1
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
2
|
Kaliniak S, Fiedoruk K, Spałek J, Piktel E, Durnaś B, Góźdź S, Bucki R, Okła S. Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation. J Inflamm Res 2024; 17:1295-1323. [PMID: 38434581 PMCID: PMC10906676 DOI: 10.2147/jir.s443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Collapse
Affiliation(s)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Stanisław Góźdź
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Sławomir Okła
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| |
Collapse
|
3
|
Liu W, Wang D, Zhou Q, Wang J, Lian S. Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Vet Sci 2023; 10:vetsci10040241. [PMID: 37104396 PMCID: PMC10141385 DOI: 10.3390/vetsci10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
This study established a model of mineral element homeostatic imbalance and examined the respiratory burst function of peripheral blood neutrophils and inflammatory and antioxidant indicators before and after the imbalance in sheep. The results showed that after an EDTA injection, the number of activated neutrophils in the peripheral blood was significantly higher than that in the control group (p < 0.01). In addition, the serum IL-6 level was significantly increased (p < 0.05) and matrix metalloproteinase 7 (MMP7) was inhibited (p < 0.05), but returned to a normal level one week after the injection. Tissue inhibitor of metalloproteinase 1 (TIMP1) levels were consistently higher after the injection and significantly higher than in the control group (p < 0.05). CuZn-SOD, TNOS activity, serum creatinine and urea nitrogen levels were significantly higher than before the injection (p < 0.05). Combining the results of previous studies, the EDTA injection altered the metabolism and transcription of peripheral blood neutrophils. These changes enhance the respiratory burst function of neutrophils and alter the status of inflammatory and antioxidant indicators such as IL-6 and CuZn-SOD.
Collapse
Affiliation(s)
- Weiqi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qijun Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
4
|
Bai B, Xu Y, Chen H. Pathogenic roles of neutrophil-derived alarmins (S100A8/A9) in heart failure: From molecular mechanisms to therapeutic insights. Br J Pharmacol 2023; 180:573-588. [PMID: 36464854 DOI: 10.1111/bph.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
An excessive neutrophil count is recognized as a valuable predictor of inflammation and is associated with a higher risk of adverse cardiac events in patients with heart failure. Our understanding of the effectors used by neutrophils to inflict proinflammatory actions needs to be advanced. Recently, emerging evidence has demonstrated a causative role of neutrophil-derived alarmins (i.e. S100A8/A9) in aggravating cardiac injuries by induction of inflammation. In parallel with the neutrophil count, high circulating levels of S100A8/A9 proteins powerfully predict mortality in patients with heart failure. As such, a deeper understanding of the biological functions of neutrophil-derived S100A8/A9 proteins would offer novel therapeutic insights. Here, the basic biology of S100A8/A9 proteins and their pleiotropic roles in cardiovascular diseases are discussed, focusing on heart failure. We also consider the evidence that therapeutic targeting of S100A8/A9 proteins by the humanized vaccine, antibodies or inhibitors is able to town down inflammatory injuries.
Collapse
Affiliation(s)
- Bo Bai
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yun Xu
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Haibo Chen
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
5
|
De Corso E, Baroni S, Onori ME, Tricarico L, Settimi S, Moretti G, Troiani E, Mastrapasqua RF, Furno D, Crudo F, Urbani A, Galli J. Calprotectin in nasal secretion: a new biomarker of non-type 2 inflammation in CRSwNP. ACTA OTORHINOLARYNGOLOGICA ITALICA 2022; 42:355-363. [PMID: 35775497 PMCID: PMC9577689 DOI: 10.14639/0392-100x-n1800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
Abstract
Objective We analysed calprotectin in sinonasal secretions of different chronic rhinosinusitis with nasal polyps (CRSwNP) endotypes to assess its role as a biomarker of non-type 2 inflammation. Methods We included primary diffuse CRSwNP patients (n = 41) and three different control groups [non-allergic rhinitis (NAR) (n = 13), non-allergic eosinophilic syndrome (NARES) (n = 10) and healthy subjects (n = 12)]. Calprotectin levels were detected in nasal secretions using a chemiluminescent immunoassay (CLIA). Results Calprotectin levels in nasal secretions were significantly higher in all non-type 2 endotypes of CRSwNP compared to healthy controls (p < 0.05). In contrast, in type-2 CRSwNP calprotectin was significantly lower compared to controls (p < 0.05). A significant correlation between calprotectin levels and neutrophilic count/HPF was found in CRSwNP (p < 0.01). Clinically, mean levels of calprotectin and neutrophilia were significantly higher in patients who previously underwent 3 or more endoscopic sinus surgeries (p < 0.05). Conclusions Calprotectin in nasal secretions may be a biomarker of non-type 2 inflammation. Low levels of calprotectin are indicative of a type-2 immune response in both CRSwNP and non-allergic rhinitis. We observed that calprotectin levels significantly increased based on the number of previous surgeries.
