with either pcDNA3/fliC or pcDNA3/IL-18 plasmid or both. These findings suggest that a chimeric plasmid encoding IL-18 fused to flagellin can be used as an adjuvant-like plasmid to improve the Th1 immune response, particularly for induction of CD3(+) CD8(+) IFN-γ-secreting cells in gag plasmid-vaccinated mice.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung/National Yang-Ming University, Taipei
| | - Yi-Chien Hung
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| | - Pei-Ju Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsi-Ying Tasi
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Wei-Feng Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Tan Hseuh
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| |
Collapse
|
14
|
Gautam US, Mehra S, Kaushal D. In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 2015; 10:e0135208. [PMID: 26270051 PMCID: PMC4535907 DOI: 10.1371/journal.pone.0135208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/19/2015] [Indexed: 11/28/2022] Open
Abstract
Despite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo. We compared the transcriptomics of Mtb and various mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice. Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different and a relatively weaker transcriptional response (< = 20 genes were induced) for the functional category ‘Information Pathways’ in Mtb:ΔdosR; ‘Lipid Metabolism’ in Mtb:ΔdosT; ‘Virulence, Detoxification, Adaptation’ in both Mtb:ΔdosR and Mtb:ΔdosT; and ‘PE/PPE’ family in all mutant strains compare to wild-type Mtb H37Rv, suggesting that the inability to induce DosR functions to different levels can modulate the interaction of the pathogen with the host. The Mtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adaptation to differential nutrient utilization for survival in mouse lungs. The genes such as glnB, Rv0744c, Rv3281, sdhD/B, mce4A, dctA etc. downregulated in mutant ΔdosS indicate their requirement for bacterial growth and flow of carbon/energy source from host cells. We conclude that genes expressed in Mtb during in-vivo chronic phase of infection in Kramnik mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail: (DK); (USG)
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Louisiana State University School of Veterinary Medicine Department of Pathobiological Sciences, Baton Rouge, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (DK); (USG)
| |
Collapse
|
15
|
Deb R, Dey S, Madhan Mohan C, Gaikwad S, Kamble N, Khulape SA, Gupta SK, Maity HK, Pathak DC. Development and evaluation of a Salmonella typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry. Res Vet Sci 2015; 102:7-14. [PMID: 26412511 DOI: 10.1016/j.rvsc.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/27/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
Abstract
Infectious bursal disease (IBD) is an acute immunosuppressive disease of young chicks, caused by a double-stranded RNA virus. VP2 being the major capsid protein of the virus is an ideal vaccine candidate possessing the neutralizing epitopes. The present study involves the use of flagellin (fliC) as a genetic adjuvant to improve the immune response of VP2 based DNA vaccine against IBD. Our findings revealed that birds immunized with plasmid pCIVP2fliC showed robust immune response than pCIVP2 immunized groups. Further, challenge study proved that genetic fusion of fliC and VP2 can provide a comparatively higher level of protection against vvIBDV challenge in chickens than VP2 alone. These results thus indicate that Salmonella flagellin could enhance the immune responses and protection efficacy of a DNA vaccine candidate against IBDV infection in chickens, highlighting the potential of flagellin as a genetic adjuvant in the prevention of vvIBDV infection.
