1
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
2
|
Xue Z, Wu D, Zhang J, Pan Y, Kan R, Gao J, Zhou B. Protective effect and mechanism of procyanidin B2 against hypoxic injury of cardiomyocytes. Heliyon 2023; 9:e21309. [PMID: 37885736 PMCID: PMC10598540 DOI: 10.1016/j.heliyon.2023.e21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cardiomyocyte ischemia and hypoxia are important causes of oxidative stress damage and cardiomyocyte apoptosis in coronary heart disease (CHD). Epidemiological investigation has shown that eating more plant-based foods, such as vegetables and fruits, may significantly decrease the risk of CHD. As natural antioxidants, botanicals have fewer toxic side effects than chemical drugs and have great potential for development. Procyanidin B2 (PB2) is composed of flavan-3-ol and epicatechin and has been reported to have antioxidant and anti-inflammatory effects. However, whether PB2 exerts protective effects on hypoxic cardiomyocytes has remained unclear. This study aimed to explore the protective effect of PB2 against cardiomyocyte hypoxia and to provide new treatment strategies and ideas for myocardial ischemia and hypoxia in CHD. Methods and results A hypoxic cardiomyocyte model was constructed, and a CCK-8 assay proved that PB2 had a protective effect on cardiomyocytes in a hypoxic environment. DCFH fluorescence staining, DHE staining, and BODIPY lipid oxidation assessment revealed that PB2 reduced the oxidative stress levels of cardiomyocytes under hypoxic conditions. TUNEL staining, Annexin V/PI fluorescence flow cytometry, and Western blot analysis of the expression of the apoptosis marker protein cleaved caspase-3 confirmed that PB2 reduced cardiomyocyte apoptosis under hypoxic conditions. JC-1 staining indicated that PB2 reduced the mitochondrial membrane potential of cardiomyocytes under hypoxia. In addition, transcriptomic analysis proved that the expression of 158 genes in cardiomyocytes was significantly changed after PB2 was added during hypoxia, of which 53 genes were upregulated and 105 genes were downregulated. GO enrichment analysis demonstrated that the activity of cytokines, extracellular matrix proteins and other molecules was changed significantly in the biological process category. KEGG enrichment analysis showed that the IL-17 signaling pathway and JAK-STAT signaling pathway underwent significant changes. We also performed metabolomic analysis and found that the levels of 51 metabolites were significantly changed after the addition of PB2 to cardiomyocytes during hypoxia. Among them, 39 metabolites exhibited increased levels, while 12 metabolites exhibited decreased levels. KEGG enrichment analysis showed that cysteine and methionine metabolism, arginine and proline metabolism and other metabolic pathways underwent remarkable changes. Conclusion This study proves that PB2 can reduce the oxidative stress and apoptosis of cardiomyocytes during hypoxia to play a protective role. Transcriptomic and metabolomic analyses preliminarily revealed signaling pathways and metabolic pathways that are related to its protective mechanism. These findings lay a foundation for further research on the role of PB2 in the treatment of CHD and provide new ideas and new perspectives for research on PB2 in the treatment of other diseases.
Collapse
Affiliation(s)
- Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyu Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongsheng Kan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Gao Y, Wang Y, Li M, Gao C. Bioinformatics analysis of potential common pathogenic mechanisms for systemic lupus erythematosus and acute myocardial infarction. Lupus 2023; 32:1296-1309. [PMID: 37800460 DOI: 10.1177/09612033231202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) patients have a higher risk of acute myocardial infarction (AMI) compared to the general population. However, the underlying common mechanism of this association is not fully understood. This study aims to investigate the molecular mechanism of this complication. METHODS Gene expression profiles of SLE (GSE50772) and AMI (GSE66360) were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) in SLE and AMI were identified, and functional annotation, protein-protein interaction (PPI) network analysis, module construction, and hub gene identification were performed. Additionally, transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network were constructed for the hub genes. RESULTS 70 common DEGs (7 downregulated genes and 63 upregulated genes) were identified and were mostly enriched in signaling pathways such as the IL-17 signaling pathway, TNF signaling pathway, lipid metabolism, and atherosclerosis. Using cytoHubba, 12 significant hub genes were identified, including IL1B, TNF, FOS, CXCL8, JUN, PTGS2, FN1, EGR1, CXCL1, DUSP1, MMP9, and ZFP36. CONCLUSIONS This study reveals a common pathogenesis of SLE and AMI and provides new perspectives for further mechanism research. The identified common pathways and hub genes may have important clinical implications for the prevention and treatment of AMI in SLE patients.
