1
|
Guo Z, Zhang Y, Peng Z, Rao H, Yang J, Chen Z, Song W, Wan Q, Chen H, Wang M. Complement factor B, not the membrane attack complex component C9, promotes neointima formation after arterial wire injury. Atherosclerosis 2024; 399:118586. [PMID: 39500113 DOI: 10.1016/j.atherosclerosis.2024.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Vascular restenosis due to neointima hyperplasia limits the long-term patency of stented arteries, resulting in angioplasty failure. The complement system has been implicated in restenosis. This study aimed to investigate the role of complement factor B (fB), an essential component of the alternative pathway of complement activation, in neointima formation. METHODS Angioplasty wire injury was conducted using 12-week-old mice deficient in fB or C9 (the main component of the membrane attacking complex, C5b-9) and littermate controls and neointima formation were assessed. Vascular smooth muscle cell (SMC) and endothelial cell (EC) proliferation and migration were examined in vitro. RESULTS fB was mainly detected in SMCs of stenotic arteries from humans and mice. Deletion of fB substantially reduced the neointima area and intima-to-media area ratio without affecting the media area at 28 days after injury. At 7 days after injury, fB deficiency decreased SMC proliferation, unaltering neointimal macrophage infiltration and EC reendothelialization. Vascular SMC-expressed fB, not the circulation-sourced fB, played an essential role in SMC proliferation and migration in vitro. fB deficient mice exhibited lower levels of the soluble form of C5b-9, however, deletion of C9 did not alter neointima formation after wire injury, consistent with the null impact of C9 deficiency on SMC proliferation in vitro. CONCLUSIONS fB promotes neointima formation following wire-induced artery injury independent of forming the membrane-attacking complex. This is attributable to fB-dependent SMC proliferation and migration without affecting EC function. Targeting fB might protect against restenosis after percutaneous coronary intervention.
Collapse
MESH Headings
- Animals
- Neointima
- Cell Proliferation
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/injuries
- Mice, Inbred C57BL
- Disease Models, Animal
- Mice
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Complement Membrane Attack Complex/metabolism
- Cells, Cultured
- Vascular System Injuries/pathology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
Collapse
Affiliation(s)
- Ziyi Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenchao Song
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Brückner A, Brandtner A, Rieck S, Matthey M, Geisen C, Fels B, Stei M, Kusche-Vihrog K, Fleischmann BK, Wenzel D. Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE -/- mice. Angiogenesis 2024; 27:719-738. [PMID: 38965173 PMCID: PMC11564227 DOI: 10.1007/s10456-024-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
Collapse
Affiliation(s)
- Alexander Brückner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Adrian Brandtner
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Caroline Geisen
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Benedikt Fels
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner SiteHamburg/Luebeck/Kiel, Luebeck, Germany
| | - Bernd K Fleischmann
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Life&Brain Center, Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.
- Department of Systems Physiology, Medical Faculty, Institute of Physiology, Ruhr University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Zhang F, Yao K, Liu Y, Zhou M, Zhang Y, Hong S, Wu J, Zhang C. Complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice. BMC Cardiovasc Disord 2024; 24:417. [PMID: 39127656 PMCID: PMC11316375 DOI: 10.1186/s12872-024-04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mutations in fibrillin 1 (FBN1) is the main cause of Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. Activation of the complement system plays a key role in the formation of thoracic and abdominal aortic aneurysms. However, the role of the complement system in MFS-associated aortic aneurysms remains unclear. In this study, we observed increased levels of complement C3a and C5a in the plasma of MFS patients and mouse, and the increased deposition of the activated complement system product C3b/iC3b was also observed in the elastic fiber rupture zone of 3-month-old MFS mice. The expression of C3a receptor (C3aR) was increased in MFS aortas, and recombinant C3a promoted the expression of cytokines in macrophages. The administration of a C3aR antagonist (C3aRA) attenuated the development of thoracic aortic aneurysms in MFS mice. The increased inflammation response and matrix metalloproteinases activities were also attenuated by C3aRA treatment in MFS mice. Therefore, these findings indicate that the complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Kexin Yao
