1
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Tan LX, Oertel FC, Cheng A, Cobigo Y, Keihani A, Bennett DJ, Abdelhak A, Montes SC, Chapman M, Chen RY, Cordano C, Ward ME, Casaletto K, Kramer JH, Rosen HJ, Boxer A, Miller BL, Green AJ, Elahi FM, Lakkaraju A. Targeting complement C3a receptor resolves mitochondrial hyperfusion and subretinal microglial activation in progranulin-deficient frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595206. [PMID: 38854134 PMCID: PMC11160746 DOI: 10.1101/2024.05.29.595206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.
Collapse
|
3
|
Ren W, Wang Z, Guo H, Gou Y, Dai J, Zhou X, Sheng N. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123314. [PMID: 38218542 DOI: 10.1016/j.envpol.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.
Collapse
Affiliation(s)
- Wanlan Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yong Gou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Ziemanski JF, Szalai AJ. Immortalized Human Conjunctival Epithelial Cells Produce Functional Complement C3 and C4 Proteins. Cornea 2024; 43:365-371. [PMID: 37983311 PMCID: PMC10872758 DOI: 10.1097/ico.0000000000003432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE The aim of this study was to assess whether complement proteins C3 and C4 are produced by immortalized human conjunctival epithelial (HCjE) cells. METHODS Supernatants and cell lysates from undifferentiated and differentiated HCjE cells were assayed for C3 and C4 by enzyme-linked immunosorbent assay. To measure complement protein function, supernatants and lysates were treated with heat-aggregated IgG, and soluble C5b-9 was measured. RESULTS C3 was upregulated in supernatants from differentiated HCjE cells compared with undifferentiated HCjE cells (556.55 ± 91.75 vs. 56.95 ± 12.09 ng/mL, P <0.001). C4 was also increased in supernatants but to a much lesser extent (0.599 ± 0.476 vs. 0.172 ± 0.0133 ng/mL, P = 0.03). From HCjE cell lysates, total C3 production was 9.03 times higher in differentiated HCjE cells ( P <0.001), whereas total C4 remained relatively unchanged. After activation with heat-aggregated IgG, sC5b-9 could be detected from both undifferentiated and differentiated HCjE cell lysates, but not in the HCjE supernatants. CONCLUSIONS HCjE cells produce C3 and C4 in sufficient quantities to support the formation of sC5b-9, confirming their biological activity and suggesting that HCjE cells likely produce all complement proteins C1 through C9.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry and Vision Science, Birmingham, AL, USA
| | - Alexander J. Szalai
- University of Alabama at Birmingham, School of Medicine, Division of Clinical Immunology and Rheumatology, Birmingham, AL, USA
| |
Collapse
|
5
|
Carr DJJ, Filiberti A, Gmyrek GB. Complement Suppresses the Initial Type 1 Interferon Response to Ocular Herpes Simplex Virus Type 1 Infection in Mice. Pathogens 2024; 13:74. [PMID: 38251381 PMCID: PMC10820508 DOI: 10.3390/pathogens13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The complement system (CS) contributes to the initial containment of viral and bacterial pathogens and clearance of dying cells in circulation. We previously reported mice deficient in complement component 3 (C3KO mice) were more sensitive than wild-type (WT) mice to ocular HSV-1 infection, as measured by a reduction in cumulative survival and elevated viral titers in the nervous system but not the cornea between days three and seven post infection (pi). The present study was undertaken to determine if complement deficiency impacted virus replication and associated changes in inflammation at earlier time points in the cornea. C3KO mice were found to possess significantly (p < 0.05) less infectious virus in the cornea at 24 h pi that corresponded with a decrease in HSV-1 lytic gene expression at 12 and 24 h pi compared to WT animals. Flow cytometry acquisition found no differences in the myeloid cell populations residing in the cornea including total macrophage and neutrophil populations at 24 h pi with minimal infiltrating cell populations detected at the 12 h pi time point. Analysis of cytokine and chemokine content in the cornea measured at 12 and 24 h pi revealed that only CCL3 (MIP-1α) was found to be different between WT and C3KO mice with >2-fold increased levels (p < 0.05, ANOVA and Tukey's post hoc t-test) in the cornea of WT mice at 12 h pi. C3KO mouse resistance to HSV-1 infection at the early time points correlated with a significant increase in type I interferon (IFN) gene expression including IFN-α1 and IFN-β and downstream effector genes including tetherin and RNase L (p < 0.05, Mann-Whitney rank order test). These results suggest early activation of the CS interferes with the induction of the type I IFN response and leads to a transient increase in virus replication following corneal HSV-1 infection.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology, and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| |
Collapse
|
6
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
7
|
Abstract
Primitive underpinnings of the alternative pathway (AP), namely, a C3-like protein, likely arose more than a billion years ago. The development of an AP amplification loop, while greatly enhancing speed and potency, also presents a double-edged sword. Although critical to combat an infectious disease, it is also potentially destructive, particularly in a chronic disease process involving vital organs where scarring and reduction of regulatory function can occur. Furthermore, new knowledge is pointing to genetic factors involved in an increasing number of complement-related diseases such as age-related macular degeneration. However, even a normal functioning repertoire of complement components can drive cellular damage as a result of low-level complement activation over time. Thus, the modern human AP now faces a new challenge: cumulatively-driven tissue damage from chronic inflammatory processes that mediate cellular injury. The impact of ongoing low-level AP-enhanced complement activation in disease processes is just beginning to be appreciated and studied. However, the sheer numbers of individuals affected by chronic diseases emphasize the need for novel therapeutic agents capable of modulating the AP. The more we learn about this ancient system, the greater is the likelihood of developing fresh perspectives that could contribute to improved human health.