Collapse
Affiliation(s)
- Yang Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Yunxia Wang
- Department of Radiology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Muwei Li
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Shah AM, Zamora R, Vodovotz Y. Interleukin-17 as a spatiotemporal bridge from acute to chronic inflammation: Novel insights from computational modeling. WIREs Mech Dis 2023; 15:e1599. [PMID: 36710253 PMCID: PMC10176872 DOI: 10.1002/wsbm.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
A systematic review of several acute inflammatory diseases ranging from sepsis and trauma/hemorrhagic shock to the relevant pathology of the decade, COVID-19, points to the cytokine interleukin (IL)-17A as being centrally involved in the propagation of inflammation. We summarize the role of IL-17A in acute inflammation, leveraging insights made possible by biological network analysis and novel computational methodologies aimed at defining the spatiotemporal spread of inflammation in both experimental animal models and humans. These studies implicate IL-17A in the cross-tissue spread of inflammation, a process that appears to be in part regulated through neural mechanisms. Although acute inflammatory diseases are currently considered distinct from chronic inflammatory pathologies, we suggest that chronic inflammation may represent repeated, cyclical episodes of acute inflammation driven by mechanisms involving IL-17A. Thus, insights from computational modeling of acute inflammatory diseases may improve diagnosis and treatment of chronic inflammation; in turn, therapeutics developed for chronic/autoimmune disease may be of benefit in acute inflammation. This article is categorized under: Immune System Diseases > Computational Models.
Collapse
Affiliation(s)
- Ashti M Shah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Kridin K, Valido K, Cohen JM, Cohen AD. Hidradenitis suppurativa and the risk of myocardial infarction, cerebrovascular accident, and peripheral vascular disease: a population-based study. Arch Dermatol Res 2023; 315:429-435. [PMID: 35871185 DOI: 10.1007/s00403-022-02369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/06/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Previous studies have identified an association between myocardial infarction (MI), cerebrovascular accident (CVA), and peripheral vascular disease (PVD) in patients with hidradenitis suppurativa (HS). To evaluate the risk and prognostic outcomes of MI, CVA, and PVD in patients with HS. A population-based retrospective cohort study using the computerized database of Clalit Health Services (CHS), the largest managed care organization in Israel, was conducted to compare the incidence of MI, CVA, and PVD among patients with HS (N = 6779) with age-, sex- and ethnicity-matched control subjects (N = 33,260). Adjusted hazard ratios (HRs) were estimated by multivariate Cox regression analysis. The overall incidence rates of MI, CVA, and PVD were estimated at 2.9 (2.3-3.4), 1.3 (0.9-1.7), and 0.8 (0.6-1.1) per 1000 person-year, respectively. Patients with HS were at an increased risk of developing MI (fully-adjusted HR 1.33; 95% CI 1.04-1.68; P = 0.021), but the risk of CVA (fully-adjusted HR 0.82; 95% CI 0.59-1.14; P = 0.245) and PVD (fully-adjusted HR 1.22; 95% CI 0.80-1.87; P = 0.355) was comparable relative to controls. Compared to other patients with HS, increased risk of all-cause mortality was observed among patients with HS and comorbid MI (HR 12.56; 95% CI 7.59-20.80; P < 0.001), CVA (HR 13.33; 95% CI 7.29-24.37; P < 0.001), and PVD (HR 7.11; 95% CI 2.61-19.32; P < 0.001). Patients with HS are at an increased risk of MI, but not CVA and PVD. Awareness of these epidemiological findings is of importance for clinicians managing patients with HS.
Collapse
Affiliation(s)
- Khalaf Kridin
- Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Poria Medical Center, Poriya, Israel
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, 15 York St, New Haven, CT, 06510, USA.
| | - Arnon D Cohen
- Department of Quality Measures and Research, Chief Physician's Office, Clalit Health Services, Tel Aviv, Israel
- Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Liu Y, Zhang D, Yin D. Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease. Int J Mol Sci 2023; 24:ijms24076497. [PMID: 37047468 PMCID: PMC10095356 DOI: 10.3390/ijms24076497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Myocardial infarction (MI), heart failure, cardiomyopathy, myocarditis, and myocardial ischemia-reperfusion injury (I/R) are the most common heart diseases, yet there is currently no effective therapy due to their complex pathogenesis. Cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), and immune cells are the primary cell types involved in heart disorders, and, thus, targeting a specific cell type for the treatment of heart disease may be more effective. The same interleukin may have various effects on different kinds of cell types in heart disease, yet the exact role of interleukins and their pathophysiological pathways on primary cell types remain largely unexplored. This review will focus on the pathophysiological effects of various interleukins including the IL-1 family (IL-1, IL-18, IL-33, IL-37), IL-2, IL-4, the IL-6 family (IL-6 and IL-11), IL-8, IL-10, IL-17 on primary cell types in common heart disease, which may contribute to the more precise and effective treatment of heart disease.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
- Correspondence: (D.Z.); (D.Y.)