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Congcong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
4
|
Liu C, Liu L. Identification and immunoassay of prognostic genes associated with the complement system in acute myeloid leukemia. J Formos Med Assoc 2024; 123:904-915. [PMID: 38341328 DOI: 10.1016/j.jfma.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Studies have associated the development of pulmonary leukemia with the activation of the complement system. However, the roles and mechanisms of complement system-related genes (CSRGs) in acute myeloid leukemia (AML) have not been investigated extensively. This study used The Cancer Genome Atlas (TCGA)-AML and GSE37642 datasets. Differentially expressed CSRGs (CSRDEGs) were identified by overlapping genes differentially expressed between the high and low CSRG score groups and key module genes identified in a weighted gene co-expression network analysis. Univariate and multivariate Cox analyses identified CSRG-related biomarkers, which were used to build a prognostic model. After gene set enrichment analysis (GSEA), immune-related and drug-sensitivity analyses were performed in the high- and low-risk groups. Four prognosis-related biomarkers were identified and used to develop a prognostic model: MEOX2, IGFBP5, CH25H, and RAB3B. The model's performance was verified in a test cohort (a subset of samples from the TCGA-AML dataset) and a validation cohort (GSE37642). The GSEA revealed that the high-risk group was mainly enriched for Golgi organization and cytokine-cytokine receptor interactions, and the low-risk group was mainly enriched in the hedgehog signaling pathway and spliceosome. Lastly, two immune cells were found to show differential infiltration between risk groups, which correlated with the risk scores. M1 macrophage infiltration was significantly positively correlated with RAB3B expression. Sensitivity to 36 drugs differed significantly between risk groups. This study screened four CSRG-related biomarkers (MEOX2, IGFBP5, CH25H, and RAB3B) to provide a basis for predicting AML prognosis.
Collapse
Affiliation(s)
- Chen Liu
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, ChongQing, 400016, China.
| | - Lin Liu
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, ChongQing, 400016, China.
| |
Collapse
|
5
|
Zhu Y, Ji M, Yuan L, Yuan J, Shen L. A risk prediction model for delayed bleeding after ESD for gastric precancerous lesions. Surg Endosc 2024; 38:3967-3975. [PMID: 38844732 DOI: 10.1007/s00464-024-10923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To investigate the risk factors for delayed postoperative bleeding after endoscopic submucosal dissection (ESD) in patients with gastric precancerous lesions and to construct a risk prediction model. METHODS This retrospective analysis included clinical data from patients with gastric precancerous lesions who underwent ESD at Wuhan University People's Hospital between November 2016 and June 2022. An XGBoost model was built to predict delayed bleeding after ESD using risk factors identified by univariable and multivariate logistic regression analysis. The model was evaluated using receiver operating characteristic curves (ROC), and SHapely Additive exPlanations (SHAP) analysis was used to interpret the model. RESULTS Seven factors were statistically associated with delayed postoperative bleeding in gastric precancerous lesions after ESD: age, low-grade intraepithelial neoplasia, hypertension, lesion size ≥ 40 mm, operative time ≥ 120 min, female, and nonuse of hemoclips. A risk prediction model was established. In the training cohort, the model achieved an AUC of 0.97 (0.96-0.98), a sensitivity of 0.90, a specificity of 0.94, and an F1 score of 0.91. In the validation cohort, the AUC was 0.94(0.90-0.98), with a sensitivity of 0.85, a specificity of 0.89, and an F1 score of 0.85. In the test cohort, the AUC was 0.94 (0.89-0.99), the sensitivity was 0.80, the specificity was 0.92, and the F1 score was 0.84, indicating strong predictive capability. CONCLUSION In this study, an XGBoost prediction model for assessing the risk of delayed postoperative bleeding after ESD in patients with gastric precancerous lesions was developed and validated. This model can be applied in clinical practice to effectively predict the risk of post-ESD bleeding for individual patients.