Collapse
Affiliation(s)
- M. Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
8
|
van Essen MF, Schlagwein N, van Gijlswijk-Janssen DJ, Ruben JM, van Kooten C. Properdin produced by dendritic cells contributes to the activation of T cells. Immunobiology 2022; 227:152246. [PMID: 35843030 DOI: 10.1016/j.imbio.2022.152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
The complement system does not only play an important role in the defence against microorganism and pathogens, but also contributes to the regulation of innate and adaptive immunity. Especially activation fragments C3a and C5a and complement activation at the interface of antigen presenting cell (APC) and T cell, were shown to have a role in T cell activation and proliferation. Whereas most complement factors are produced by the liver, properdin, a positive regulator of the C3 convertase, is mainly produced by myeloid cells. Here we show that properdin can be detected in myeloid cell infiltrate during human renal allograft rejection. In vitro, properdin is produced and secreted by human immature dendritic cells (iDCs), which is further increased by CD40-L-matured DCs (mDCs). Transfection with a specific properdin siRNA reduced properdin secretion by iDCs and mDCs, without affecting the expression of co-stimulatory markers CD80 and CD86. Co-culture of properdin siRNA-transfected iDCs and mDCs with human allogeneic T cells resulted in reduced T cell proliferation, especially under lower DC-T cell ratio's (1:30 and 1:90 ratio). In addition, T cell cytokines were altered, including a reduced TNF-α and IL-17 secretion by T cells co-cultured with properdin siRNA-transfected iDCs. Taken together, these results indicate a local role for properdin during the interaction of DCs and allogeneic T cells, contributing to the shaping of T cell proliferation and activation.
Collapse
Affiliation(s)
- Mieke F van Essen
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicole Schlagwein
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jurjen M Ruben
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | -
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
10
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Torp MK, Ranheim T, Schjalm C, Hjorth M, Heiestad C, Dalen KT, Nilsson PH, Mollnes TE, Pischke SE, Lien E, Vaage J, Yndestad A, Stensløkken KO. Intracellular Complement Component 3 Attenuated Ischemia-Reperfusion Injury in the Isolated Buffer-Perfused Mouse Heart and Is Associated With Improved Metabolic Homeostasis. Front Immunol 2022; 13:870811. [PMID: 35432387 PMCID: PMC9011808 DOI: 10.3389/fimmu.2022.870811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
The innate immune system is rapidly activated during myocardial infarction and blockade of extracellular complement system reduces infarct size. Intracellular complement, however, appears to be closely linked to metabolic pathways and its role in ischemia-reperfusion injury is unknown and may be different from complement activation in the circulation. The purpose of the present study was to investigate the role of intracellular complement in isolated, retrogradely buffer-perfused hearts and cardiac cells from adult male wild type mice (WT) and from adult male mice with knockout of complement component 3 (C3KO). Main findings: (i) Intracellular C3 protein was expressed in isolated cardiomyocytes and in whole hearts, (ii) after ischemia-reperfusion injury, C3KO hearts had larger infarct size (32 ± 9% in C3KO vs. 22 ± 7% in WT; p=0.008) and impaired post-ischemic relaxation compared to WT hearts, (iii) C3KO cardiomyocytes had lower basal oxidative respiration compared to WT cardiomyocytes, (iv) blocking mTOR decreased Akt phosphorylation in WT, but not in C3KO cardiomyocytes, (v) after ischemia, WT hearts had higher levels of ATP, but lower levels of both reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) compared to C3KO hearts. Conclusion: intracellular C3 protected the heart against ischemia-reperfusion injury, possibly due to its role in metabolic pathways important for energy production and cell survival.
Collapse
Affiliation(s)
- M-K. Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: M-K. Torp,
| | - T. Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Division of Surgery, Inflammatory Diseases and Transplantation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C. Schjalm
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - M. Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - C.M. Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - K. T. Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - P. H. Nilsson
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, and the Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - T. E. Mollnes
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Inflammation Research Center (IRC), University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - S. E. Pischke
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - E. Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Medical School, Worchester, MA, United States
| | - J. Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A. Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - K-O. Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Das SS, Chakrapani A, Bhattacharya S, Biswas RN, Safi M. Immunohematological and Clinical Characterization of Complement and Non-Complement Associated Warm Autoimmune Haemolytic Anemia and Risk Factors Predicting their Occurrences. Indian J Hematol Blood Transfus 2021; 37:623-631. [PMID: 34744345 DOI: 10.1007/s12288-021-01402-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Antigen - antibody complexes on heavily coated red cells in Warm autoimmune haemolytic anemia (WAIHA) often activates the complement pathway and red cells bound C3 complement component are encountered in complement associated WAIHA (CWAIHA). Patients belonging to CWAIHA and non-complement associated WAIHA (NCWAIHA) may demographically, clinically and immunohematologically behave differently therefore we planned to study the clinical and immunohematological characteristics of CWAIHA and NCWAIHA with emphasis to various potential factors associated with CWAIHA. The prospective study included 229 patients of WAIHA. Complete DAT evaluation was performed in all these patients. Details of patients and their hematological and biochemical parameters were obtained from patient file and Hospital Information System. In vivo hemolysis was documented as per the criteria established by previous workers. Statistical analysis was done using SPSS statistical package. Of the total 229 patients of WAIHA, 83 (36.2%) belonged to the complement associated WAIHA group. A total of 146 (63.8%) patients were females of which 43 (29.4%) had CWAIHA. The median age of WAIHA patients was 37 years. A total of 46 (56.1%) patients above age 40 years suffered from CWAIHA. Where secondary WAIHA was found in 121 (52.8%) patients; more than half (61.4%) with CWAIHA had underlying aetiology. Over 95% of patients in both categories presented with weakness and pallor. Strong DAT (> 2 +) was observed in 86.7% of CWAIHA patients. Factors like gender, age, aetiology and DAT IgG dilution were independent risk factors for CWAIHA. DAT remained positive even at the end of 10 months of successful treatment. We conclude that detailed characterization of WAIHA with particular emphasis to complement and non-complement associated WAIHA is essential to evaluate the disease characters, immunological behaviours, prognosis and therapeutic management. Moreover an understanding of the risk factors of CWAIHA will help physicians / hematologists and immunohematologists to manage WAIHA more prudently and solicitously.