Collapse
|
6
|
Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021; 26:molecules26051323. [PMID: 33801279 PMCID: PMC7958135 DOI: 10.3390/molecules26051323] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
Collapse
|
7
|
Fatemi A, Alipour R, Khanahmad H, Alsahebfosul F, Andalib A, Pourazar A. The impact of neutrophil extracellular trap from patients with systemic lupus erythematosus on the viability, CD11b expression and oxidative burst of healthy neutrophils. BMC Immunol 2021; 22:12. [PMID: 33546594 PMCID: PMC7863477 DOI: 10.1186/s12865-021-00402-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background NET (neutrophil extracellular trap) has been shown to directly influence inflammation; in SLE (systemic lupus erythematosus), it is reportedly a plausible cause for the broken self-tolerance that contributes to this pathology. Meanwhile, the role of NET is not easily explicable, and there is a serious discrepancy in the role of NET in SLE pathology and generally inflammation; in particular, the interactions of neutrophils with NET have been rarely inspected. This study evaluates the effect of NET on neutrophils in the context of SLE. The neutrophils were incubated by the collected NET (from SLE patients and healthy controls) and their expression of an activation marker, viability and oxidative burst ability were measured. Results The level of cell mortality, CD11b expression and the oxidative burst capacity were elevated in NET-treated neutrophils. Also, the elevation caused by the SLE NET was higher than that produced by the healthy NET. Conclusion The decreased neutrophil viability was not due to the increase in apoptosis; rather, it was because of the augmentation of other inflammatory cell-death modes. The upregulation of CD11b implies that NET causes neutrophils to more actively contribute to inflammation. The increased oxidative burst capacity of neutrophils can play a double role in inflammation. Overall, the effects induced by NET on neutrophils help prolong inflammation; accordingly, the NET collected from SLE patients is stronger than the NET from healthy individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00402-2.
Collapse
Affiliation(s)
- Alimohammad Fatemi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosul
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Alireza Andalib
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Abbasali Pourazar
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran.
| |
Collapse
|
8
|
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 2020; 161:105212. [PMID: 32991974 DOI: 10.1016/j.phrs.2020.105212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
10
|
Hamasaki MY, Severino P, Puga RD, Koike MK, Hernandes C, Barbeiro HV, Barbeiro DF, Machado MCC, Reis EM, Pinheiro da Silva F. Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions. Inflammation 2019; 42:1023-1031. [DOI: 10.1007/s10753-019-00964-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Peng S, Sun X, Wang X, Wang H, Shan Z, Teng W, Li C. Myeloid related proteins are up-regulated in autoimmune thyroid diseases and activate toll-like receptor 4 and pro-inflammatory cytokines in vitro. Int Immunopharmacol 2018; 59:217-226. [PMID: 29656212 DOI: 10.1016/j.intimp.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Myeloid-related protein (MRP) family plays an important role in the promotion of cell proliferation and the production of inflammatory cytokines. We investigated the expression of MRP6, MRP8 and MRP14 in thyroid tissues, serum, and peripheral blood monocular cells (PBMCs) in patients with autoimmune thyroid diseases (AITD). METHOD The expression of MRP6, MRP8, and MRP14 was investigated using immunohistochemical staining and quantitative real-time polymerase chain reaction in the thyroid glands of 7 patients with Graves' disease (GD), 8 with Hashimoto's thyroiditis (HT), and 7 healthy controls (HC). The serum levels of MRP8/MRP14 complex and MRP6 were investigated in 30 patients with GD, 36 with HT, and 30 with HC. The mRNA expression of MRP proteins in PBMCs was also explored. PBMCs from each group were incubated with MPRs and their effect on Toll-like receptor 4(TLR4) expression and their effect on the levels of the pro-inflammatory cytokines in supernatant were analyzed upon incubating with TLR4 and signaling pathways inhibitors. RESULTS Serum levels of MRP8/MRP14 and MRP6 were up-regulated in patients with AITD. In addition, mRNA expression of MRP proteins in PBMCs and the thyroid gland was markedly elevated in AITD patients. MRP6 and MPR8 promoted the secretion of TNF-α and IL-6 in cultured PBMCs, and this elevation was more pronounced in AITD patients; we also found that this up-regulation was regulated by TLR4/phosphoinositide 3-kinase/nuclear factor-κB signaling pathway. CONCLUSION The expression of MRP proteins was elevated in AITD patients. Therefore, an MRP-TLR4 dependent signaling may play an important role in the pathogenesis of AITD.