Collapse
Affiliation(s)
- Yiying Zhu
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, 430060, Hubei, China
| | - Mengyao Ji
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, 430060, Hubei, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Lei Yuan
- Department of Information Center, Wuhan University Renmin Hospital, Wuhan, Hubei, China
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jingping Yuan
- Department of Pathology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Lei Shen
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, 430060, Hubei, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan University Renmin Hospital, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Dong W, Tang Y, Lei M, Ma Z, Zhang X, Shen J, Hao J, Jiang W, Hu Z. The effect of perioperative sequential application of multiple doses of tranexamic acid on postoperative blood loss after PLIF: a prospective randomized controlled trial. Int J Surg 2024; 110:2122-2133. [PMID: 38215261 PMCID: PMC11020010 DOI: 10.1097/js9.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Tranexamic acid (TXA) has been utilized in spinal surgery to effectively reduce intraoperative blood loss (IBL) and allogeneic blood transfusion rates. However, the traditional TXA regimen might last the entire duration of hyperfibrinolysis caused by surgical trauma, resulting in its limited ability to reduce postoperative blood loss (PBL). Therefore, the aim of this study was to investigate the effectiveness of perioperative sequential administration of multiple doses of TXA in reducing PBL in patients who underwent posterior lumbar interbody fusion (PLIF). METHODS From October 2022 to June 2023, 231 patients who were diagnosed with lumbar degenerative disease and scheduled to undergo PLIF were prospectively enrolled in the present study. The patients were randomly divided into three groups. Moreover, all patients received an intravenous injection of TXA at a dose of 15 mg/kg 15 min before the surgical skin incision. Patients in Group A received a placebo of normal saline after surgery, while patients in Group B received three additional intravenous injections of TXA at a dose of 15 mg/kg every 24 h. Patients in Group C received three additional intravenous injections of TXA at a dose of 15 mg/kg every 5 h. The primary outcome measure was PBL. In addition, this study assessed total blood loss (TBL), IBL, routine blood parameters, liver and kidney function, coagulation parameters, fibrinolysis indexes, inflammatory indicators, drainage tube removal time (DRT), length of hospital stay (LOS), blood transfusion rate, and incidence of complications for all subjects. RESULTS The PBL, TBL, DRT, and LOS of Group B and Group C were significantly lower than those of Group A ( P <0.05). The level of D-dimer (D-D) in Group C was significantly lower than that in Group A on the first day after the operation ( P =0.002), and that in Group B was significantly lower than that in Group A on the third day after the operation ( P =0.003). The interleukin-6 levels between the three groups from 1 to 5 days after the operation were in the order of Group A > Group B > Group C. No serious complications were observed in any patient. The results of multiple stepwise linear regression analysis revealed that PBL was positively correlated with incision length, IBL, smoking history, history of hypertension, preoperative fibrinogen degradation product level, and blood transfusion. It was negatively correlated with preoperative levels of fibrinogen, red blood cells, blood urea nitrogen, and age. Compared to female patients, male patients had an increased risk of PBL. Finally, the incidence of PBL was predicted. CONCLUSIONS Sequential application of multiple doses of TXA during the perioperative period could safely and effectively reduce PBL and TBL, shorten DRT and LOS, reduce postoperative D-D generation, and reduce the postoperative inflammatory response. In addition, this study provided a novel prediction model for PBL in patients undergoing PLIF.
Collapse
Affiliation(s)
- Wei Dong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Yuchen Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Miao Lei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Zhaoxin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Xiaojun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University
- Department of Orthopedics Surgery, University-Town Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Dai Q, Zhao S, Li W, Liu K, Tao X, Liu C, Yao H, Mu F, Chen S, Li J, Wei P, Gao F, Xi M. Pharmacodynamics and Mechanism of Astragali Radix and Anemarrhenae Rhizoma in Treating Chronic Heart Failure by Inhibiting Complement Activation. Rejuvenation Res 2024; 27:61-74. [PMID: 38386515 DOI: 10.1089/rej.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Astragali radix (AR) and anemarrhenae rhizoma (AAR) are used clinically in Chinese medicine for the treatment of chronic heart failure (CHF), but the exact therapeutic mechanism is unclear. In this study, a total of 60 male C57BL/6 mice were divided into 5 groups, namely sham, model, AR, AAR, and AR-AAR. In the sham group, the chest was opened without ligation. In the other groups, the chest was opened and the transverse aorta was ligated to construct the transverse aortic constriction model. After 8 weeks of feeding, mice were given medicines by gavage for 4 weeks. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were detected by echocardiography. Heart weight index (HWI) and wheat germ agglutinin staining were used to evaluate cardiac hypertrophy. Hematoxylin-eosin staining was used to observe the pathological morphology of myocardial tissue. Masson staining was used to evaluate myocardial fibrosis. The content of serum brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay kit. The content of serum immunoglobulin G (IgG) was detected by immunoturbidimetry. The mechanism of AR-AAR in the treatment of CHF was explored by proteomics. Western blot was used to detect the protein expressions of complement component 1s (C1s), complement component 9 (C9), and terminal complement complex 5b-9 (C5b-9). The results show that AR-AAR inhibits the expression of complement proteins C1s, C9, and C5b-9 by inhibiting the production of IgG antibodies from B cell activation, which further inhibits the complement activation, attenuates myocardial fibrosis, reduces HWI and cardiomyocyte cross-sectional area, improves cardiomyocyte injury, reduces serum BNP release, elevates LVEF and LVFS, improves cardiac function, and exerts myocardial protection.