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
- Correspondence: (D.Z.); (D.Y.)
| |
Collapse
|
8
|
Guo J, Hu Z, Ren L, Zhao W, Zuo R, Guo S, Jia C, Gao W. Circulating tumor necrosis factor-α, interleukin-1β, and interleukin-17A estimates increased major adverse cardiac event risk in acute myocardial infarction patients. J Clin Lab Anal 2023; 37:e24853. [PMID: 36877748 PMCID: PMC10098063 DOI: 10.1002/jcla.24853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Inflammatory cytokines are implicated in the development of atherosclerosis and cardiomyocyte injury during acute myocardial infarction (AMI). This study aimed to investigate the correlation of eight common inflammatory cytokines with major adverse cardiac event (MACE) risk and further establish a prognostic model in AMI patients. METHODS Serum samples of 210 AMI patients and 20 angina pectoris patients were, respectively, collected at admission, to detect tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) via enzyme-linked immunosorbent assay. RESULTS TNF-α, IL-6, IL-8, IL-17A, VCAM-1, and ICAM-1 were elevated (all p < 0.050); IL-10 (p = 0.009) was declined; IL-1β (p = 0.086) was not varied in AMI patients compared with angina pectoris patients. TNF-α (p = 0.008), IL-17A (p = 0.003), and VCAM-1 (p = 0.014) were elevated in patients with MACE occurrence compared to patients without MACE occurrence; meanwhile, they possessed a relatively good value for identifying MACE risk via receiver-operating characteristic (ROC) analysis. Subsequent multivariate logistic regression analysis revealed that the independent risk factors for MACE contained TNF-α (odds ratio (OR) = 1.038, p < 0.001), IL-1β (OR = 1.705, p = 0.044), IL-17A (OR = 1.021, p = 0.009), history of diabetes mellitus (OR = 4.188, p = 0.013), history of coronary heart disease (OR = 3.287, p = 0.042), and symptom-to-balloon time (OR = 1.064, p = 0.030), whose combination disclosed a satisfying prognostic value for MACE risk (area under the curve: 0.877, 95% CI: 0.817-0.936). CONCLUSION Elevated levels of serum TNF-α, IL-1β, and IL-17A independently correlated with MACE risk in AMI patients, which perhaps provide novel auxiliary for AMI prognostic prediction.
Collapse
Affiliation(s)
- Jing Guo
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Zhenfeng Hu
- Department of General Surgery (Department of Plastic Surgery), Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Liang Ren
- Emergency Department, Handan Central Hospital, Handan, China
| | - Weibo Zhao
- Emergency Department, Handan Central Hospital, Handan, China
| | - Ruijing Zuo
- Emergency Department, Handan Central Hospital, Handan, China
| | - Shuang Guo
- Emergency Department, Handan Central Hospital, Handan, China
| | - Chaoguo Jia
- Emergency Department, Handan Central Hospital, Handan, China
| | - Wei Gao
- Emergency Department, Handan Central Hospital, Handan, China
| |
Collapse
|
9
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-Driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. Cells 2023; 12:766. [PMID: 36899902 PMCID: PMC10000459 DOI: 10.3390/cells12050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
Affiliation(s)
- Ozioma S. Chioma
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth Mallott
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Binal Shah-Gandhi
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - ZaDarreyal Wiggins
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Madison Langford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Alexander Gelbard
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hongmei Wu
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyce E. Johnson
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Lancaster
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin M. Wilfong
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie J. Crofford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Van Kaer
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Bordenstein
- Department of Biology and Entomology, Pennsylvania State University, College Station, PA 16801, USA
| | - Dawn C. Newcomb
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wonder Puryear Drake
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528630. [PMID: 36824732 PMCID: PMC9948999 DOI: 10.1101/2023.02.15.528630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Although profibrotic cytokines such as IL-17A and TGF-β1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. Genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. Assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota on lung fibrosis severity. Analysis in female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells, compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
|
11
|
Luo H, Guo H, Zhou Y, Fang R, Zhang W, Mei Z. Neutrophil Extracellular Traps in Cerebral Ischemia/Reperfusion Injury: Friend and Foe. Curr Neuropharmacol 2023; 21:2079-2096. [PMID: 36892020 PMCID: PMC10556361 DOI: 10.2174/1570159x21666230308090351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 03/10/2023] Open
Abstract