Collapse
Affiliation(s)
- Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xinyi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
12
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
13
|
Kato T, Kouzaki H, Matsumoto K, Hosoi J, Shimizu T. The effect of calprotectin on TSLP and IL-25 production from airway epithelial cells. Allergol Int 2017; 66:281-289. [PMID: 27475624 DOI: 10.1016/j.alit.2016.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calprotectin is a heterodimer complex of the S100A8 and S100A9 proteins, and has various functions as an innate mediator at the sites of inflammation. The aim of this study was to elucidate the roles of calprotectin in the eosinophilic chronic rhinosinusitis (ECRS). METHODS Allergen-induced production of calprotectin was evaluated in cultured normal human bronchial epithelial (NHBE) cells by ELISA and RT-PCR. We then examined the roles of calprotectin on Alternaria alternata (Alternaria)-induced production of thymic stromal lymphopoietin (TSLP) and IL-25 in NHBE cells. The extracellular concentration and allergen-induced secretion of calprotectin in cultured primary nasal epithelial (PNE) cells were examined and compared between patients with ECRS and non-eosinophilic chronic rhinosinusitis (NECRS). RESULTS Alternaria, house dust mites, protease from Staphylococcus aureus, papain, trypsin, polyinosinic:polycytidylic acid and lipopolysaccharide stimulated calprotectin production in the cultured NHBE cells. The combination of calprotectin and ATP stimulated the production of TSLP and IL-25 in NHBE cells, and calprotectin stimulated Alternaria-induced production of TSLP and IL-25, which was suppressed by blocking P2 purinergic receptors and by treatment with siRNA for S100A8, S100A9 or calprotectin receptors (Toll-like receptor 4 or receptor for advanced glycation end products). Allergen-induced calprotectin production was significantly stimulated in PNE cells from patients with ECRS. CONCLUSIONS These results indicate that calprotectin enhances the allergen-induced Th2-type inflammatory responses in airway epithelial cells via the secretion of TSLP and IL-25, and that calprotectin secreted by the epithelial cells may be involved in the pathogenesis of ECRS.
Collapse
|
14
|
Decreased S100A9 Expression Promoted Rat Airway Smooth Muscle Cell Proliferation by Stimulating ROS Generation and Inhibiting p38 MAPK. Can Respir J 2016; 2016:1462563. [PMID: 28050155 PMCID: PMC5165165 DOI: 10.1155/2016/1462563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 01/16/2023] Open
Abstract
Background. Asthma is a disease with a core abnormality in airway smooth muscle function, and the proliferation of airway smooth muscle cells (ASMCs) plays a pivotal role in asthma airway remodeling. Our previous study showed that S100A9 (S100 calcium-binding protein A9; 400 and 800 ng/mL) significantly inhibited rat ASMCs proliferation at 48 h, and 50–800 ng/mL S100A9 (50, 100, 200, 400, and 800 ng/mL) also induced a lasting effect by significantly inhibiting rat ASMCs proliferation at 72 h in a dose-dependent manner. However, the intracellular effects of S100A9 on ASMCs proliferation remain unknown. Methods. Rat ASMCs with stable S100A9 knockdown were generated using short hairpin RNA. The effects of decreased S100A9 expression on cellular proliferation, the production of reactive oxygen species (ROS), and p38 MAPK pathway protein expression were examined. Results. Decreased intracellular S100A9 expression significantly promoted platelet-derived growth factor-induced rat ASMCs proliferation and increased ROS production. The antioxidative agent N-acetylcysteine significantly inhibited rat ASMCs proliferation. Western blot results showed that the decreased intracellular S100A9 expression significantly inhibited p38 MAPK phosphorylation. Conclusion. Decreased S100A9 expression promoted rat ASMCs proliferation by stimulating ROS generation and inhibiting p38 MAPK. Our study may provide novel insights into the regulation of asthma airway remodeling.