Collapse
Affiliation(s)
- Qi Dai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Shi Zhao
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Weihong Li
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- College of Life Sciences, Northwestern University, Xi'an, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Xingru Tao
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengzhao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Hong Yao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sha Chen
- YouYi Clinical Laboratories of Shaanxi, Xi'an, China
| | - Jing Li
- YouYi Clinical Laboratories of Shaanxi, Xi'an, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi'an, Xi'an, China
- National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
8
|
Piao C, Zhang WM, Deng J, Zhou M, Liu TT, Zheng S, Jia LX, Song WC, Liu Y, Du J. Activation of the alternative complement pathway modulates inflammation in thoracic aortic aneurysm/dissection. Am J Physiol Cell Physiol 2024; 326:C647-C658. [PMID: 38189133 DOI: 10.1152/ajpcell.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.
Collapse
Affiliation(s)
- Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Mei Zhang
- Department of Respiratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Chao Song
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
9
|
Salarian M, Ghim M, Toczek J, Han J, Weiss D, Spronck B, Ramachandra AB, Jung JJ, Kukreja G, Zhang J, Lakheram D, Kim SK, Humphrey JD, Sadeghi MM. Homeostatic, Non-Canonical Role of Macrophage Elastase in Vascular Integrity. Circ Res 2023; 132:432-448. [PMID: 36691905 PMCID: PMC9930896 DOI: 10.1161/circresaha.122.322096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Matrix metalloproteinase (MMP)-12 is highly expressed in abdominal aortic aneurysms and its elastolytic function has been implicated in the pathogenesis. This concept is challenged, however, by conflicting data. Here, we sought to revisit the role of MMP-12 in abdominal aortic aneurysm. METHODS Apoe-/- and Mmp12-/-/Apoe-/- mice were infused with Ang II (angiotensin). Expression of neutrophil extracellular traps (NETs) markers and complement component 3 (C3) levels were evaluated by immunostaining in aortas of surviving animals. Plasma complement components were analyzed by immunoassay. The effects of a complement inhibitor, IgG-FH1-5 (factor H-immunoglobulin G), and macrophage-specific MMP-12 deficiency on adverse aortic remodeling and death from rupture in Ang II-infused mice were determined. RESULTS Unexpectedly, death from aortic rupture was significantly higher in Mmp12-/-/Apoe-/- mice. This associated with more neutrophils, citrullinated histone H3 and neutrophil elastase, markers of NETs, and C3 levels in Mmp12-/- aortas. These findings were recapitulated in additional models of abdominal aortic aneurysm. MMP-12 deficiency also led to more pronounced elastic laminae degradation and reduced collagen integrity. Higher plasma C5a in Mmp12-/- mice pointed to complement overactivation. Treatment with IgG-FH1-5 decreased aortic wall NETosis and reduced adverse aortic remodeling and death from rupture in Ang II-infused Mmp12-/- mice. Finally, macrophage-specific MMP-12 deficiency recapitulated the effects of global MMP-12 deficiency on complement deposition and NETosis, as well as adverse aortic remodeling and death from rupture in Ang II-infused mice. CONCLUSIONS An MMP-12 deficiency/complement activation/NETosis pathway compromises aortic integrity, which predisposes to adverse vascular remodeling and abdominal aortic aneurysm rupture. Considering these new findings, the role of macrophage MMP-12 in vascular homeostasis demands re-evaluation of MMP-12 function in diverse settings.
Collapse
Affiliation(s)
- Mani Salarian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Mean Ghim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jinah Han
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Gunjan Kukreja
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | | | - Sung-Kwon Kim
- Alexion Pharmaceuticals, New Haven, CT (D.L., S.-K.K.)
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.)