Cerebral ischemic injury, one of the leading causes of morbidity and mortality worldwide, triggers various central nervous system (CNS) diseases, including acute ischemic stroke (AIS) and chronic ischemia-induced Alzheimer's disease (AD). Currently, targeted therapies are urgently needed to address neurological disorders caused by cerebral ischemia/reperfusion injury (CI/RI), and the emergence of neutrophil extracellular traps (NETs) may be able to relieve the pressure. Neutrophils are precursors to brain injury following ischemic stroke and exert complicated functions. NETs extracellularly release reticular complexes of neutrophils, i.e., double-stranded DNA (dsDNA), histones, and granulins. Paradoxically, NETs play a dual role, friend and foe, under different conditions, for example, physiological circumstances, infection, neurodegeneration, and ischemia/reperfusion. Increasing evidence indicates that NETs exert anti-inflammatory effects by degrading cytokines and chemokines through protease at a relatively stable and moderate level under physiological conditions, while excessive amounts of NETs release (NETosis) irritated by CI/RI exacerbate the inflammatory response and aggravate thrombosis, disrupt the blood-brain barrier (BBB), and initiates sequential neuron injury and tissue damage. This review provides a comprehensive overview of the machinery of NETs formation and the role of an abnormal cascade of NETs in CI/RI, as well as other ischemia-induced neurological diseases. Herein, we highlight the potential of NETs as a therapeutic target against ischemic stroke that may inspire translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Rui Fang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
12
|
Ebadi N, Arefizadeh R, Nasrollahzadeh Sabet M, Goodarzi N. Identification of Key Genes and Biological Pathways Related to Myocardial Infarction through Integrated Bioinformatics Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:35-42. [PMID: 36688193 PMCID: PMC9843455 DOI: 10.30476/ijms.2022.92656.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/24/2023]
Abstract
Background Coronary heart disease is the leading cause of death worldwide. Myocardial infarction (MI) is a fatal manifestation of coronary heart disease, which can present as sudden death. Although the molecular mechanisms of coronary heart disease are still unknown, global gene expression profiling is regarded as a useful approach for deciphering the pathophysiology of this disease and subsequent diseases. This study used a bioinformatics analysis approach to better understand the molecular mechanisms underlying coronary heart disease. Methods This experimental study was conducted in the department of cardiology, Aja University of Medical Sciences (2021-2022), Tehran, Iran. To identify the key deregulated genes and pathways in coronary heart disease, an integrative approach was used by merging three gene expression datasets, including GSE19339, GSE66360, and GSE29111, into a single matrix. The t test was used for the statistical analysis, with a significance level of P<0.05. Results The limma package in R was used to identify a total of 133 DEGs, consisting of 124 upregulated and nine downregulated genes. KDM5D, EIF1AY, and CCL20 are among the top upregulated genes. Moreover, the interleukin 17 (IL-17) signaling pathway and four other signaling pathways were identified as the potent underlying pathogenesis of both coronary artery disease (CAD) and MI using a systems biology approach. Accordingly, these findings can provide expression signatures and potential biomarkers in CAD and MI pathophysiology, which can contribute to both diagnosis and therapeutic purposes. Conclusion Five signaling pathways were introduced in MI and CAD that were primarily involved in inflammation, including the IL-17 signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and rheumatoid arthritis signaling pathway.
Collapse
Affiliation(s)
- Nader Ebadi
- Department of Cardiology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran,
Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Arefizadeh
- Department of Cardiology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | | - Naser Goodarzi
- Department of Clinical Psychology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
14
|
Zhang J, Xu H, Yao M, Jia H, Cong H. The abnormal level and prognostic potency of multiple inflammatory cytokines in PCI-treated STEMI patients. J Clin Lab Anal 2022; 36:e24730. [PMID: 36245413 DOI: 10.1002/jcla.24730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Inflammatory cytokines modulate atherogenesis and plaque rupture to involve in ST-segment elevation myocardial infarction (STEMI) progression. The present study determined eight inflammatory cytokine levels in 212 percutaneous coronary intervention (PCI)-treated STEMI patients, aiming to comprehensively investigate their potency in estimating major adverse cardiac event (MACE) risk. METHODS Serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) of 212 PCI-treated STEMI patients and 30 angina pectoris patients were determined using enzyme-linked immunosorbent assay. RESULTS TNF-α (52.5 (43.9-62.6) pg/ml versus 46.4 (39.0-59.1) pg/ml, p = 0.031), IL-8 (61.6 (49.6-81.7) pg/ml versus 46.7 (32.5-63.1) pg/ml, p = 0.001), IL-17A (57.4 (45.7-77.3) pg/ml versus 43.2 (34.2-64.6) pg/ml, p = 0.001), and VCAM-1 (593.6 (503.4-811.4) ng/ml versus 493.8 (390.3-653.7) ng/ml, p = 0.004) levels were elevated in STEMI patients compared to angina pectoris patients, while IL-1β (p = 0.069), IL-6 (p = 0.110), IL-10 (p = 0.052), and ICAM-1 (p = 0.069) were of no difference. Moreover, both IL-17A high (vs. low) (p = 0.026) and VCAM-1 high (vs. low) (p = 0.012) were linked with increased cumulative MACE rate. The multivariable Cox's analysis exhibited that IL-17A high (vs. low) (p = 0.034) and VCAM-1 high (vs. low) (p = 0.014) were independently associated with increased cumulative MACE risk. Additionally, age, diabetes mellitus, C-reactive protein, multivessel disease, stent length, and stent type were also independent factors for cumulative MACE risk. CONCLUSION IL-17A and VCAM-1 high level independently correlate with elevated MACE risk in STEMI patients, implying its potency in identifying patients with poor prognoses.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Huichuan Xu
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Hongdan Jia
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Hongliang Cong