Collapse
Affiliation(s)
- Rajib Deb
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - C Madhan Mohan
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Satish Gaikwad
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Nitin Kamble
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sagar A Khulape
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shishir Kumar Gupta
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Hemanta Kumar Maity
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Dinesh Chandra Pathak
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
16
|
Cunningham AL, Dang KM, Yu JJ, Guentzel MN, Heidner HW, Klose KE, Arulanandam BP. Enhancement of vaccine efficacy by expression of a TLR5 ligand in the defined live attenuated Francisella tularensis subsp. novicida strain U112ΔiglB::fljB. Vaccine 2014; 32:5234-40. [PMID: 25050972 DOI: 10.1016/j.vaccine.2014.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
Oral vaccination with the defined live attenuated Francisella novicida vaccine strain U112ΔiglB has been demonstrated to induce protective immunity against pulmonary challenge with the highly human virulent Francisella tularensis strain SCHU S4. However, this vaccination regimen requires a booster dose in mice and Exhibits 50% protective efficacy in the Fischer 344 rat model. To enhance the efficacy of this vaccine strain, we engineered U112ΔiglB to express the Salmonella typhimurium FljB flagellin D1 domain, a TLR5 agonist. The U112ΔiglB::fljB strain was highly attenuated for intracellular macrophage replication, and although the FljB protein was expressed within the cytosol, it exhibited TLR5 activation in a TLR5-expressing HEK cell line. Additionally, infection of splenocytes and lymphocytes with U112ΔiglB::fljB induced significantly greater TNF-α production than infection with U112ΔiglB. Oral vaccination with U112ΔiglB::fljB also induced significantly greater protection than U112ΔiglB against pulmonary SCHU S4 challenge in rats. The enhanced protection was accompanied by higher IgG2a production and serum-mediated reduction of Francisella infectivity. Thus, the U112ΔiglB::fljB strain may serve as a potential vaccine candidate against pneumonic tularemia.
Collapse
Affiliation(s)
- Aimee L Cunningham
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Kim Minh Dang
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hans W Heidner
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Karl E Klose
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Disease and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
17
|
Junqueira-Kipnis AP, Marques Neto LM, Kipnis A. Role of Fused Mycobacterium tuberculosis Immunogens and Adjuvants in Modern Tuberculosis Vaccines. Front Immunol 2014; 5:188. [PMID: 24795730 PMCID: PMC4005953 DOI: 10.3389/fimmu.2014.00188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
Several approaches have been developed to improve or replace the only available vaccine for tuberculosis (TB), BCG (Bacille Calmette Guerin). The development of subunit protein vaccines is a promising strategy because it combines specificity and safety. In addition, subunit protein vaccines can be designed to have selected immune epitopes associated with immunomodulating components to drive the appropriate immune response. However, the limited antigens present in subunit vaccines reduce their capacity to stimulate a complete immune response compared with vaccines composed of live attenuated or killed microorganisms. This deficiency can be compensated by the incorporation of adjuvants in the vaccine formulation. The fusion of adjuvants with Mycobacterium tuberculosis (Mtb) proteins or immune epitopes has the potential to become the new frontier in the TB vaccine development field. Researchers have addressed this approach by fusing the immune epitopes of their vaccines with molecules such as interleukins, lipids, lipoproteins, and immune stimulatory peptides, which have the potential to enhance the immune response. The fused molecules are being tested as subunit vaccines alone or within live attenuated vector contexts. Therefore, the objectives of this review are to discuss the association of Mtb fusion proteins with adjuvants; Mtb immunogens fused with adjuvants; and cytokine fusion with Mtb proteins and live recombinant vectors expressing cytokines. The incorporation of adjuvant molecules in a vaccine can be complex, and developing a stable fusion with proteins is a challenging task. Overall, the fusion of adjuvants with Mtb epitopes, despite the limited number of studies, is a promising field in vaccine development.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - Lázaro Moreira Marques Neto
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| |
Collapse
|
18
|
Song WS, Yoon SI. Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament. Biochem Biophys Res Commun 2014; 444:109-15. [PMID: 24434155 DOI: 10.1016/j.bbrc.2014.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is one of leading opportunistic pathogens in humans and its movement is driven by a flagellar filament that is constituted through the polymerization of a single protein, FliC flagellin (paFliC). paFliC is an essential virulence factor for the colonization of P. aeruginosa. paFliC activates innate immune responses via its recognition by Toll-like receptor 5 (TLR5) and adaptive immunity in the host. Thus, paFliC has been a vaccine candidate to prevent P. aeruginosa infection, particularly for cystic fibrosis patients. To provide structural information on paFliC and its flagellar filament, we have determined the crystal structure of paFliC, which contains the conserved D1 and variable D2 domains, at 2.1 Å resolution. As observed for Salmonella FliC, the paFliC D1 domain is folded into a rod-shaped structure, and paFliC was demonstrated by gel filtration and native PAGE analyses to directly interact with TLR5. Moreover, a structural model of the paFliC-TLR5 complex suggests that paFliC D1 would provide major TLR5-binding sites, similar to Salmonella FliC. In contrast to the D1 domain, the paFliC D2 domain exhibits a unique structure of two β-sheets and one α-helix that has not been found in other flagellins. An in silico construction of a flagellar filament based on the packing of paFliC in the crystal suggests that the D2 domain would be exposed to solution and could play an important role in immunogenicity. Our biophysical and structure-based modeling study on paFliC, the paFliC-TLR5 complex, and the paFliC filament could contribute to the improvement of vaccine design to control P. aeruginosa infection.