Collapse
|
15
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
16
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
17
|
Liao Y, Lu B, Ma Q, Wu G, Lai X, Zang J, Shi Y, Liu D, Han F, Zhou N. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues. J Biol Chem 2016; 291:7505-16. [PMID: 26865629 DOI: 10.1074/jbc.m115.704122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human neuropeptide S (NPS) and its cognate receptor regulate important biological functions in the brain and have emerged as a future therapeutic target for treatment of a variety of neurological and psychiatric diseases. The human NPS (hNPS) receptor has been shown to dually couple to Gαs- and Gαq-dependent signaling pathways. The human NPS analog hNPS-(1-10), lacking 10 residues from the C terminus, has been shown to stimulate Ca(2+)mobilization in a manner comparable with full-length hNPSin vitrobut seems to fail to induce biological activityin vivo Here, results derived from a number of cell-based functional assays, including intracellular cAMP-response element (CRE)-driven luciferase activity, Ca(2+)mobilization, and ERK1/2 phosphorylation, show that hNPS-(1-10) preferentially activates Gαq-dependent Ca(2+)mobilization while exhibiting less activity in triggering Gαs-dependent CRE-driven luciferase activity. We further demonstrate that both Gαq- and Gαs-coupled signaling pathways contribute to full-length hNPS-mediated activation of ERK1/2, whereas hNPS-(1-10)-promoted ERK1/2 activation is completely inhibited by the Gαqinhibitor UBO-QIC but not by the PKA inhibitor H89. Moreover, the results of Ala-scanning mutagenesis of hNPS-(1-13) indicated that residues Lys(11)and Lys(12)are structurally crucial for the hNPS receptor to couple to Gαs-dependent signaling. In conclusion, our findings demonstrate that hNPS-(1-10) is a biased agonist favoring Gαq-dependent signaling. It may represent a valuable chemical probe for further investigation of the therapeutic potential of human NPS receptor-directed signalingin vivo.
Collapse
Affiliation(s)
- Yuan Liao
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Bin Lu
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Qiang Ma
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Gang Wu
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Xiangru Lai
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Jiashu Zang
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences, and
| | - Dongxiang Liu
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences, and
| |
Collapse
|
18
|
Cabras T, Sanna M, Manconi B, Fanni D, Demelia L, Sorbello O, Iavarone F, Castagnola M, Faa G, Messana I. Proteomic investigation of whole saliva in Wilson's disease. J Proteomics 2015; 128:154-63. [PMID: 26254010 DOI: 10.1016/j.jprot.2015.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 01/20/2023]
Abstract
Wilson's disease is a rare inherited disorder of copper metabolism, manifesting hepatic, neurological and psychiatric symptoms. Early diagnosis is often unfeasible and a unique diagnostic test is currently inapplicable. We performed the qualitative/quantitative characterization of the salivary proteome/peptidome of 32 Wilson's disease patients by an integrated top-down/bottom-up approach. Patients exhibited significant higher levels of S100A9 and S100A8 proteoforms, and their oxidized forms with respect to controls. Oxidation occurred on methionine and tryptophan residues, and on the unique cysteine residue, in position 42 in S100A8, and 3 in S100A9, that generated glutathionylated, cysteinylated, sulfinic, sulfonic, and disulfide dimeric forms. Wilson's disease patient saliva showed high levels of two new fragments of the polymeric immunoglobulin receptor, and of α-defensins 2 and 4. Overall, the salivary proteome of Wilson's disease patients reflected oxidative stress and inflammatory conditions characteristic of the pathology, highlighting differences that could be useful clues of disease exacerbation.