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Yu Y, Weiss RM, Wei SG. Brain Interleukin-17A contributes to neuroinflammation and cardiac dysfunction in rats with myocardial infarction. Front Neurosci 2022; 16:1032434. [PMID: 36312009 PMCID: PMC9606756 DOI: 10.3389/fnins.2022.1032434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Proinflammatory cytokines produced outside the central nervous system can act in the brain to promote sympathetic activation that contributes to the progression of heart failure (HF). Interleukin (IL)-17A, a key inflammatory regulator which orchestrates immune responses to promote chronic inflammation, has been implicated in the pathophysiology of HF. We previously reported that IL-17A acts within the brain, particularly in the hypothalamic paraventricular nucleus (PVN), to increase expression of inflammatory mediators and, consequently, sympathetic outflow. The present study sought to determine whether IL-17A levels are elevated in a rat model of HF induced by myocardial infarction and, if so, whether increased expression of IL-17A in the brain itself contributes to neuroinflammation and cardiac dysfunction in this disease setting. Male SD rats underwent coronary artery ligation (CL) to induce HF or sham operation (SHAM). Compared with SHAM rats, HF rats exhibited significantly increased IL-17A levels in plasma, beginning within 1 week with a peak increase at 4 weeks after CL. IL-17A levels in cerebrospinal fluid (CSF) were also increased in HF rats and correlated with IL-17A levels in the plasma. The mRNA expression of IL-17A and its receptor IL-17RA, but not IL-17RC, was markedly upregulated in the PVN of HF when compared with SHAM rats. Genetic knockdown of IL-17RA by bilateral PVN microinjections of an IL-17RA siRNA AAV virus attenuated mRNA expression of proinflammatory cytokines and chemokines, and ameliorated sympathetic activation and cardiac function in HF rats. These data indicate that elevated expression of IL-17A in the brain in HF contributes to the excessive central inflammatory state and cardiac dysfunction in HF. Interventions to suppress IL-17A/IL-17RA axis in the brain have the potential for treating HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
16
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
17
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
18
|
Wu Y, Chen H, Li L, Zhang L, Dai K, Wen T, Peng J, Peng X, Zheng Z, Jiang T, Xiong W. Construction of Novel Gene Signature-Based Predictive Model for the Diagnosis of Acute Myocardial Infarction by Combining Random Forest With Artificial Neural Network. Front Cardiovasc Med 2022; 9:876543. [PMID: 35694667 PMCID: PMC9174464 DOI: 10.3389/fcvm.2022.876543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the most common causes of mortality around the world. Early diagnosis of AMI contributes to improving prognosis. In our study, we aimed to construct a novel predictive model for the diagnosis of AMI using an artificial neural network (ANN), and we verified its diagnostic value via constructing the receiver operating characteristic (ROC). Methods We downloaded three publicly available datasets (training sets GSE48060, GSE60993, and GSE66360) from Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified between 87 AMI and 78 control samples. We applied the random forest (RF) and ANN algorithms to further identify novel gene signatures and construct a model to predict the possibility of AMI. Besides, the diagnostic value of our model was further validated in the validation sets GSE61144 (7 AMI patients and 10 controls), GSE34198 (49 AMI patients and 48 controls), and GSE97320 (3 AMI patients and 3 controls). Results A total of 71 DEGs were identified, of which 68 were upregulated and 3 were downregulated. Firstly, 11 key genes in 71 DEGs were screened with RF classifier for the classification of AMI and control samples. Then, we calculated the weight of each key gene using ANN. Furthermore, the diagnostic model was constructed and named neuralAMI, with significant predictive power (area under the curve [AUC] = 0.980). Finally, our model was validated with the independent datasets GSE61144 (AUC = 0.900), GSE34198 (AUC = 0.882), and GSE97320 (AUC = 1.00). Conclusion Machine learning was used to develop a reliable predictive model for the diagnosis of AMI. The results of our study provide potential gene biomarkers for early disease screening.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Dai
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Jiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ting Jiang,
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Wenjun Xiong,
| |
Collapse
|
19
|
Wu Y, Jiang T, Hua J, Xiong Z, Chen H, Li L, Peng J, Xiong W. Integrated Bioinformatics-Based Analysis of Hub Genes and the Mechanism of Immune Infiltration Associated With Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:831605. [PMID: 35463752 PMCID: PMC9019083 DOI: 10.3389/fcvm.2022.831605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is a fatal disease that causes high morbidity and mortality. It has been reported that AMI is associated with immune cell infiltration. Now, we aimed to identify the potential diagnostic biomarkers of AMI and uncover the immune cell infiltration profile of AMI. Methods From the Gene Expression Omnibus (GEO) data set, three data sets (GSE48060, GSE60993, and GSE66360) were downloaded. Differentially expressed genes (DEGs) from AMI and healthy control samples were screened. Furthermore, DEGs were performed via gene ontology (GO) functional and kyoto encyclopedia of genes and genome (KEGG) pathway analyses. The Gene set enrichment analysis (GSEA) was used to analyze GO terms and KEGG pathways. Utilizing the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) database, a