Collapse
Affiliation(s)
- Wan Seok Song
- Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Sung-il Yoon
- Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
19
|
Wang BZ, Gill HS, He C, Ou C, Wang L, Wang YC, Feng H, Zhang H, Prausnitz MR, Compans RW. Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cross-protective influenza immunity. J Control Release 2014; 178:1-7. [PMID: 24417966 DOI: 10.1016/j.jconrel.2014.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/04/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Influenza vaccines with broad cross-protection are urgently needed to prevent an emerging influenza pandemic. A fusion protein of the Toll-like receptor (TLR) 5-agonist domains from flagellin and multiple repeats of the conserved extracellular domain of the influenza matrix protein 2 (M2e) was constructed, purified and evaluated as such a vaccine. A painless vaccination method suitable for possible self-administration using coated microneedle arrays was investigated for skin-targeted delivery of the fusion protein in a mouse model. The results demonstrate that microneedle immunization induced strong humoral as well as mucosal antibody responses and conferred complete protection against homo- and heterosubtypic lethal virus challenges. Protective efficacy with microneedles was found to be significantly better than that seen with conventional intramuscular injection, and comparable to that observed with intranasal immunization. Because of its advantages for administration, safety and storage, microneedle delivery of M2e-flagellin fusion protein is a promising approach for an easy-to-administer universal influenza vaccine.
Collapse
Affiliation(s)
- Bao-Zhong Wang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Harvinder S Gill
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Cheng He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Changbo Ou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Li Wang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying-Chun Wang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Feng
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han Zhang
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Wang L, Yu Y. Dendritic cells primed with protein-protein fusion adjuvant. Methods Mol Biol 2014; 1139:57-75. [PMID: 24619671 DOI: 10.1007/978-1-4939-0345-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To develop efficient T cell priming cancer vaccines, various recombinant fusion proteins have been developed by fusing a tumor antigen with a protein capable of stimulating or targeting dendritic cells (DC), the most important antigen-presenting cells for inducing CD8(+) cytotoxic T lymphocytes (CTL) which can efficiently kill tumor cells expressing the tumor antigen. The DC-stimulating or DC-targeting proteins, including granulocyte/macrophage colony-stimulating factor (GM-CSF), anti-DEC-205 monoclonal antibodies, flagellin, and heat shock proteins (HSP), function as promising intermolecular adjuvants. Herein, we describe in vitro assays on human DC pulsed with HSP fusion proteins, which might be useful in preclinical studies for the screening and assessment of candidate cancer vaccines.