Collapse
Affiliation(s)
- Sudipta Sekhar Das
- Department of Transfusion Medicine, Apollo Gleneagles Hospitals, Kolkata, 700054 India
| | - Anupam Chakrapani
- Department of Transfusion Medicine, Apollo Gleneagles Hospitals, Kolkata, 700054 India
| | - Soumya Bhattacharya
- Department of Transfusion Medicine, Apollo Gleneagles Hospitals, Kolkata, 700054 India
| | - Rathindra Nath Biswas
- Department of Transfusion Medicine, Apollo Gleneagles Hospitals, Kolkata, 700054 India
| | - Mahammad Safi
- Department of Transfusion Medicine, Apollo Gleneagles Hospitals, Kolkata, 700054 India
| |
Collapse
|
13
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
14
|
Pekna M, Pekny M. The Complement System: A Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System. Cells 2021; 10:cells10071812. [PMID: 34359981 PMCID: PMC8303424 DOI: 10.3390/cells10071812] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system, an effector arm of the innate immune system that plays a critical role in tissue inflammation, the elimination of pathogens and the clearance of dead cells and cell debris, has emerged as a regulator of many processes in the central nervous system, including neural cell genesis and migration, control of synapse number and function, and modulation of glial cell responses. Complement dysfunction has also been put forward as a major contributor to neurological disease. Astrocytes are neuroectoderm-derived glial cells that maintain water and ionic homeostasis, and control cerebral blood flow and multiple aspects of neuronal functioning. By virtue of their expression of soluble as well as membrane-bound complement proteins and receptors, astrocytes are able to both send and receive complement-related signals. Here we review the current understanding of the multiple functions of the complement system in the central nervous system as they pertain to the modulation of astrocyte activity, and how astrocytes use the complement system to affect their environment in the healthy brain and in the context of neurological disease.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
- Correspondence: ; Tel.: +46-31-786-3581
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| |
Collapse
|
15
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. Clin J Am Soc Nephrol 2021; 16:942-956. [PMID: 33536243 PMCID: PMC8216622 DOI: 10.2215/cjn.11830720] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
18
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY : CJASN 2021. [PMID: 33536243 DOI: 10.2215/cjn.11830720)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada .,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
19
|
Cui J, Ren YH, Zhao FJ, Chen Y, Huang YF, Yang L, You XM. Cross-Sectional Study of the Effects of Job Burnout on Immune Function in 105 Female Oncology Nurses at a Tertiary Oncology Hospital. Med Sci Monit 2021; 27:e929711. [PMID: 33941757 PMCID: PMC8106256 DOI: 10.12659/msm.929711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nurses who work in hospitals experience a high level of burnout and the relationship between immune variables and burnout syndrome has yet to be elucidated. The aim of the present study was to investigate the effects of job burnout on immune function in female oncology nurses in a tertiary oncology hospital in Guangxi, China. The aspects of the human immune system evaluated were humoral and cellular immunity and complement components 3 (C3) and 4 (C4). Material/Methods We administered the Maslach Burnout Inventory-General Survey (MBI-GS), which includes scales for emotional exhaustion, depersonalization (DP), and personal accomplishment (PA), to measure variables related to immune function in 105 female nurses in a tertiary oncology hospital in Guangxi, China. Levels of humoral immunity and C3 and C4 were detected with immune turbidimetry. Cellular immunity was assessed with indirect immunofluorescence. Results A Spearman rank correlation analysis revealed that levels of C3, C4, and CD4- and CD8-positive T cells were significantly associated with burnout symptoms (P<0.05, P<0.01, and P<0.05, respectively). Furthermore, there was a correlation between demographic data and humoral and cellular immunity (both P<0.05). Multivariable linear regression analysis showed that C4 levels were closely related to DP (P<0.05) and that CD4 and CD8 levels were closely related to PA (P<0.01). Conclusions These results suggest that DP and PA have an impact on immune function, and that timely psychological and behavioral interventions can be used to reduce the degree of job burnout among nurses and regulate their immunity, thus enabling them to better serve patients.
Collapse
Affiliation(s)
- Jing Cui
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Yun-Hong Ren
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Feng-Juan Zhao
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ying Chen
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ying-Fan Huang
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ling Yang
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Xue-Mei You
- Nursing Department, Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
20
|
Simon D, Erdő-Bonyár S, Rapp J, Balogh P, Minier T, Nagy G, Czirják L, Berki T. Analysis of PI3K Pathway Associated Molecules Reveals Dysregulated Innate and Adaptive Functions of B Cells in Early Diffuse Cutaneous Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22062877. [PMID: 33809015 PMCID: PMC7998899 DOI: 10.3390/ijms22062877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
B cell activation is an early event in the development of systemic sclerosis (SSc). The classical activation of B cells downstream of the B-cell receptor (BCR) involves the phosphatidylinositol-3 kinase (PI3K) pathway that integrates the effects of multiple co-stimulatory receptors. Our analysis of PI3K pathway associated molecules in peripheral blood B cells of early diffuse cutaneous SSc (dcSSc) patients showed altered mRNA expression of Toll-like receptor (TLR) homolog CD180, TLR4, complement component 3, IL-4 receptor and secreted phosphoprotein 1 (SPP1). Parallel to this, we found elevated basal SPP1 secretion in dcSSc B cells, but, with BCR + IL-4 receptor co-stimulation, we could not induce further secretion. CD180 stimulation alone resulted in NF-κB activation in more B cells than CD180 + BCR co-stimulation both in dcSSc and healthy control (HC), but the co-engagement increased the phosphorylation of NF-κB only in dcSSc B cells. Additionally, in contrast with HC B cells, the lower basal production of IL-10 by dcSSc B cells could not be elevated with CD180 stimulation. Furthermore, activation via CD180 increased the percentage of CD86+ switched memory (CD27+IgD−) B cells in dcSSc compared to HC. Our results suggest that alternative B cell activation and CD180 dysfunction cause imbalance of regulatory mechanisms in dcSSc B cells.
Collapse
Affiliation(s)
- Diána Simon
- Clinical Center, Department of Immunology and Biotechnology, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (P.B.); (T.B.)
- Correspondence:
| | - Szabina Erdő-Bonyár
- Clinical Center, Department of Immunology and Biotechnology, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (P.B.); (T.B.)
| | - Judit Rapp
- Clinical Center, Department of Immunology and Biotechnology, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (P.B.); (T.B.)
| | - Péter Balogh
- Clinical Center, Department of Immunology and Biotechnology, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (P.B.); (T.B.)
| | - Tünde Minier
- Clinical Center, Department of Rheumatology and Immunology, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (G.N.); (L.C.)
| | - Gabriella Nagy
- Clinical Center, Department of Rheumatology and Immunology, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (G.N.); (L.C.)
| | - László Czirják
- Clinical Center, Department of Rheumatology and Immunology, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (G.N.); (L.C.)
| | - Tímea Berki
- Clinical Center, Department of Immunology and Biotechnology, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (P.B.); (T.B.)