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| |
Collapse
|
10
|
Stakhneva EM, Kashtanova EV, Polonskaya YV, Striukova EV, Shramko VS, Sadovski EV, Kurguzov AV, Murashov IS, Chernyavskii AM, Ragino YI. Study of associations of blood proteins with development of unstable atherosclerotic plaques in coronary arteries by quantitative proteomics. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-121-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim. To study the associations of blood proteins with the presence of unstable atherosclerotic plaques in the arteries in patients with coronary artery disease using the quantitative proteomic analysis.Materials and methods. The study included patients with coronary artery disease (n = 40); the average age of patients was 58 ± 7 years. Material for the study was blood serum. Protein concentrations in serum samples were determined using the PeptiQuant Plus Proteomics Kit (Cambridge Isotope Laboratories, USA). Protein fractions were identified using the liquid chromatograph and tandem mass spectrometer Q-TRAP 6500.Results. Mass spectrometry revealed an increased concentration of proteins, such as fibrinogen, fibulin-1, and complement factor H, in the serum samples of patients with unstable atherosclerotic plaques. It took place with a simultaneous decrease in the levels of α 2-antiplasmin, heparin cofactor II, coagulation factor XII, plasminogen, prothrombin, vitronectin, complement proteins (C1, C3, C7, C9), and complement factor B. The differences were considered significant at p < 0.05. It was revealed that the presence of unstable atherosclerotic plaques was associated with the level of fibulin-1 (Exp(B) = 1.008; р = 0.05), plasminogen (Exp(В) = 0.995; р = 0.027), and coagulation factor X (Exp(В) = 0.973; р = 0.037).Conclusion. An increased concentration of fibulin-1 can be considered as a potential biomarker of unstable atherosclerotic plaque development in coronary artery disease. The possibility of using the studied proteins as biomarkers of unstable atherosclerotic plaques requires further studies on their potential role in the development of this disease.
Collapse
Affiliation(s)
- E. M. Stakhneva
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E. V. Kashtanova
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - Ya. V. Polonskaya
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E. V. Striukova
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - V. S. Shramko
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E. V. Sadovski
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | | | | | | | - Yu. I. Ragino
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
11
|
Les inhibiteurs du complément : une vue d’ensemble. Rev Med Interne 2022; 43:703-712. [DOI: 10.1016/j.revmed.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
|
12
|
Hibender S, Li S, Postma AV, Hoogeland ME, Klaver D, Pouw RB, Niessen HW, Driessen AHG, Koolbergen DR, de Vries CJM, Baars MJH, Houweling AC, Krijnen PA, de Waard V. No prominent role for complement C1-esterase inhibitor in Marfan syndrome mice. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:40-49. [PMID: 36279189 PMCID: PMC9782404 DOI: 10.1530/vb-22-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder causing aortic aneurysm formation. Currently, only prophylactic aortic surgery and blood pressure-lowering drugs are available to reduce the risk of aortic rupture. Upon whole genome sequencing of a Marfan family, we identified a complement gene C1R variant (p.Ser152Leu), which is associated with severe aortic patients. Therefore, we assessed the role of complement activation in MFS aortic tissue. Expression of various complement genes and proteins was detected in human and murine MFS aneurysm tissue, which prompted us to study complement inhibition in MFS mice. Treatment of the Fbn1C1041G/+ MFS mice with human plasma-derived C1-esterase inhibitor Cetor® resulted in reduced complement deposition, decreased macrophage influx in the aorta, and lower circulating TNFα levels. However, in line with previous anti-inflammatory treatments, complement inhibition did not change the aortic dilatation rate in this MFS mouse model. Thus, while complement factors/component 3 activation were detected in human/murine MFS aorta, Cetor® had no effect on aortic dilatation in MFS mice, indicating that complement inhibition is not a suitable treatment strategy in MFS.