Collapse
Affiliation(s)
- Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical section, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy.
| | - Monica Sanna
- Department of Life and Environmental Sciences, Biomedical section, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical section, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Daniela Fanni
- Department of Surgery Sciences, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Luigi Demelia
- Department of Medical Sciences "M. Aresu", AOU, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Orazio Sorbello
- Department of Medical Sciences "M. Aresu", AOU, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy; Institute of Chemistry of the Molecular Recognition CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Gavino Faa
- Department of Surgery Sciences, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| | - Irene Messana
- Department of Life and Environmental Sciences, Biomedical section, University of Cagliari, Monserrato Campus 09042, Monserrato, CA, Italy
| |
Collapse
|
19
|
Tabur S, Korkmaz H, Özkaya M, Elboğa U, Tarakçıoglu M, Aksoy N, Akarsu E. Serum calprotectin: a new potential biomarker for thyroid papillary carcinoma. Tumour Biol 2015; 36:7549-56. [PMID: 25916207 DOI: 10.1007/s13277-015-3468-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to evaluate serum calprotectin levels and oxidative stress status in patients with papillary thyroid carcinoma (PTC) and the changes in their levels after total thyroidectomy. The study involved 30 patients with PTC and 30 healthy controls. Blood samples were obtained from the PTC patients before and 1 month after the operation. Preoperative and postoperative serum samples from PTC patients and healthy controls were analysed for calprotectin, total antioxidant status (TAS), total oxidant status (TOS) and lipid hydroperokside (LOOH). The preoperative calprotectin, TOS, OSI and LOOH levels of the patients with PTC were significantly higher compared to those of the control group (p < 0.001, for each). The levels of calprotectin decreased significantly in patients with PTC after the operation (p < 0.001), while TAS, TOS and OSI levels remained unchanged (p = 0.313, p = 0.085 and p = 0.163, respectively). Preoperative serum calprotectin levels were positively correlated with TOS, OSI and LOOH levels and negatively correlated with TAS levels in patients with PTC. In conclusion, serum calprotectin levels is increased in patients with PTC, and calprotectin is positively correlated with TOS and LOOH. Serum calprotectin levels is significantly decreased after total thyroidectomy.
Collapse
Affiliation(s)
- S Tabur
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - H Korkmaz
- Edirne State Hospital, Endocrinology and Metabolic Disease, 22030, Edirne, Turkey.
| | - M Özkaya
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - U Elboğa
- Department of Nuclear Medicine, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - M Tarakçıoglu
- Department of Clinical Biochemistry, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - N Aksoy
- Department of Clinical Biochemistry, Faculty of Medicine, Harran University, 63300, Sanliurfa, Turkey
| | - E Akarsu
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| |
Collapse
|
20
|
S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm 2013; 2013:828354. [PMID: 24453429 PMCID: PMC3881579 DOI: 10.1155/2013/828354] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022] Open
Abstract
Amplification of innate immune responses by endogenous danger-associated molecular patterns (DAMPs) promotes inflammation. The involvement of S100A8 and S100A9, DAMPs belonging to the S100 calgranulin family, in the pathogenesis of cardiovascular disease is attracting an increasing amount of interest. S100A8 and S100A9 (also termed MRP8 and MRP14) preferentially form the S100A8/A9 heterodimer (MRP8/14 or calprotectin) and are constitutively expressed in myeloid cells. The levels of circulating S100A8/A9 in humans strongly correlate to blood neutrophil counts and are increased by traditional cardiovascular risk factors such as smoking, obesity, hyperglycemia, and dyslipidemia. S100A8/A9 is an endogenous ligand of toll-like receptor 4 (TLR4) and of the receptor for advanced glycation end products (RAGE) and has been shown to promote atherogenesis in mice. In humans, S100A8/A9 correlates with the extent of coronary and carotid atherosclerosis and with a vulnerable plaque phenotype. S100A8/A9 is locally released following myocardial infarction and amplifies the inflammatory responses associated with myocardial ischemia/reperfusion injury. Elevated plasma levels of S100A8/A9 are associated with increased risk of future coronary events in healthy individuals and in myocardial infarction survivors. Thus, S100A8/A9 might represent a useful biomarker and therapeutic target in cardiovascular disease. Importantly, S100A8/A9 blockers have been developed and are approved for clinical testing.