| |
Collapse
|
21
|
Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID-19. Best Pract Res Clin Rheumatol 2021; 35:101661. [PMID: 33526325 PMCID: PMC7831864 DOI: 10.1016/j.berh.2021.101661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As of the end of 2020, coronavirus disease 2019 (COVID-19) remains a global healthcare challenge with alarming death tolls. In the absence of targeted therapies, supportive care continues to be the mainstay of treatment. The hallmark of severe COVID-19 is a thromboinflammatory storm driven by innate immune responses. This manifests clinically as acute respiratory distress syndrome, and in some patients, widespread thrombotic microangiopathy. Neutrophils and complement are key players in the innate immune system, and their role in perpetuating fatal severe COVID-19 continues to receive increasing attention. Here, we review the interplay between neutrophils, neutrophil extracellular traps, and complement in COVID-19 immunopathology, and highlight potential therapeutic strategies to combat these pathways.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
22
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
23
|
Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for Vaccines. Curr Top Microbiol Immunol 2021; 433:1-28. [PMID: 33165871 DOI: 10.1007/82_2020_227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of liposome-based formulations as vaccine adjuvants has been intimately associated with, and dependent on, and informed by, a fundamental understanding of biochemical and biophysical properties of liposomes themselves. The Walter Reed Army Institute of Research (WRAIR) has a fifty-year history of experience of basic research on liposomes; and development of liposomes as drug carriers; and development of liposomes as adjuvant formulations for vaccines. Uptake of liposomes by phagocytic cells in vitro has served as an excellent model for studying the intracellular trafficking patterns of liposomal antigen. Differential fluorescent labeling of proteins and liposomal lipids, together with the use of inhibitors, has enabled the visualization of physical locations of antigens, peptides, and lipids to elucidate mechanisms underlying the MHC class I and class II pathways in phagocytic APCs. Army Liposome Formulation (ALF) family of vaccine adjuvants, which have been developed and improved since 1986, and which range from nanosize to microsize, are currently being employed in phase 1 studies with different types of candidate vaccines.
Collapse
Affiliation(s)
- Mangala Rao
- Chief, Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Kristina K Peachman
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant & Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
24
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|
25
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
26
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
27
|
Kim AHJ, Wu X, Atkinson JP. The beneficial and pathogenic roles of complement in COVID-19. Cleve Clin J Med 2020:ccjm.87a.ccc065. [PMID: 33115882 PMCID: PMC8079550 DOI: 10.3949/ccjm.87a.ccc065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We briefly summarize the complement system and its functions in immunity and disease. We present data supporting the requirement of complement to resolve COVID-19, and discuss how complement overactivation later in severe disease could drive multiorgan damage characteristic of fatal COVID-19.
Collapse
Affiliation(s)
- Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
28
|
Romano R, Giardino G, Cirillo E, Prencipe R, Pignata C. Complement system network in cell physiology and in human diseases. Int Rev Immunol 2020; 40:159-170. [PMID: 33063546 DOI: 10.1080/08830185.2020.1833877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is a multi-functional system representing the first line host defense against pathogens in innate immune response, through three different pathways. Impairment of its function, consisting in deficiency or excessive deregulated activation, may lead to severe systemic infections or autoimmune disorders. These diseases may be inherited or acquired. Despite many diagnostic tools are currently available, ranging from traditional, such as hemolytic or ELISA based assays, to innovative ones, like next generation sequencing techniques, these diseases are often not recognized. As for therapeutic aspects, strategies based on the use of targeted drugs are now widespread. The aim of this review is to present an updated overview of complement system pathophysiology, clinical implications of its dysfunction and to summarize diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| |
Collapse
|
29
|
Cell type specific gene expression profiling reveals a role for complement component C3 in neutrophil responses to tissue damage. Sci Rep 2020; 10:15716. [PMID: 32973200 PMCID: PMC7518243 DOI: 10.1038/s41598-020-72750-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Tissue damage induces rapid recruitment of leukocytes and changes in the transcriptional landscape that influence wound healing. However, the cell-type specific transcriptional changes that influence leukocyte function and tissue repair have not been well characterized. Here, we employed translating ribosome affinity purification (TRAP) and RNA sequencing, TRAP-seq, in larval zebrafish to identify genes differentially expressed in neutrophils, macrophages, and epithelial cells in response to wounding. We identified the complement pathway and c3a.1, homologous to the C3 component of human complement, as significantly increased in neutrophils in response to wounds. c3a.1−/− zebrafish larvae have impaired neutrophil directed migration to tail wounds with an initial lag in recruitment early after wounding. Moreover, c3a.1−/− zebrafish larvae have impaired recruitment to localized bacterial infections and reduced survival that is, at least in part, neutrophil mediated. Together, our findings support the power of TRAP-seq to identify cell type specific changes in gene expression that influence neutrophil behavior in response to tissue damage.
Collapse
|
30
|
Java A, Apicelli AJ, Liszewski MK, Coler-Reilly A, Atkinson JP, Kim AH, Kulkarni HS. The complement system in COVID-19: friend and foe? JCI Insight 2020; 5:140711. [PMID: 32554923 PMCID: PMC7455060 DOI: 10.1172/jci.insight.140711] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic and a disruptive health crisis. COVID-19-related morbidity and mortality have been attributed to an exaggerated immune response. The role of complement activation and its contribution to illness severity is being increasingly recognized. Here, we summarize current knowledge about the interaction of coronaviruses with the complement system. We posit that (a) coronaviruses activate multiple complement pathways; (b) severe COVID-19 clinical features often resemble complementopathies; (c) the combined effects of complement activation, dysregulated neutrophilia, endothelial injury, and hypercoagulability appear to be intertwined to drive the severe features of COVID-19; (d) a subset of patients with COVID-19 may have a genetic predisposition associated with complement dysregulation; and (e) these observations create a basis for clinical trials of complement inhibitors in life-threatening illness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
31
|
Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, Freiwald T, Balmer ML, Lötscher J, Dimeloe S, Rosser EC, Wedderburn LR, Mayer-Barber KD, Bohrer A, Lavender P, Cope A, Wang L, Kaplan MJ, Moutsopoulos NM, McGavern D, Holland SM, Hess C, Kazemian M, Afzali B, Kemper C. Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression in Immune Cells. Immunity 2020; 52:513-527.e8. [PMID: 32187519 DOI: 10.1016/j.immuni.2020.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.
Collapse
Affiliation(s)
- Martin Kolev
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - E Ashley Moseman
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Jubayer Rahman
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Sarah Dimeloe
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth C Rosser
- Infection, Immunity, Inflammation Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Arthritis Research UK Centre for Adolescent Rheumatology at UCL, UCHL and GOSH, London WC1N 1EH, UK
| | - Lucy R Wedderburn
- Infection, Immunity, Inflammation Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Arthritis Research UK Centre for Adolescent Rheumatology at UCL, UCHL and GOSH, London WC1N 1EH, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Great Ormond Street NHS Foundation Trust, London WC1N 1EH, UK
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Andrea Bohrer
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Paul Lavender
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Andrew Cope
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Dorian McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel 4031, Switzerland; Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA.