Collapse
Affiliation(s)
- Stijntje Hibender
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Siyu Li
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Alex V Postma
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Myrthe E Hoogeland
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
| | - Denise Klaver
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
| | - Richard B Pouw
- Sanquin Research, Department of Immunopathology, Plesmanlaan, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Landsteiner Laboratory, Meibergdreef, Amsterdam, The Netherlands
| | - Hans W Niessen
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef, Amsterdam, The Netherlands
| | - Antoine HG Driessen
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Cardiothoracic Surgery, Meibergdreef, Amsterdam, The Netherlands
| | - David R Koolbergen
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Cardiothoracic Surgery, Meibergdreef, Amsterdam, The Netherlands
| | - Carlie JM de Vries
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Marieke JH Baars
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Paul A Krijnen
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef, Amsterdam, The Netherlands
| | - Vivian de Waard
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Stakhneva EM, Kashtanova EV, Polonskaya YV, Striukova EV, Shramko VS, Sadovski EV, Kurguzov AV, Murashov IS, Chernyavskii AM, Ragino YI. The Search for Associations of Serum Proteins with the Presence of Unstable Atherosclerotic Plaque in Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms232112795. [PMID: 36361589 PMCID: PMC9654322 DOI: 10.3390/ijms232112795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
To study the associations of blood proteins with the presence of unstable atherosclerotic plaques in the arteries of patients with coronary atherosclerosis using quantitative proteomics. The studies involved two groups of men with coronary atherosclerosis (group 1 (St) had only stable atherosclerotic plaques; group 2 (Ns) had only unstable atherosclerotic plaques, according to histological analysis of tissue samples); the average age of patients was 57.95 ± 7.22. Protein concentrations in serum samples were determined using the PeptiQuant Plus Proteomics Kit. The identification of protein fractions was carried out by monitoring multiple reactions on a Q-TRAP 6500 mass spectrometer combined with a liquid chromatograph. Mass spectrometric identification revealed in serum samples from patients with unstable atherosclerotic plaques a reduced concentration of proteins in the blood: α-1-acid glycoprotein, α-1-antichymotrypsin, α-1-antitrypsin, ceruloplasmin, hemopexin, haptoglobin, apolipoprotein B-100, apolipoprotein L1, afamin and complement component (C3, C7, C9). Moreover, at the same time a high concentration complements factor H and attractin. The differences were considered significant at p < 0.05. It was found that the instability of atherosclerotic plaques is associated with the concentration of proteins: afamin, attractin, components of the complement system, hemopexin and haptoglobin. The data of our study showed the association of some blood proteins with the instability of atherosclerotic plaques in coronary atherosclerosis. Their potential role in the development of this disease and the possibility of using the studied proteins as biomarkers requires further research.
Collapse
Affiliation(s)
- Ekaterina Mikhailovna Stakhneva
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-923-113-7712
| | - Elena Vladimirovna Kashtanova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Yana Vladimirovna Polonskaya
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Eugeniia Vitalievna Striukova
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Viktoriya Sergeevna Shramko
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Evgeny Viktorovich Sadovski
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Alexey Vitalievich Kurguzov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Sergeevich Murashov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Alexander Mikhailovich Chernyavskii
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Yuliya Igorevna Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia
| |
Collapse
|
15
|
He B, Zhan Y, Cai C, Yu D, Wei Q, Quan L, Huang D, Liu Y, Li Z, Liu L, Pan X. Common molecular mechanism and immune infiltration patterns of thoracic and abdominal aortic aneurysms. Front Immunol 2022; 13:1030976. [PMID: 36341412 PMCID: PMC9633949 DOI: 10.3389/fimmu.2022.1030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND Aortic disease (aortic aneurysm (AA), dissection (AD)) is a serious threat to patient lives. Little is currently known about the molecular mechanisms and immune infiltration patterns underlying the development and progression of thoracic and abdominal aortic aneurysms (TAA and AAA), warranting further research. METHODS We downloaded AA (includes TAA and AAA) datasets from the GEO database. The potential biomarkers in TAA and AAA were identified using differential expression analysis and two machine-learning algorithms. The discrimination power of the potential biomarkers and their diagnostic accuracy was assessed in validation datasets using ROC curve analysis. Then, GSEA, KEGG, GO and DO analyses were conducted. Furthermore, two immuno-infiltration analysis algorithms were utilized to analyze the common immune infiltration patterns in TAA and AAA. Finally, a retrospective clinical study was performed on 78 patients with AD, and the serum from 6 patients was used for whole exome sequencing (WES). RESULTS The intersection of TAA and AAA datasets yielded 82 differentially expressed genes (DEGs). Subsequently, the biomarkers (CX3CR1 and HBB) were acquired by screening using two machine-learning algorithms and ROC curve analysis. The functional analysis of DEGs showed significant enrichment in inflammation and regulation of angiogenic pathways. Immune cell infiltration analysis revealed that adaptive and innate immune responses were closely linked to AA progression. However, neither CX3CR1 nor HBB was associated with B cell-mediated humoral immunity. CX3CR1 expression was correlated with macrophages and HBB with eosinophils. Finally, our retrospective clinical study revealed a hyperinflammatory environment in aortic disease. The WES study identified disease biomarkers and gene variants, some of which may be druggable. CONCLUSION The genes CX3CR1 and HBB can be used as common biomarkers in TAA and AAA. Large numbers of innate and adaptive immune cells are infiltrated in AA and are closely linked to the development and progression of AA. Moreover, CX3CR1 and HBB are highly correlated with the infiltration of immune cells and may be potential targets of immunotherapeutic drugs. Gene mutation research is a promising direction for the treatment of aortic disease.