Collapse
|
21
|
Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc Natl Acad Sci U S A 2013; 110:E5088-97. [PMID: 24309376 DOI: 10.1073/pnas.1312515110] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Short lipidated peptide sequences derived from various intracellular loop regions of G protein-coupled receptors (GPCRs) are named pepducins and act as allosteric modulators of a number of GPCRs. Recently, a pepducin selectively targeting the C-X-C chemokine receptor type 4 (CXCR4) was found to be an allosteric agonist, active in both cell-based assays and in vivo. However, the precise mechanism of action of this class of ligands remains poorly understood. In particular, given the diversity of signaling effectors that can be engaged by a given receptor, it is not clear whether pepducins can show biased signaling leading to functional selectivity. To explore the ligand-biased potential of pepducins, we assessed the effect of the CXCR4 selective pepducin, ATI-2341, on the ability of the receptor to engage the inhibitory G proteins (Gi1, Gi2 and Gi3), G13, and β-arrestins. Using bioluminescence resonance energy transfer-based biosensors, we found that, in contrast to the natural CXCR4 ligand, stromal cell-derived factor-1α, which promotes the engagement of the three Gi subtypes, G13 and the two β-arrestins, ATI-2341 leads to the engagement of the Gi subtypes but not G13 or the β-arrestins. Calculation of the transduction ratio for each pathway revealed a strong negative bias of ATI-2341 toward G13 and β-arrestins, revealing functional selectivity for the Gi pathways. The negative bias toward β-arrestins results from the reduced ability of the pepducin to promote GPCR kinase-mediated phosphorylation of the receptor. In addition to revealing ligand-biased signaling of pepducins, these findings shed some light on the mechanism of action of a unique class of allosteric regulators.
Collapse
|
22
|
Lee EO, Yang JH, Chang KA, Suh YH, Chong YH. Amyloid-β peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroinflammation 2013; 10:68. [PMID: 23721320 PMCID: PMC3693929 DOI: 10.1186/1742-2094-10-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background S100A9 protein (myeloid-related protein MRP14, also referred to as calgranulin B) is a reliable marker of inflammation, an important proinflammatory factor of innate immunity and acts as an additional antimicrobial peptide in the innate immune system. Evidence indicates that S100A9 contributes to Alzheimer’s disease (AD) pathology, although the precise mechanisms are not clear. Methods We were interested to study the mechanisms of S100A9 release upon Aβ1-42 stimulation, the potential roles of extracellular S100A9 depletion in Aβ-induced cytotoxicity, and the interaction with innate immune response in THP-1 monocytic cells that have been challenged with mostly Aβ1-42 monomers instead of oligomers. We used protein preparation, Ca2+ influx fluorescence imaging, MTT assay, siRNA knockdown, colony forming units (CFUs) assay and western blotting techniques to perform our study. Results Aβ1-42 monomers elicited a marked decrease of S100A9 release into the cell culture supernatant in a dose-dependent manner in human THP-1 monocytes. This reduction of S100A9 release was accompanied by an increase of intracellular Ca2+ level. Aβ1-42-mediated decrease of S100A9 release was not associated with Aβ1-42-induced cytotoxicity as measured by MTT reduction assay. This observation was confirmed with the recombinant S100A9, which had little effect on Aβ1-42-induced cytotoxicity. Moreover, depletion of S100A9 with siRNA did not significantly evoke the cell toxicity. On the other hand, Aβ1-42-induced extracellular S100A9 depletion resulted in decreased antimicrobial activity of the culture supernatant after Aβ1-42 stimulation. Immunodepletion of S100A9 with anti-S100A9 also decreased the antimicrobial peptide activity of the vehicle treated culture supernatant. Consistently, the recombinant S100A9 clearly elicited the antimicrobial peptide activity in vitro, confirming the observed antimicrobial activity of S100A9 in the culture supernatant. Conclusion Collectively, our findings suggest that the mostly monomeric form of Aβ1-42 negatively regulates the innate immune system by down-regulating the secretion of S100A9, which is likely a main mediator of antimicrobial activity in the conditioned media of human THP-1 monocytes.