Collapse
Affiliation(s)
- Liying Wang
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | |
Collapse
|
21
|
Hajam IA, Dar PA, Chandrasekar S, Nanda RK, Kishore S, Bhanuprakash V, Ganesh K. Co-administration of flagellin augments immune responses to inactivated foot-and-mouth disease virus (FMDV) antigen. Res Vet Sci 2013; 95:936-41. [PMID: 23941960 DOI: 10.1016/j.rvsc.2013.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most contagious animal virus known that affects livestock health and production. This study aimed to investigate the effect of flagellin, a toll-like receptor 5 agonist, on the immune responses to inactivated FMDV antigen in guinea pig model. Our results showed that the co-administration of flagellin with FMDV antigen through intradermal route induces earlier and higher anti-FMDV neutralizing antibody responses as compared to FMDV antigen alone. Both IgG1 and IgG2 antibody-isotype responses were enhanced, but the IgG1/IgG2 ratios were relatively low, indicative of TH1 type of immune activation. On live viral challenge, flagellin+FMDV immunized guinea pigs showed 70% (7 out of 10) protection rate as compared to 40% (4 out of 10) in FMDV alone immunized guinea pigs. The results demonstrate that the co-administration of flagellin augments immune responses (preferably TH1 type) and protective efficacy against FMDV in guinea pigs.
Collapse
Affiliation(s)
- Irshad A Hajam
- FMD Research Centre, Indian Veterinary Research Institute, Bangalore 560024, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Antibody response to Mycobacterium tuberculosis p27-PPE36 antigen in sera of pulmonary tuberculosis patients. Tuberculosis (Edinb) 2013; 93:189-91. [DOI: 10.1016/j.tube.2012.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 11/23/2022]
|
23
|
Haghighi MA, Mobarez AM, Salmanian AH, Moazeni M, Zali MR, Sadeghi M, Amani J. In silico experiment with an-antigen-toll like receptor-5 agonist fusion construct for immunogenic application to Helicobacter pylori. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:43-53. [PMID: 23901192 PMCID: PMC3722629 DOI: 10.4103/0971-6866.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS Helicobacter pylori colonize the gastric mucosa of half of the world's population. Although it is classified as a definitive type I carcinogen by World Health Organization, there is no effective vaccine against this bacterium. H. pylori evade the host immune response by avoiding toll-like detection, such as detection via toll-like receptor-5 (TLR-5). Thus, a chimeric construct consisting of selected epitopes from virulence factors that is incorporated into a TLR-5 ligand (Pseudomonas flagellin) could result in more potent innate and adaptive immune responses. MATERIALS AND METHODS Based on the histocompatibility antigens of BALB/c mice, in silico techniques were used to select several fragments from H. pylori virulence factors with a high density of B- and T-cell epitopes. RESULTS These segments consist of cytotoxin-associated geneA (residue 162-283), neutrophil activating protein (residue 30-135) and outer inflammatory protein A (residue 155-268). The secondary and tertiary structure of the chimeric constructs and other bioinformatics analyses such as stability, solubility, and antigenicity were performed. The chimeric construct containing antigenic segments of H. pylori proteins was fused with the D3 domain of Pseudomonas flagellin. This recombinant chimeric gene was optimized for expression in Escherichia coli. The in silico results showed that the conserved C- and N-terminal domains of flagellin and the antigenicity of selected fragments were retained. DISCUSSION In silico analysis showed that Pseudomonas flagellin is a suitable platform for incorporation of an antigenic construct from H. pylori. This strategy may be an effective tool for the control of H. pylori and other persistent infections.
Collapse
Affiliation(s)
- Mohamad Ali Haghighi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohamad Moazeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Reza Zali
- Gastroenterology and Liver Disease Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Biochemistry National Institute of Genetic Engineering and Biotechnology, Baqiyatallah Medical Science University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| |
Collapse
|
24
|
Terron-Exposito R, Dudognon B, Galindo I, Quetglas JI, Coll JM, Escribano JM, Gomez-Casado E. Antibodies against Marinobacter algicola and Salmonella typhimurium flagellins do not cross-neutralize TLR5 activation. PLoS One 2012; 7:e48466. [PMID: 23155384 PMCID: PMC3498291 DOI: 10.1371/journal.pone.0048466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).