Collapse
Affiliation(s)
- Bin He
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Ya Zhan
- The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, China
| | - Chunyu Cai
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Dianyou Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Qinjiang Wei
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Liping Quan
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Da Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhile Li
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- College of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Xingshou Pan
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
16
|
Ren J, Wu J, Tang X, Chen S, Wang W, Lv Y, Wu L, Yang D, Zheng Y. Ageing- and AAA-associated differentially expressed proteins identified by proteomic analysis in mice. PeerJ 2022; 10:e13129. [PMID: 35637715 PMCID: PMC9147329 DOI: 10.7717/peerj.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease of high prevalence in old age, and its incidence gradually increases with increasing age. There were few studies about differences in the circulatory system in the incidence of AAA, mainly because younger patients with AAA are fewer and more comorbid nonatherosclerotic factors. Method We induced AAA in ApoE-/- male mice of different ages (10 or 24 weeks) and obtained plasma samples. After the top 14 most abundant proteins were detected, the plasma was analyzed by a proteomic study using the data-dependent acquisition (DDA) technique. The proteomic results were compared between different groups to identify age-related differentially expressed proteins (DEPs) in the circulation that contribute to AAA formation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed by R software. The top 10 proteins were determined with the MCC method of Cytoscape, and transcription factor (TF) prediction of the DEPs was performed with iRegulon (Cytoscape). Results The aortic diameter fold increase was higher in the aged group than in the youth group (p < 0.01). Overall, 92 DEPs related to age and involved in AAA formation were identified. GO analysis of the DEPs showed enrichment of the terms wounding healing, response to oxidative stress, regulation of body fluid levels, ribose phosphate metabolic process, and blood coagulation. The KEGG pathway analysis showed enrichment of the terms platelet activation, complement and coagulation cascades, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and ECM-receptor interaction. The top 10 proteins were Tpi1, Eno1, Prdx1, Ppia, Prdx6, Vwf, Prdx2, Fga, Fgg, and Fgb, and the predicted TFs of these proteins were Nfe2, Srf, Epas1, Tbp, and Hoxc8. Conclusion The identified proteins related to age and involved in AAA formation were associated with the response to oxidative stress, coagulation and platelet activation, and complement and inflammation pathways, and the TFs of these proteins might be potential targets for AAA treatments. Further experimental and biological studies are needed to elucidate the role of these age-associated and AAA-related proteins in the progression of AAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Yao Z, Zhang B, Niu G, Yan Z, Tong X, Zou Y, Yang M. Subunits of C1Q Are Associated With the Progression of Intermittent Claudication to Chronic Limb-Threatening Ischemia. Front Cardiovasc Med 2022; 9:864461. [PMID: 35433866 PMCID: PMC9010542 DOI: 10.3389/fcvm.2022.864461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background The pathophysiological mechanisms of intermittent claudication (IC) progression to chronic limb-threatening ischemia (CLTI) are still vague and which of patients with IC will become CLTI are unknown. This study aimed to investigate the key molecules and pathways mediating IC progression to CLTI by a quantitative bioinformatic analysis of a public RNA-sequencing database of patients with peripheral artery disease (PAD) to screen biomarkers discriminating IC and CLTI. Methods The GSE120642 dataset was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between IC and CLTI tissues were analyzed using the “edgeR” packages of R. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to explore the functions of DEGs. Protein–protein interaction (PPI) networks were established by the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Hub genes were selected by plugin cytoHubba. Gene set enrichment analysis was performed and the receiver operating characteristic curves were used to evaluate the predictive values of hub genes. Results A total of 137 upregulated and 21 downregulated DEGs were identified. Functional enrichment clustering analysis revealed a significant association between DEGs and the complement and coagulation cascade pathways. The PPI network was constructed with 155 nodes and 105 interactions. The most significantly enriched pathway was complement activation. C1QB, C1QA, C1QC, C4A, and C1R were identified and validated as hub genes due to the high degree of connectivity. The area under the curve values for the five hub genes were greater than 0.95, indicating high accuracy for discriminating IC and CLTI. Conclusion The complement activation pathway is associated with IC progression to CLTI. C1QB, C1QA, C1QC, C4A, and C1R might serve as potential early biomarkers of CLTI.