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany.
| |
Collapse
|
32
|
Autotransporter-Mediated Display of Complement Receptor Ligands by Gram-Negative Bacteria Increases Antibody Responses and Limits Disease Severity. Pathogens 2020; 9:pathogens9050375. [PMID: 32422907 PMCID: PMC7281241 DOI: 10.3390/pathogens9050375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The targeting of immunogens/vaccines to specific immune cells is a promising approach for amplifying immune responses in the absence of exogenous adjuvants. However, the targeting approaches reported thus far require novel, labor-intensive reagents for each vaccine and have primarily been shown as proof-of-concept with isolated proteins and/or inactivated bacteria. We have engineered a plasmid-based, complement receptor-targeting platform that is readily applicable to live forms of multiple gram-negative bacteria, including, but not limited to, Escherichia coli, Klebsiella pneumoniae, and Francisella tularensis. Using F. tularensis as a model, we find that targeted bacteria show increased binding and uptake by macrophages, which coincides with increased p38 and p65 phosphorylation. Mice vaccinated with targeted bacteria produce higher titers of specific antibody that recognizes a greater diversity of bacterial antigens. Following challenge with homologous or heterologous isolates, these mice exhibited less weight loss and/or accelerated weight recovery as compared to counterparts vaccinated with non-targeted immunogens. Collectively, these findings provide proof-of-concept for plasmid-based, complement receptor-targeting of live gram-negative bacteria.
Collapse
|
33
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
34
|
Viret C, Rozières A, Duclaux-Loras R, Boschetti G, Nancey S, Faure M. Regulation of anti-microbial autophagy by factors of the complement system. MICROBIAL CELL 2020; 7:93-105. [PMID: 32274388 PMCID: PMC7136756 DOI: 10.15698/mic2020.04.712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system is a major component of innate immunity that participates in the defense of the host against a myriad of pathogenic microorganisms. Activation of complement allows for both local inflammatory response and physical elimination of microbes through phagocytosis or lysis. The system is highly efficient and is therefore finely regulated. In addition to these well-established properties, recent works have revealed that components of the complement system can be involved in a variety of other functions including in autophagy, the conserved mechanism that allows for the targeting and degradation of cytosolic materials by the lysosomal pathway after confining them into specialized organelles called autophagosomes. Besides impacting cell death, development or metabolism, the complement factors-autophagy connection can greatly modulate the cell autonomous, anti-microbial activity of autophagy: xenophagy. Both surface receptor-ligand interactions and intracellular interactions are involved in the modulation of the autophagic response to intracellular microbes by complement factors. Here, we review works that relate to the recently discovered connections between factors of the complement system and the functioning of autophagy in the context of host-pathogen relationship.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Team Autophagy Infection Immunity, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| |
Collapse
|
35
|
Kulkarni HS, Elvington ML, Perng YC, Liszewski MK, Byers DE, Farkouh C, Yusen RD, Lenschow DJ, Brody SL, Atkinson JP. Intracellular C3 Protects Human Airway Epithelial Cells from Stress-associated Cell Death. Am J Respir Cell Mol Biol 2019; 60:144-157. [PMID: 30156437 DOI: 10.1165/rcmb.2017-0405oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system provides host defense against pathogens and environmental stress. C3, the central component of complement, is present in the blood and increases in BAL fluid after injury. We recently discovered that C3 is taken up by certain cell types and cleaved intracellularly to C3a and C3b. C3a is required for CD4+ T-cell survival. These observations made us question whether complement operates at environmental interfaces, particularly in the respiratory tract. We found that airway epithelial cells (AECs, represented by both primary human tracheobronchial cells and BEAS-2B [cell line]) cultured in C3-free media were unique from other cell types in that they contained large intracellular stores of de novo synthesized C3. A fraction of this protein reduced ("storage form") but the remainder did not, consistent with it being pro-C3 ("precursor form"). These two forms of intracellular C3 were absent in CRISPR knockout-induced C3-deficient AECs and decreased with the use of C3 siRNA, indicating endogenous generation. Proinflammatory cytokine exposure increased both stored and secreted forms of C3. Furthermore, AECs took up C3 from exogenous sources, which mitigated stress-associated cell death (e.g., from oxidative stress or starvation). C3 stores were notably increased within AECs in lung tissues from individuals with different end-stage lung diseases. Thus, at-risk cells furnish C3 through biosynthesis and/or uptake to increase locally available C3 during inflammation, while intracellularly, these stores protect against certain inducers of cell death. These results establish the relevance of intracellular C3 to airway epithelial biology and suggest novel pathways for complement-mediated host protection in the airway.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle L Elvington
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yi-Chieh Perng
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - M Kathryn Liszewski
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Christopher Farkouh
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roger D Yusen
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Deborah J Lenschow
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - John P Atkinson
- 2 Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Herbert A. Contextual Cell Death in Adaptive Immunity: Selecting a Winning Response. Front Immunol 2019; 10:2898. [PMID: 31921159 PMCID: PMC6930443 DOI: 10.3389/fimmu.2019.02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Winning the game "Rock, Scissors, Paper" depends on what others do. There is no guarantee that one choice will always win. Does the adaptive immune system use the same intransitive logic to select winners? Here I propose that specialized receptor-ligand pairs, called clicks, initiate contextual cell death to select the best adaptive immune response to a particular challenge. The outcome depends heavily on the phenotypic plasticity of the immune system and upon cell assemblies built from different lineages. These assemblies are self-organizing and use clicks to determine the combination of cells best equipped to defeat a threat. The arrangement is highly adaptive and capable of rapid evolution. Opportunities exist to re-engineer click-based assemblies to produce novel therapeutics.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Inc., Charlestown, MA, United States
| |
Collapse
|
37
|
Winnicki W, Pichler P, Mechtler K, Imre R, Steinmacher I, Sengölge G, Knafl D, Beilhack G, Wagner L. A novel approach to immunoapheresis of C3a/C3 and proteomic identification of associates. PeerJ 2019; 7:e8218. [PMID: 31871840 PMCID: PMC6921979 DOI: 10.7717/peerj.8218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Complement factor C3 represents the central component of the complement cascade and its activation split product C3a plays an important role in inflammation and disease. Many human disorders are linked to dysregulation of the complement system and alteration in interaction molecules. Therefore, various therapeutic approaches to act on the complement system have been initiated. Methods and Results Aiming to develop a tool to eliminate C3a/C3 from the circulation, in a first step a high affine murine monoclonal antibody (mAb) (3F7E2-mAb) was generated against complement factor C3 and selected for binding to the C3a region to serve as immunoaffinity reagent. Functional testing of the 3F7E2-mAb revealed an inhibition of Zymosan-induced cleavage of C3a from C3. Subsequently, a C3a/C3 specific 3F7E2-immunoaffinity column was developed and apheresis of C3a/C3 and associates was performed. Finally, a proteomic analysis was carried out for identification of apheresis products. C3a/C3 was liberated from the 3F7E2-column together with 278 proteins. C3a/C3 interaction specificity was validated by using a haptoglobin immunoaffinity column as control and biostatistic analysis revealed 39 true C3a/C3 interactants. Conclusion A novel and functionally active mAb was developed against complement factor C3a/C3 and used in a specific immunoaffinity column that allows apheresis of C3a/C3 and associates and their identification by proteomic analysis. This methodological approach of developing specific antibodies that can be used as immunoaffinity reagents to design immunoaffinity columns for elimination and further identification of associated proteins could open new avenues for the development of tailored immunotherapy in various complement-mediated or autoimmune diseases.