Collapse
Affiliation(s)
- Raul Terron-Exposito
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Benoit Dudognon
- Alternative Gene Expression S. L. (ALGENEX S. L.), Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose I. Quetglas
- Division of Gene Therapy, Centro de Investigación en Medicina Aplicada, CIMA, Pamplona, Spain
| | - Julio M. Coll
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose M. Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Eduardo Gomez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
Enhanced influenza virus-like particle vaccines containing the extracellular domain of matrix protein 2 and a Toll-like receptor ligand. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1119-25. [PMID: 22647270 DOI: 10.1128/cvi.00153-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extracellular domain of matrix protein 2 (M2e) is conserved among influenza A viruses. The goal of this project is to develop enhanced influenza vaccines with broad protective efficacy using the M2e antigen. We designed a membrane-anchored fusion protein by replacing the hyperimmunogenic region of Salmonella enterica serovar Typhimurium flagellin (FliC) with four repeats of M2e (4.M2e-tFliC) and fusing it to a membrane anchor from influenza virus hemagglutinin (HA). The fusion protein was incorporated into influenza virus M1-based virus-like particles (VLPs). These VLPs retained Toll-like receptor 5 (TLR5) agonist activity comparable to that of soluble FliC. Mice immunized with the VLPs by either intramuscular or intranasal immunization showed high levels of systemic M2-specific antibody responses compared to the responses to soluble 4.M2e protein. High mucosal antibody titers were also induced in intranasally immunized mice. All intranasally immunized mice survived lethal challenges with live virus, while intramuscularly immunized mice showed only partial protection, revealing better protection by the intranasal route. These results indicate that a combination of M2e antigens and TLR ligand adjuvants in VLPs has potential for development of a broadly protective influenza A virus vaccine.
Collapse
|
26
|
Zhang H, Liu L, Wen K, Huang J, Geng S, Shen J, Pan Z, Jiao X. Chimeric flagellin expressed by Salmonella typhimurium induces an ESAT-6-specific Th1-type immune response and CTL effects following intranasal immunization. Cell Mol Immunol 2011; 8:496-501. [PMID: 21841816 PMCID: PMC4012927 DOI: 10.1038/cmi.2011.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 11/09/2022] Open
Abstract
The flagellin component FliC of Salmonella typhimurium is capable of activating the innate immune system via specific interactions with TLR5 and can also act as a carrier of foreign antigen to elicit antigen-specific immune responses. Thus, we constructed an attenuated Salmonella strain SL5928(fliC/esat) expressing chimeric flagellin that contained the ESAT-6 antigen coding sequence of Mycobacterium tuberculosis inserted into the highly variable region of the Salmonella flagellin coding gene fliC(i). The chimeric flagellin functioned normally, as demonstrated using a flagella swarming assay and electron microscopy. To analyze the effects of chimeric flagellin, the cell-mediated immune response and cytotoxic T lymphocyte (CTL) effects specific for ESAT-6 antigen were tested after intranasal immunization of mice with flagellated Salmonella SL5928(fliC/esat). The results showed that SL5928(fliC/esat) intranasal immunization can strongly elicit an ESAT-6-specific T helper (Th) 1-type immune response in mucosal lymphoid tissues, such as nasopharynx-associated lymph nodes, lung and Peyer's patches, and a Th1/Th2 response was elicited in spleen and mesenteric lymph nodes. Furthermore, intranasal immunization of SL5928(fliC/esat) produced efficient CTL effects, as demonstrated using a 5- and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay. Thus, our study revealed that Salmonella flagellin acts as a carrier for foreign antigen and triggers strong Th1 and CTL responses during intranasal immunization. Chimeric flagellin is potentially an effective strategy for the development of novel vaccines against tuberculosis in humans and animals.