Collapse
Affiliation(s)
- Eun Ok Lee
- Department of Microbiology, School of Medicine, Ewha Medical Research Institute, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, Seoul 158-710, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
The anti-oxidative, anti-inflammatory, and protective effect of S100A8 in endotoxemic mice. Mol Immunol 2012; 53:443-9. [PMID: 23127860 DOI: 10.1016/j.molimm.2012.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/27/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) produce and release copious amounts of reactive oxygen species (ROS) which target potential bacterial invaders but also contribute to the inflammation-associated organ injuries seen in sepsis. Calprotectin is an immune regulatory protein complex made of S100A8 and S100A9 that inhibits the oxidative metabolism of PMNs in vitro, an effect that can be potentiated by the controlled activation of the protease activated receptor-2 (PAR2). The aim of this study was to test the use of a dual strategy of calprotectin and PAR2 administration to mitigate the deleterious inflammation seen in sepsis. We hypothesized that exogenous calprotectin would protect against the injuries produced by lipopolysaccharides (LPS)-induced endotoxemia and that the controlled activation of PAR2 would potentiate this beneficial effect. Exogenous S100A8 and/or a PAR2 activating peptide (PAR2 AP) were administered in a mouse model of LPS induced endotoxemia. The survival rates as well as markers of inflammation and oxidative damage were measured in the lungs, kidneys, and livers of endotoxemic mice. Mice treated with S100A8 following LPS had less PMN infiltration and less severe histological changes in their lungs, kidneys, and livers. A significantly lower score of oxidative damage in the livers and lungs of S100A8/LPS treated mice was also noted when compared to mice treated with LPS alone. This protective and anti-inflammatory effect of S100A8 was potentiated by the controlled activation of PAR2. Finally, in further support to our hypothesis, the survival rate was almost doubled from 33% to 65% and 63% in mice treated by, respectively, S100A8 and PAR2 AP, whereas 85% of the mice treated with both PAR2 AP and S100A8 survived, a statistically significant higher rate. These results support an anti-inflammatory, anti-oxidative, and protective effect of S100A8 in sepsis, and warrant further studies on the role of PAR2.
Collapse
|
24
|
Neuroprotective effect of protease-activated receptor-2 in the hypoxia-induced apoptosis of rat RGC-5 cells. J Mol Neurosci 2012; 50:98-108. [PMID: 22949040 DOI: 10.1007/s12031-012-9876-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022]
Abstract
Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is regarded as a pivotal pathological process in various ocular diseases. Protease-activated receptor-2 (PAR-2) is involved in the regulation of cell inflammation, differentiation, and apoptosis in many cell types and tissues, but the role of PAR-2 in RGCs under pathological conditions remains unknown. The purpose of this study was to investigate the role of PAR-2 in the apoptosis of RGCs under hypoxic stress. An immortalized rat RGC line (RGC-5) was exposed to hypoxia (5 % O₂). The expression and location of PAR-2 in RGC-5 cells under hypoxia stress were investigated using real-time PCR, western blotting and immunocytochemistry. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptosis was detected using Hoechst 33342 staining and AnnexinV-FITC/PI assays. The role of Bcl-2, Bax, and the active subunit of caspase-3 was also investigated. The results showed that PAR-2 was functionally expressed in RGC-5 cells and up-regulated at both mRNA and protein levels under hypoxic stress. The PAR-2 selective agonist, SLIGRL, rescued RGC-5 cells from hypoxia-induced apoptosis through up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 activation. This study provides the first evidence that PAR-2 has a protective effect against the hypoxia-induced apoptosis of RGC-5 cells.
Collapse
|
25
|
O'Callaghan K, Kuliopulos A, Covic L. Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem 2012; 287:12787-96. [PMID: 22374997 DOI: 10.1074/jbc.r112.355461] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (Gα(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.
Collapse
Affiliation(s)
- Katie O'Callaghan
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|