Collapse
Affiliation(s)
- Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Peter Pichler
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Richard Imre
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Ines Steinmacher
- ProtChem Facility, Research Institute of Molecular Pathology, Vienna, Austria
| | - Gürkan Sengölge
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Daniela Knafl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Georg Beilhack
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Pauly D, Agarwal D, Dana N, Schäfer N, Biber J, Wunderlich KA, Jabri Y, Straub T, Zhang NR, Gautam AK, Weber BHF, Hauck SM, Kim M, Curcio CA, Stambolian D, Li M, Grosche A. Cell-Type-Specific Complement Expression in the Healthy and Diseased Retina. Cell Rep 2019; 29:2835-2848.e4. [PMID: 31775049 PMCID: PMC6911814 DOI: 10.1016/j.celrep.2019.10.084] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Complement dysregulation is a feature of many retinal diseases, yet mechanistic understanding at the cellular level is limited. Given this knowledge gap about which retinal cells express complement, we performed single-cell RNA sequencing on ~92,000 mouse retinal cells and validated our results in five major purified retinal cell types. We found evidence for a distributed cell-type-specific complement expression across 11 cell types. Notably, Müller cells are the major contributor of complement activators c1s, c3, c4, and cfb. Retinal pigment epithelium (RPE) mainly expresses cfh and the terminal complement components, whereas cfi and cfp transcripts are most abundant in neurons. Aging enhances c1s, cfb, cfp, and cfi expression, while cfh expression decreases. Transient retinal ischemia increases complement expression in microglia, Müller cells, and RPE. In summary, we report a unique complement expression signature for murine retinal cell types suggesting a well-orchestrated regulation of local complement expression in the retinal microenvironment. Overshooting complement activity contributes to retinal degeneration. Pauly et al. demonstrate a distinct complement expression profile of retinal cell types that changes with aging and during retinal degeneration. This prompts the intriguing concept of a local retinal complement activation possibly independent of the systemic components typically produced by the liver.
Collapse
Affiliation(s)
- Diana Pauly
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany.
| | - Divyansh Agarwal
- Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Schäfer
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Josef Biber
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Yassin Jabri
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avneesh K Gautam
- Department of Medicine, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg 93053, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
39
|
Hester CG, Frank MM. Complement activation by IgG containing immune complexes regulates the interaction of C1q with its ligands. Mol Immunol 2019; 116:117-130. [PMID: 31634815 DOI: 10.1016/j.molimm.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023]
Abstract
Classical pathway activation of the compl ement system is initiated by the binding of the globular head domains of glycoprotein C1q to its corresponding ligand leading to both C1 activation and C3 convertase formation. However, the whereabouts and function of C1q after complement activation have only been marginally investigated. This report presents two mechanisms of action that remove bound C1q from a complement activating IgG immune complex in concentrated serum. The first mechanism details that sequential activation of the classical and alternative pathways releases bound C1q from an immune complex and that the dissociated C1q is subsequently found in complex with complement fragment C3c. The second mechanism is the displacement of C1q from an immune complex by the addition of near physiologic concentrations of purified or serum C1q. This activity can also be demonstrated using serum depleted of C3, normal serum chelated in EDTA, or purified C1. Fresh C1q in C3-depleted serum was found to replace dissociated C1q on the immune complex. C1q dissociated from immune complexes by the mechanism of C1q displacement is able to bind B and T lymphoblastoid cells that express receptors and ligands for both the collagen like region and the globular head domains of C1q. C1q dissociated from immune complexes by the mechanism of C3 activation do not bind these cells. This result suggests that C3 bound to C1q during complement activation and dissociation interferes with the ability of released C1q to access C1q receptors and ligands, particularly receptors for the globular head domains. These underlying mechanisms that regulate the interaction of C1q with its ligands reveal a novel function for complement activation during the immune response.