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 2011; 29:5731-9. [PMID: 21696869 DOI: 10.1016/j.vaccine.2011.05.095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen that causes high levels of mortality and morbidity in infants and the elderly. Despite the use of antibiotics and vaccines, fatal pneumococcal disease remains prevalent. Pneumococcal surface protein A (PspA), a highly immunogenic surface protein produced by all strains of S. pneumoniae, can elicit protective immunity against fatal pneumococcal infection. We have previously demonstrated that the Vibrio vulnificus FlaB, a bacterial flagellin protein and agonist of TLR5, has strong mucosal adjuvant activity and induces protective immunity upon co-administration with tetanus toxoid. In this study, we have tested whether intranasal immunization with recombinant fusion proteins consisted of PspA and FlaB (PspA-FlaB and FlaB-PspA) is able to elicit more efficient protective mucosal immune responses against pneumococcal infection than immunization with PspA alone or with a stoichiometric mixture of PspA and FlaB. When mice were intranasally immunized with fusion proteins, significantly higher levels of anti-PspA IgG and IgA were induced in serum and mucosal secretions. The mice immunized intranasally with the FlaB-PspA fusion protein were the most protected from a lethal challenge with live S. pneumoniae, as compared to the mice immunized with PspA only, a mixture of PspA and FlaB, or the PspA-FlaB fusion protein. FlaB-PspA also induced a cross protection against heterologous capsular types. These results suggest that a FlaB-PspA fusion protein alone could be used as an anti-pneumococcal mucosal vaccine or as an effective partner protein for multivalent capsular polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Chung Truong Nguyen
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun-gun, Jeonnam 519-809, South Korea
| | | | | | | | | |
Collapse
|
28
|
Stano A, van der Vlies AJ, Martino MM, Swartz MA, Hubbell JA, Simeoni E. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 2010; 29:804-12. [PMID: 21094269 DOI: 10.1016/j.vaccine.2010.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 11/27/2022]
Abstract
Degradable polymer nanoparticles (NPs, 50 nm) based on polypropylene sulfide (PPS) were conjugated to thiolated antigen and adjuvant proteins by reversible disulfide bonds and evaluated in mucosal vaccination. Ovalbumin was used as a model antigen, and antigen-conjugated NPs were administered intranasally in the mouse. We show penetration of nasal mucosae, transit via M cells, and uptake by antigen-presenting cells in the nasal-associated lymphoid tissue. Ovalbumin-conjugated NPs induced cytotoxic T lymphocytic responses in lung and spleen tissues, as well as humoral response in mucosal airways. Co-conjugation of the TLR5 ligand flagellin further enhanced humoral responses in the airways as well as in the distant vaginal and rectal mucosal compartments and induced cellular immune responses with a Th1 bias, in contrast with free flagellin. The PPS NP platform thus appears interesting as a platform for intranasally-administered mucosal vaccination for inducing broad mucosal immunity.
Collapse
Affiliation(s)
- Armando Stano
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Brichacek B, Vanpouille C, Kiselyeva Y, Biancotto A, Merbah M, Hirsch I, Lisco A, Grivel JC, Margolis L. Contrasting roles for TLR ligands in HIV-1 pathogenesis. PLoS One 2010; 5:e12831. [PMID: 20862220 PMCID: PMC2942834 DOI: 10.1371/journal.pone.0012831] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.
Collapse
Affiliation(s)
- Beda Brichacek
- Section of Intercellular Interactions, Program in Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Faham A, Altin JG. Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. THE JOURNAL OF IMMUNOLOGY 2010; 185:1744-54. [PMID: 20610649 DOI: 10.4049/jimmunol.1000027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bacterial protein flagellin can trigger immune responses to infections by interacting with TLR5 on APCs, and Ag-flagellin fusion proteins can act as effective vaccines. We report that flagellin-related peptides containing a His-tag and sequence related to conserved N-motif (aa 85-111) of FliC flagellin, purportedly involved in the interaction of flagellin with TLR5, can be used to target delivery of liposomal Ag to APCs in vitro and in vivo. When engrafted onto liposomes, two flagellin-related peptides, denoted as 9Flg and 42Flg, promoted strong liposome binding to murine bone marrow-derived dendritic cells and CD11c(+) splenocytes, and cell binding correlated with expression of TLR5. Liposomes engrafted with 9Flg or 42Flg induced functional MyD88-dependent maturation of dendritic cells in vivo. The vaccination of mice with 9Flg liposomes containing OVA induced OVA-specific T cell priming, increased the number of Ag-responsive IFN-gamma-producing CD8(+) T cells, and increased Ag-specific IgG(1) and IgG(2b) in serum. Importantly, the vaccination of C57BL/6 mice with syngeneic B16-OVA-derived plasma membrane vesicles, engrafted with 9Flg or 42Flg, potently inhibited tumor growth/metastasis and induced complete tumor regression in the majority of mice challenged with the syngeneic B16-OVA melanoma, in the lung and s.c. tumor models. Strong antitumor responses were also seen in studies using the s.c. P815 tumor model. Therefore, vaccination with Ag-containing liposomes engrafted with 9Flg or 42Flg is a powerful strategy to exploit the innate and adaptive immune systems for the development of potent vaccines and cancer immunotherapies.