protein–protein interaction (PPI) network was constructed, and the hub genes were identified. Then, the receiver operating characteristic (ROC) curves were constructed to analyze the diagnostic value of hub genes. And, the diagnostic value of hub genes was further validated in an independent data set GSE61144. Finally, CIBERSORT was used to represent the compositional patterns of the 22 types of immune cell fractions in AMI. Results A total of 71 DEGs were identified. These DEGs were mainly enriched in immune response and immune-related pathways. Toll-like receptor 2 (TLR2), interleukin-1B (IL1B), leukocyte immunoglobulin-like receptor subfamily B2 (LILRB2), Fc fragment of IgE receptor Ig (FCER1G), formyl peptide receptor 1 (FPR1), and matrix metalloproteinase 9 (MMP9) were identified as diagnostic markers with the value of p < 0.05. Also, the immune cell infiltration analysis indicated that TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 were correlated with neutrophils, monocytes, resting natural killer (NK) cells, gamma delta T cells, and CD4 memory resting T cells. The fractions of monocytes and neutrophils were significantly higher in AMI tissues than in control tissues. Conclusion TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 are involved in the process of AMI, which can be used as molecular biomarkers for the screening and diagnosis of AMI. In addition, the immune system plays a vital role in the occurrence and progression of AMI.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ting Jiang
- Department Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiping Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wenjun Xiong,
| |
Collapse
|
20
|
Sobot NM, Sobot TS, Jeremic JN, Bolevich SB, Bolevich SS, Mitrovic SL, Fisenko VP, Inic SG, Samanovic ADM, Rankovic MR, Srejovic IM, Zivkovic VI, Jakovljevic VL. Minocycline as heart conditioning agent in experimental type 2 diabetes mellitus - an antibacterial drug in heart protection. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:429-444. [PMID: 35113200 DOI: 10.1007/s00210-021-02179-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Cardiovascular diseases, and among them certainly myocardial infarction, remain leading cause of death worldwide. Diabetes increases risk of occurrence as well as adverse outcome of myocardial infarction. Conditioning maneuvers are the most attractive method for alleviating both the consequences of ischemia and reperfusion. Minocycline is a tetracycline derivative which exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. The aim of this study was to assess the protective ability of preconditioning and postconditioning of isolated hearts from healthy and rats with experimentally induced type 2 diabetes with minocycline on functional recovery and redox status after ischemia and reperfusion. The hearts from healthy and diabetic rats were excised and retrogradely perfused according to the Langendorff technique. Using sensor in the left ventricle, the cardiodynamic parameters were recorded and in the samples of the coronary venous effluent oxidative stress biomarkers were analyzed. Minocycline was injected directly into the coronary vessels, in preconditioning 5 min before global ischemia, and in postconditioning during the first 5 min of reperfusion. Results of this study clearly show beneficial effects of minocycline applied both before ischemia and in the first minutes of reperfusion fashion in both healthy and diabetic rat hearts. The most prominent protective effect regarding oxidative stress is related to the decreased production of superoxide anion radical due postconditioning with minocycline in diabetic hearts. Cardiodynamic parameters were significantly improved in minocycline conditioned groups. Superoxide anion radical stands out as the most susceptible to changes induced by minocycline.
Collapse
Affiliation(s)
- Nikola M Sobot
- Clinic for Cardiac Surgery, University Clinical Centre of the Republic of Srpska, Dvanaest beba st. bb, 78000, Banja Luka, Bosnia and Herzegovina
| | - Tanja S Sobot
- Department of Physiology, University of Banja Luka, Save Mrkalja st. 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Jovana N Jeremic
- Department of Pharmacy, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Sergey B Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Stefani S Bolevich
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Slobodanka Lj Mitrovic
- Department of Pathology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir P Fisenko
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia
| | - Sofija G Inic
- University of Pristina With Temporary Headquarters in Kosovksa Mitrovica Anri Dinana St. Bb, 38220, Kosovska Mitrovica, Serbia
| | | | - Marina R Rankovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Ivan M Srejovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia
| | - Vladimir Lj Jakovljevic
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University, Trubetskaya st. 8, Moscow, 119991, Russia.
- Department of Physiology, University of Kragujevac, Svetozara Markovica st. 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
21
|
Abstract
Despite effective therapeutic and preventive strategies, atherosclerosis and its complications still represent a substantial health burden. Leukocytes and inflammatory mechanisms are increasingly recognized as drivers of atherosclerosis. Neutrophil granulocytes within the circulation were recently shown to undergo neutrophil extracellular trap (NET) formation, linking innate immunity with acute complications of atherosclerosis. In this chapter, we summarize mechanisms of NET formation, evidence for their involvement in atherosclerosis and thrombosis, and potential therapeutic regimens specifically targeting NET components.