Collapse
Affiliation(s)
- C Garren Hester
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Michael M Frank
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
40
|
Ekdahl KN, Mohlin C, Adler A, Åman A, Manivel VA, Sandholm K, Huber-Lang M, Fromell K, Nilsson B. Is generation of C3(H 2O) necessary for activation of the alternative pathway in real life? Mol Immunol 2019; 114:353-361. [PMID: 31446306 DOI: 10.1016/j.molimm.2019.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023]
Abstract
In the alternative pathway (AP) an amplification loop is formed, which is strictly controlled by various fluid-phase and cell-bound regulators resulting in a state of homeostasis. Generation of the "C3b-like" C3(H2O) has been described as essential for AP activation, since it conveniently explains how the initial fluid-phase AP convertase of the amplification loop is generated. Also, the AP has a status of being an unspecific pathway despite thorough regulation at different surfaces. During complement attack in pathological conditions and inflammation, large amounts of C3b are formed by the classical/lectin pathway (CP/LP) convertases. After the discovery of LP´s recognition molecules and its tight interaction with the AP, it is increasingly likely that the AP acts in vivo mainly as a powerful amplification mechanism of complement activation that is triggered by previously generated C3b molecules initiated by the binding of specific recognition molecules. Also in many pathological conditions caused by a dysregulated AP amplification loop such as paroxysmal nocturnal hemoglobulinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), C3b is available due to minute LP and CP activation and/or generated by non-complement proteases. Therefore, C3(H2O) generation in vivo may be less important for AP activation during specific attack or dysregulated homeostasis, but may be an important ligand for C3 receptors in cell-cell interactions and a source of C3 for the intracellular complement reservoir.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden; Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anna Adler
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Amanda Åman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Vivek Anand Manivel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Kerstin Sandholm
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
41
|
Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The Complement Cascade as a Mediator of Human Malignant Hematopoietic Cell Trafficking. Front Immunol 2019; 10:1292. [PMID: 31231394 PMCID: PMC6567995 DOI: 10.3389/fimmu.2019.01292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complement cascade (ComC) cleavage fragments C3a and C5a regulate the trafficking of normal, differentiated hematopoietic cells, although they do not chemoattract more primitive hematopoietic stem/progenitor cells (HSPCs). By contrast, human myeloid and lymphoid leukemia cell lines and clonogenic blasts from chronic myelogenous leukemia (CML) and acute myelogenous leukemia (AML) patients respond to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. Consistent with this finding, C3a and C5a receptors are expressed by leukemic cells at the mRNA (RT-PCR) and protein (FACS) levels, and these cells respond to C3a and C5a stimulation by phosphorylation of p44/42 MAPK and AKT. However, neither of these ComC cleavage fragments have an effect on cell proliferation or survival. In parallel, we found that inducible heme oxygenase 1 (HO-1)-an anti-inflammatory enzyme, is a negative regulator of ComC-mediated trafficking of malignant cells and that stimulation of these cells by C3 or C5 cleavage fragments downregulates HO-1 expression in a p38 MAPK-dependent manner, rendering cells exposed to C3a or C5a more mobile. We propose that, while the ComC is not directly involved in the proliferation of malignant hematopoietic cells, its activation in leukemia/lymphoma patients (e.g., as a result of accompanying infections or sterile inflammation after radio-chemotherapy) enhances the motility of malignant cells and contributes to their dissemination in a p38 MAPK-HO-1 axis-dependent manner. Based on this idea, we propose that inhibition of p38 MAPK or upregulation of HO-1 by available small-molecule modulators would have a beneficial effect on ameliorating expansion and dissemination of leukemia/lymphoma cells in clinical situations in which the ComC becomes activated. Finally, since we detected expression of C3 and C5 mRNA in human leukemic cell lines, further study of the potential role of the complosome in regulating the behavior of these cells is needed.
Collapse
Affiliation(s)
- Anna Lenkiewicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology of Xiamen University, Xiamen, China
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.,Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
42
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Elvington M, Liszewski MK, Liszewski AR, Kulkarni HS, Hachem RR, Mohanakumar T, Kim AHJ, Atkinson JP. Development and Optimization of an ELISA to Quantitate C3(H 2 O) as a Marker of Human Disease. Front Immunol 2019; 10:703. [PMID: 31019515 PMCID: PMC6458276 DOI: 10.3389/fimmu.2019.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Discovery of a C3(H2O) uptake pathway has led to renewed interest in this alternative pathway triggering form of C3 in human biospecimens. Previously, a quantifiable method to measure C3(H2O), not confounded by other complement activation products, was unavailable. Herein, we describe a sensitive and specific ELISA for C3(H2O). We initially utilized this assay to determine baseline C3(H2O) levels in healthy human fluids and to define optimal sample storage and handling conditions. We detected ~500 ng/ml of C3(H2O) in fresh serum and plasma, a value substantially lower than what was predicted based on previous studies with purified C3 preparations. After a single freeze-thaw cycle, the C3(H2O) concentration increased 3- to 4-fold (~2,000 ng/ml). Subsequent freeze-thaw cycles had a lesser impact on C3(H2O) generation. Further, we found that storage of human sera or plasma samples at 4°C for up to 22 h did not generate additional C3(H2O). To determine the potential use of C3(H2O) as a biomarker, we evaluated specimens from patients with inflammatory-driven diseases. C3(H2O) concentrations were moderately increased (1.5- to 2-fold) at baseline in sera from active systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to healthy controls. In addition, upon challenge with multiple freeze-thaw cycles or incubation at 22 or 37°C, C3(H2O) generation was significantly enhanced in SLE and RA patients' sera. In bronchoalveolar lavage fluid from lung-transplant recipients, we noted a substantial increase in C3(H2O) within 3 months of acute antibody-mediated rejection. In conclusion, we have established an ELISA for assessing C3(H2O) as a diagnostic and prognostic biomarker in human diseases.
Collapse
Affiliation(s)
- Michelle Elvington
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexis R Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramsey R Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
44
|
Zhang J, Ye J, Ren Y, Zuo J, Dai W, He Y, Tan M, Song W, Yuan Y. Intracellular activation of complement C3 in Paneth cells improves repair of intestinal epithelia during acute injury. Immunotherapy 2018; 10:1325-1336. [PMID: 30381988 DOI: 10.2217/imt-2018-0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To explore whether Paneth cells (PCs) and complement system collaborate in the repair of enteric epithelia during acute gastrointestinal injury (AGI). METHODS Wild-type C57BL/6 mice were employed to induce AGI by performing colon ascendens stent surgery, with sham-operated as control. Exogenous C3 treatment was applied at 6-h postsurgery. After 48 h, overall survival, intestinal damage severity, and C3 intracellular activation were assessed in both epithelial cells and PCs. RESULTS AGI caused a high mortality, while C3 therapy significantly attenuated epithelial damages and improved survival. Besides, exogenous C3 in vitro enhanced the proliferation and activity of PCs. Importantly, intracellular C3 activation was observed inside of PCs under C3 co-stimulation in vitro. CONCLUSION C3 immunotherapy might play a valuable role in turnover of gut epithelia through intracellular activation in PCs.
Collapse
Affiliation(s)
- Jian Zhang
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Jinning Ye
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Jidong Zuo
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Weigang Dai
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yulong He
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China.,Center of Gastric Cancer, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Min Tan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Wu Song
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China.,Center of Gastric Cancer, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yujie Yuan
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China.,Center of Gastric Cancer, Sun Yat-sen University, Guangzhou 510080, PR China
| |
Collapse
|
45
|
Aberrant early endosome biogenesis mediates complement activation in the retinal pigment epithelium in models of macular degeneration. Proc Natl Acad Sci U S A 2018; 115:9014-9019. [PMID: 30126999 DOI: 10.1073/pnas.1805039115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.