Collapse
Affiliation(s)
- Abdus Faham
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australia
| | | |
Collapse
|
31
|
de Zoete MR, Keestra AM, Wagenaar JA, van Putten JPM. Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. J Biol Chem 2010; 285:12149-58. [PMID: 20164175 PMCID: PMC2852954 DOI: 10.1074/jbc.m109.070227] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/21/2010] [Indexed: 11/06/2022] Open
Abstract
Bacterial flagellin is important for intestinal immune homeostasis. Flagellins from most species activate Toll-like receptor 5 (TLR5). The principal bacterial food-borne pathogen Campylobacter jejuni escapes TLR5 recognition, probably due to an alternate flagellin subunit structure. We investigated the molecular basis of TLR5 evasion by aiming to reconstitute TLR5 stimulating activity in live C. jejuni. Both native glycosylated C. jejuni flagellins (FlaA and FlaB) and recombinant proteins purified from Escherichia coli failed to activate NF-kappaB in HEK293 cells expressing TLR5. Introduction of multiple defined regions from Salmonella flagellin into C. jejuni FlaA via a recombinatorial approach revealed three regions critical for the activation of human and mouse TLR5, including a beta-hairpin structure not previously implicated in TLR5 recognition. Surprisingly, this domain was not required for the activation of chicken TLR5, indicating a selective requirement for the beta-hairpin in the recognition of mammalian TLR5. Expression of the active chimeric protein in C. jejuni resulted in secreted glycosylated flagellin that induced a potent TLR5 response. Overall, our results reveal a novel structural requirement for TLR5 recognition of bacterial flagellin and exclude flagellin glycosylation as an additional mechanism of bacterial evasion of the TLR5 response.
Collapse
Affiliation(s)
- Marcel R. de Zoete
- From the Department of Infectious Diseases and Immunology, Utrecht University, P. O. Box 80.165, 3508 TD Utrecht, The Netherlands and
| | - A. Marijke Keestra
- From the Department of Infectious Diseases and Immunology, Utrecht University, P. O. Box 80.165, 3508 TD Utrecht, The Netherlands and
| | - Jaap A. Wagenaar
- From the Department of Infectious Diseases and Immunology, Utrecht University, P. O. Box 80.165, 3508 TD Utrecht, The Netherlands and
- the WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis Utrecht/Lelystad, P.O. Box 65, 8200 AB Lelystad, The Netherlands Lelystad, The Netherlands
| | - Jos P. M. van Putten
- From the Department of Infectious Diseases and Immunology, Utrecht University, P. O. Box 80.165, 3508 TD Utrecht, The Netherlands and
- the WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for Campylobacteriosis Utrecht/Lelystad, P.O. Box 65, 8200 AB Lelystad, The Netherlands Lelystad, The Netherlands
| |
Collapse
|
32
|
Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium. Vaccine 2010; 28:2818-26. [PMID: 20170765 DOI: 10.1016/j.vaccine.2010.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/30/2010] [Accepted: 02/03/2010] [Indexed: 12/17/2022]
Abstract
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity.