Collapse
|
22
|
Li G, Chen H, Liu L, Xiao P, Xie Y, Geng X, Zhang T, Zhang Y, Lu T, Tan H, Li L, Sun B. Role of Interleukin-17 in Acute Pancreatitis. Front Immunol 2021; 12:674803. [PMID: 34594321 PMCID: PMC8476864 DOI: 10.3389/fimmu.2021.674803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by systemic manifestations that are generally associated with a poor prognosis. Many cytokines contribute to pancreatic tissue damage and cause systemic injury. Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has important effects on the immune response and causes interactions between different inflammatory mediators in the AP-related microenvironment. In this literature review, we will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The clinical significance and potential mechanisms of IL-17 on AP deterioration are emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could alleviate the pathogenic process of AP, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in acute pancreatitis.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
23
|
Yu L, Zhu L, Yan M, Feng S, Huang J, Yang X. Electrochemiluminescence Biosensor Based on Entropy-Driven Amplification and a Tetrahedral DNA Nanostructure for miRNA-133a Detection. Anal Chem 2021; 93:11809-11815. [PMID: 34461731 DOI: 10.1021/acs.analchem.1c02361] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The early and rapid diagnosis of acute myocardial infarction (AMI) is of great significance to its treatment. Here, we developed an electrochemiluminescence biosensor based on an entropy-driven strand displacement reaction (ETSD) and a tetrahedral DNA nanostructure (TDN) for the detection of the potential AMI biomarker microRNA-133a. In the presence of the target, numerous Ru(bpy)32+-labeled signal probes (SP) were released from the preformed three-strand complexes through the process of ETSD. The ETSD reaction cycle greatly amplified the input signal of the target. The released SP could be captured by the TDN-engineered biosensing interface to generate a strong ECL signal. The rigid structure of TDN could significantly improve the hybridization efficiency. With the assistant of double amplification of TDN and ETSD, the developed biosensor has a good linear response ranging from 1 fM to 1 nM for microRNA-133a, and the detection limit is 0.33 fM. Additionally, the constructed biosensor has excellent repeatability and selectivity, demonstrating that the biosensor possesses a great application prospect in clinical diagnosis.
Collapse
Affiliation(s)
- Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liping Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Xiao S, Zhou Y, Wu Q, Liu Q, Chen M, Zhang T, Zhu H, Liu J, Yin T, Pan D. FCER1G and PTGS2 Serve as Potential Diagnostic Biomarkers of Acute Myocardial Infarction Based on Integrated Bioinformatics Analyses. DNA Cell Biol 2021; 40:1064-1075. [PMID: 34115526 DOI: 10.1089/dna.2020.6447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This study aimed to explore the potential diagnostic biomarkers and mechanisms underlying acute myocardial infarction (AMI). We downloaded four datasets (GSE19339, GSE48060, GSE66360, and GSE97320) from the Gene Expression Omnibus database and combined them as an integrated dataset. A total of 153 differentially expressed genes (DEGs) were analyzed by the linear models for microarray analysis (LIMMA) package. Weighted gene co-expression network analysis was used to screen for the significant gene modules. The intersection of DEGs and genes in the most significant module was termed "common genes" (CGs). CGs were mainly enriched in "inflammatory response," "neutrophil chemotaxis," and "IL-17 signaling pathway" through functional enrichment analyses. Subsequently, 15 genes were identified as the hub genes in the protein-protein interaction network. The Fc fragment of IgE receptor Ig (FCER1G) and prostaglandin-endoperoxide synthase 2 (PTGS2) showed significantly increased expression in AMI patients and mice at the 12-h time point in our experiments. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of FCER1G and PTGS2. The area under ROC curve of FCER1G and PTGS2 was 77.6% and 80.7%, respectively. Moreover, the micro (mi)RNA-messenger (m)RNA network was also visualized; the results showed that miRNA-143, miRNA-144, and miRNA-26 could target PTGS2 in AMI progression.
Collapse
Affiliation(s)
- Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiaozhi Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiantian Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Kastner N, Mester-Tonczar J, Winkler J, Traxler D, Spannbauer A, Rüger BM, Goliasch G, Pavo N, Gyöngyösi M, Zlabinger K. Comparative Effect of MSC Secretome to MSC Co-culture on Cardiomyocyte Gene Expression Under Hypoxic Conditions in vitro. Front Bioeng Biotechnol 2020; 8:502213. [PMID: 33123511 PMCID: PMC7571272 DOI: 10.3389/fbioe.2020.502213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction Despite major leaps in regenerative medicine, the regeneration of cardiomyocytes after ischemic conditions remains to elucidate. It is crucial to understand hypoxia induced cellular mechanisms to provide advanced treatment options, including the use of stem cell paracrine factors for myocardial regeneration. Materials and Methods In this study, the regenerative potential of hypoxic human cardiomyocytes (group Hyp-CMC) in vitro was evaluated when co-cultured with human bone-marrow derived MSC (group Hyp-CMC-MSC) or stimulated with the secretome of MSC (group Hyp-CMC-SMSC). The secretome of normoxic MSC and CMC, and the hypoxic CMC was analyzed with a cytokine panel. Gene expression changes of HIF-1α, proliferation marker Ki-67 and cytokinesis marker RhoA over different reoxygenation time periods of 4, 8, 24, 48, and 72 h were analyzed in comparison to normoxic CMC and MSC. Further, the proinflammatory cytokine IL-18 protein expression change, metabolic activity and proliferation was assessed in all experimental setups. Results and Conclusion HIF-1α was persistently overexpressed in Hyp-CMC-SMSC as compared to Hyp-CMC (except at 72 h). Hyp-CMC-MSC showed a weaker HIF-1α expression than Hyp-CMC-SMSC in most tested time points, except after 8 h. The Ki-67 expression showed the strongest upregulation in Hyp-CMC after 24 and 48 h incubation, then returned to baseline level, while a temporary increase in Ki-67 expression in Hyp-CMC-MSC at 4 and 8 h and at 48 h in Hyp-CMC-SMSC could be observed. RhoA was increased in normoxic MSCs and in Hyp-CMC-SMSC over time, but not in Hyp-CMC-MSC. A temporary increase in IL-18 protein expression was detected in Hyp-CMC-SMSC and Hyp-CMC. Our study demonstrates timely dynamic changes in expression of different ischemia and regeneration-related genes of CMCs, depending from the culture condition, with stronger expression of HIF-1α, RhoA and IL-18 if the hypoxic CMC were subjected to the secretome of MSCs.