Collapse
|
46
|
Killick J, Morisse G, Sieger D, Astier AL. Complement as a regulator of adaptive immunity. Semin Immunopathol 2018; 40:37-48. [PMID: 28842749 PMCID: PMC5794818 DOI: 10.1007/s00281-017-0644-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
The complement system is an ancient and evolutionarily conserved effector system comprising in mammals over 50 circulating and membrane bound proteins. Complement has long been described as belonging to the innate immune system; however, a number of recent studies have demonstrated its key role in the modulation of the adaptive immune response. This review does not set out to be an exhaustive list of the numerous interactions of the many complement components with adaptive immunity; rather, we will focus more precisely on the role of some complement molecules in the regulation of antigen presenting cells, as well as on their direct effect on the activation of the core adaptive immune cells, B and T lymphocytes. Recent reports on the local production and activation of complement proteins also suggest a major role in the control of effector responses. The crucial role of complement in adaptive immunity is further highlighted by several examples of dysregulation of these pathways in human diseases.
Collapse
Affiliation(s)
- Justin Killick
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Gregoire Morisse
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
- Centre for NeuroRegeneration, Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Dirk Sieger
- Centre for NeuroRegeneration, Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anne L Astier
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
- Inserm U1043, CNRS U5282, Université de Toulouse, Centre de Physiopathologie Toulouse-Purpan (CPTP), F-31300, Toulouse, France.
| |
Collapse
|
47
|
Brock SR, Parmely MJ. Francisella tularensis Confronts the Complement System. Front Cell Infect Microbiol 2017; 7:523. [PMID: 29312899 PMCID: PMC5742141 DOI: 10.3389/fcimb.2017.00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance. Opsonization of F. tularensis with C3 greatly increases its uptake by human neutrophils, dendritic cells and macrophages. Uptake occurs by an unusual looping morphology in human macrophages. Complement receptor 3 is thought to play an important role in opsonophagocytosis by human macrophages, and signaling through this receptor can antagonize Toll-like receptor 2-initiated macrophage activation. Complement C3 also determines the survival of infected human macrophages and perhaps other cell types. C3-opsonization of F. tularensis subsp. tularensis strain SCHU S4 results in greatly increased death of infected human macrophages, which requires more than complement receptor engagement and is independent of the intracellular replication by the pathogen. Given its entry into the cytosol of host cells, F. tularensis has the potential for a number of other complement-mediated interactions. Studies on the uptake C3-opsonized adenovirus have suggested the existence of a C3 sensing system that initiates cellular responses to cytosolic C3b present on invading microbes. Here we propose that C3 peptides enter the cytosol of human macrophages following phagosome escape of F. tularensis and are recognized as intruding molecular patterns that signal host cell death. With the discovery of new roles for intracellular C3, a better understanding of tularemia pathogenesis is likely to emerge.
Collapse
Affiliation(s)
- Susan R Brock
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael J Parmely
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
48
|
Complement components as promoters of immunological tolerance in dendritic cells. Semin Cell Dev Biol 2017; 85:143-152. [PMID: 29155220 DOI: 10.1016/j.semcdb.2017.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Complement and dendritic cells (DCs) share many functional features that drive the outcome of immune-inflammatory processes. Both have a sentinel function, acting as danger sensors specialized for a rapid, comprehensive and selective action against potential threats without damaging the healthy host cells. But while complement has been considered as a "master alarm" system poised for direct pathogen killing, DCs are regarded as "master regulators" or orchestrators of a vast range of effector immune cells for an effective immune response against threatening insults. The original definition of the complement system, coined to denote its auxiliary function to enhance or assist in the role of antibodies or phagocytes to clear microbes or damaged cells, envisaged an important crosstalk between the complement and the mononuclear phagocyte systems. More recent studies have shown that, depending on the microenvironmental conditions, several complement effectors are competent to influence the differentiation and/or function of different DC subsets toward immunogenicity or tolerance. In this review we will infer about the capability of complement activators and inhibitors to "condition" a tolerogenic and anti-inflammatory immune response by direct interaction with DC surface receptors, and about the implications of this knowledge to devise new complement-based therapeutic approaches for autoimmune pathologies.
Collapse
|
49
|
Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol 2017; 18:1288-1298. [PMID: 29144501 PMCID: PMC5706779 DOI: 10.1038/ni.3858] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Progress at the beginning of the 21st century transformed the perception of complement from that of a blood-based antimicrobial system to that of a global regulator of immunity and tissue homeostasis. More recent years have witnessed remarkable advances in structure-function insights and understanding of the mechanisms and locations of complement activation, which have added new layers of complexity to the biology of complement. This complexity is readily reflected by the multifaceted and contextual involvement of complement-driven networks in a wide range of inflammatory and neurodegenerative disorders and cancer. This Review provides an updated view of new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi, Athens, Greece
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Royer DJ, Carr MM, Gurung HR, Halford WP, Carr DJJ. The Neonatal Fc Receptor and Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against Viral Infection in the Ocular Mucosa. THE JOURNAL OF IMMUNOLOGY 2017; 199:1898-1911. [PMID: 28760885 DOI: 10.4049/jimmunol.1700316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The capacity of licensed vaccines to protect the ocular surface against infection is limited. Common ocular pathogens, such as HSV-1, are increasingly recognized as major contributors to visual morbidity worldwide. Humoral immunity is an essential correlate of protection against HSV-1 pathogenesis and ocular pathology, yet the ability of Ab to protect against HSV-1 is deemed limited due to the slow IgG diffusion rate in the healthy cornea. We show that a live-attenuated HSV-1 vaccine elicits humoral immune responses that are unparalleled by a glycoprotein subunit vaccine vis-à-vis Ab persistence and host protection. The live-attenuated vaccine was used to assess the impact of the immunization route on vaccine efficacy. The hierarchical rankings of primary immunization route with respect to efficacy were s.c. ≥ mucosal > i.m. Prime-boost vaccination via sequential s.c. and i.m. administration yielded greater efficacy than any other primary immunization route alone. Moreover, our data support a role for complement in prophylactic protection, as evidenced by intracellular deposition of C3d in the corneal epithelium of vaccinated animals following challenge and delayed viral clearance in C3-deficient mice. We also identify that the neonatal Fc receptor (FcRn) is upregulated in the cornea following infection or injury concomitant with increased Ab perfusion. Lastly, selective small interfering RNA-mediated knockdown of FcRn in the cornea impeded protection against ocular HSV-1 challenge in vaccinated mice. Collectively, these findings establish a novel mechanism of humoral protection in the eye involving FcRn and may facilitate vaccine and therapeutic development for other ocular surface diseases.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - William P Halford
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|