Collapse
|
33
|
Le Moigne V, Robreau G, Mahana W. Immune response to Chlamydophila abortus POMP91B protein in the context of different Pathogen Associated Molecular Patterns (PAMP); role of antigen in the orientation of immune response. Toxins (Basel) 2009; 1:59-73. [PMID: 22069532 PMCID: PMC3202785 DOI: 10.3390/toxins1020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 09/30/2009] [Accepted: 10/10/2009] [Indexed: 11/16/2022] Open
Abstract
In a previous study, we used bacterial flagellin to deliver antigens such as p27 of Mycobacterium tuberculosis to a host immune system and obtained a potent Th1 response compared to those obtained with Freund’s adjuvant and DNA immunization. In the current study, using a POMP91B antigen of Chlamydophila abortus, a human and animal pathogen, as a model, we found that this antigen is unable to promote Th1 response. However, this antigen, unlike others, was able to induce a good Th2 response and IL-4 production after immunization by recombinant protein in Freund’s adjuvant or in phosphate buffered saline. Our results suggest that immune response is not only dependent on the immunization adjuvant, but also dependent on the nature of antigen used.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Unversité de Bretagne Occidentale (UBO), IUT de Quimper, 2, rue de l'Université, 29334 Quimper, France.
| | | | | |
Collapse
|
34
|
Brunner R, Jensen-Jarolim E, Pali-Schöll I. The ABC of clinical and experimental adjuvants--a brief overview. Immunol Lett 2009; 128:29-35. [PMID: 19895847 DOI: 10.1016/j.imlet.2009.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/19/2009] [Accepted: 10/23/2009] [Indexed: 01/18/2023]
Abstract
Adjuvants are compounds that can increase and/or modulate the intrinsic immunogenicity of an antigen and elicit strong and long lasting immune responses. During the last 80 years many adjuvants have been used in experimental settings, but due to various shortcomings of most of them only aluminum compounds made it into regular clinical usage. However, during the last years promising candidates have arisen that may finally adjunct or displace aluminum substances as main adjuvant. This review summarizes information on adjuvants currently used in clinical as well as in experimental settings.
Collapse
Affiliation(s)
- Richard Brunner
- Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, AKH-EB 03.Q, Vienna, Austria
| | | | | |
Collapse
|
35
|
Jiao XD, Dang W, Hu YH, Sun L. Identification and immunoprotective analysis of an in vivo-induced Edwardsiella tarda antigen. FISH & SHELLFISH IMMUNOLOGY 2009; 27:633-638. [PMID: 19706328 DOI: 10.1016/j.fsi.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 05/28/2023]
Abstract
Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares approximately 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia coli, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5alpha/pTAET21, is an effective vaccine candidate against E. tarda infection.
Collapse
Affiliation(s)
- Xu-dong Jiao
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
36
|
Vicente-Suarez I, Brayer J, Villagra A, Cheng F, Sotomayor EM. TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses. Immunol Lett 2009; 125:114-8. [PMID: 19555720 DOI: 10.1016/j.imlet.2009.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) differentiated in the presence of IL-10 preferentially induce regulatory T-cells and tolerance. Whether the tolerogenic properties displayed by these DCs (Tol-DCs) can be overcome has not been fully explored. Here we show for the first time that Tol-DCs express higher levels of TLR5 mRNA, but not TLR4 or TLR9 mRNA relative to DCs differentiated with GM-CSF and IL-4 (BM-DCs). In response to flagellin, a natural TLR-5 ligand, Tol-DCs produced IL-12 but not IL-10. Unlike Tol-DCs stimulated with LPS, which produce high levels of IL-10 and fail to generate a cognate inflammatory response in CD4(+) T-cells, flagellin-stimulated Tol-DCs promoted the differentiation of CD4(+) T cells with a T-helper 1 phenotype. The divergent T-cell outcomes induced by Tol-DCs in response to different TLR-ligands highlights not only their plasticity, but also points to TLR5 ligation as a potential strategy to overcome tolerance in environments that are otherwise conducive to immune unresponsiveness.
Collapse
Affiliation(s)
- Ildelfonso Vicente-Suarez
- Division of Immunology and Division of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States
| | | | | | | | | |
Collapse
|