Collapse
Affiliation(s)
- Nina Kastner
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Beate M Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Effect of Interleukin-17 in the Activation of Monocyte Subsets in Patients with ST-Segment Elevation Myocardial Infarction. J Immunol Res 2020; 2020:5692829. [PMID: 32676508 PMCID: PMC7336211 DOI: 10.1155/2020/5692829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Interleukin- (IL-) 17 is increased in acute myocardial infarction (AMI) and plays a key role in inflammatory diseases through its involvement in the activation of leukocytes. Here, we describe for the first time the effect of IL-17 in the migration and activation of monocyte subsets in patients during ST-segment elevation myocardial infarction (STEMI) and post-STEMI. We analyzed the circulating levels of IL-17 in patient plasma. A gradual increase in IL-17 was found in STEMI and post-STEMI patients. Additionally, IL-17 had a powerful effect on the recruitment of CD14++CD16+/CD14+CD16++ monocytes derived from patients post-STEMI compared with the monocytes from patients with STEMI, suggesting that IL-17 recruits monocytes with inflammatory activity post-STEMI. Furthermore, IL-17 increased the expression of TLR4 on CD14 + CD16 - and CD14++CD16+/CD14+CD16++ monocytes post-STEMI and might enhance the response to danger-associated molecular patterns post-STEMI. Moreover, IL-17 induced secretion of IL-6 from CD14++CD16- and CD14++CD16+/CD14+CD16++ monocytes both in STEMI and in post-STEMI, which indicates that IL-17 has an effect on the secretion of proinflammatory cytokines from monocytes during STEMI and post-STEMI. Overall, we demonstrate that in STEMI and post-STEMI, IL-17 is increased and induces the migration and activation of monocyte subsets, possibly contributing to the inflammatory response through TLR4 and IL-6 secretion.
Collapse
|
27
|
Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Patients With Lung Cancer: The Potential Role of Interleukin-17 Target Therapy. J Thorac Oncol 2020; 15:e101-e103. [PMID: 32353597 PMCID: PMC7185017 DOI: 10.1016/j.jtho.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/28/2022]
Abstract
The coronavirus disease 2019 outbreak is evolving rapidly worldwide. The lungs are the target of the primary infection and patients with lung cancer seem to have a poor prognosis. To our knowledge, this is the first reported investigation of a possible role of interleukin-17 target therapy in patients with lung cancer and concomitant severe acute respiratory syndrome–coronavirus-2 infection.
Collapse
|
28
|
Tabata T, Sugiyama N, Otsuki Y, Kondo Y. Interleukin-24 is a novel diagnostic biomarker for the severity of acute kidney injury. Med Mol Morphol 2019; 53:115-123. [PMID: 31802235 DOI: 10.1007/s00795-019-00239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
There is a clinical need for sensitive acute kidney injury (AKI) biomarkers that enable early therapeutic interventions and prediction of disease prognosis. In this study, we monitored interleukin (IL)-24 expressed in kidneys with severe AKI that progresses to atrophic kidney in a mouse model of ischemia-reperfusion injury (IRI). Therefore, we evaluated IL-24 as a potential biomarker not only for early diagnosis of AKI, but also for predicting progression to chronic kidney disease (CKD). Serum IL-24 was detected earlier than the elevation of serum creatinine levels and urinary IL-24 was detected as early as neutrophil gelatinase associated lipocalin (NGAL) in severe AKI (60 min of IRI). In addition, serum and urine IL-24 levels tended to increase in relation to ischemia duration. In such kidneys, vascular smooth muscle cells expressed IL-24 in response to the injury in the renal tubular epithelial cell and its target was the renal tubular epithelial cell itself. IL-24 may play a pivotal role in the communication between tubular epithelial cells and vascular smooth muscle cells and, in conclusion, IL-24 can be used as a sensitive biomarker for AKI.
Collapse
Affiliation(s)
- Tomotake Tabata
- Division of Life Science, Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Noriyuki Sugiyama
- Division of Life Science, Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshinori Otsuki
- Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yoichi Kondo
- Division of Life Science, Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|