Collapse
|
18
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
19
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|
20
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
21
|
Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS, Bonzon-Kulichenko E, Martínez-López D, Roldán-Montero R, Escolà-Gil JC, Michel JB, Blanco-Colio LM, Vázquez J, Suárez A, Martín-Ventura JL. Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm. Free Radic Biol Med 2021; 174:171-181. [PMID: 34364980 DOI: 10.1016/j.freeradbiomed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elena Bonzon-Kulichenko
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Joan-Carles Escolà-Gil
- Institut de Investigació Biomédica Sant Pau, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | | | - Luis Miguel Blanco-Colio
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Suárez
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Martín-Ventura
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
22
|
Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines 2021; 9:biomedicines9080915. [PMID: 34440119 PMCID: PMC8389651 DOI: 10.3390/biomedicines9080915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that has a prominent inflammatory component. Currently, atherosclerosis is regarded as an active autoimmune process that involves both innate and adaptive immune pathways. One of the drivers of this process is the presence of modified low-density lipoprotein (LDL). For instance, lipoprotein oxidation leads to the formation of oxidation-specific epitopes (OSE) that can be recognized by the immune cells. Macrophage response to OSEs is recognized as a key trigger for initiation and a stimulator of progression of the inflammatory process in the arteries. At the same time, the role of oxidized LDL components is not limited to pro-inflammatory stimulation, but includes immunoregulatory effects that can have protective functions. It is, therefore, important to better understand the complexity of oxidized LDL effects in atherosclerosis in order to develop new therapeutic approaches to correct the inflammatory and metabolic imbalance associated with this disorder. In this review, we discuss the process of oxidized LDL formation, mechanisms of OSE recognition by macrophages and the role of these processes in atherosclerosis.
Collapse
|
23
|
Cross-Talk of Atherosclerosis and Ischemic Stroke: Dramatic Role of Neutrophils. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inappropriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Understanding AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke. Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were enrolled. Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigorous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade. The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi proteins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages) are beneficial in the induction of inflammatory microenvironment. Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the prevention of AS and IS.
Collapse
|
24
|
Lopez‐Sanz L, Bernal S, Jimenez‐Castilla L, Prieto I, La Manna S, Gomez‐Lopez S, Blanco‐Colio LM, Egido J, Martin‐Ventura JL, Gomez‐Guerrero C. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med 2021; 11:e463. [PMID: 34323424 PMCID: PMC8255062 DOI: 10.1002/ctm2.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), a degenerative vascular pathology characterized by permanent dilation of the aorta, is considered a chronic inflammatory disease involving innate/adaptive immunity. However, the functional role of antibody-dependent immune response against antigens present in the damaged vessel remains unresolved. We hypothesized that engagement of immunoglobulin G (IgG) Fc receptors (FcγR) by immune complexes (IC) in the aortic wall contributes to AAA development. We therefore evaluated FcγR expression in AAA lesions and analysed whether inhibition of FcγR signaling molecules (γ-chain and Syk kinase) influences AAA formation in mice. METHODS FcγR gene/protein expression was assessed in human and mouse AAA tissues. Experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and γ-chain knockout (γKO) mice (devoid of activating FcγR) in combination with macrophage adoptive transfer or Syk inhibitor treatment. To verify the mechanisms of FcγR in vitro, vascular smooth muscle cells (VSMC) and macrophages were stimulated with IgG IC. RESULTS FcγR overexpression was detected in adventitia and media layers of human and mouse AAA. Elastase-perfused γKO mice exhibited a decrease in AAA incidence, aortic dilation, elastin degradation, and VSMC loss. This was associated with (1) reduced infiltrating leukocytes and immune deposits in AAA lesions, (2) inflammatory genes and metalloproteinases downregulation, (3) redox balance restoration, and (4) converse phenotype of anti-inflammatory macrophage M2 and contractile VSMC. Adoptive transfer of FcγR-expressing macrophages aggravated aneurysm in γKO mice. In vitro, FcγR deficiency attenuated inflammatory gene expression, oxidative stress, and phenotypic switch triggered by IC. Additionally, Syk inhibition prevented IC-mediated cell responses, reduced inflammation, and mitigated AAA formation. CONCLUSION Our findings provide insight into the role and mechanisms mediating IgG-FcγR-associated inflammation and aortic wall injury in AAA, which might represent therapeutic targets against AAA disease.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/adverse effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Disease Models, Animal
- Humans
- Immunoglobulin gamma-Chains/genetics
- Immunoglobulin gamma-Chains/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Oxidative Stress
- Pancreatic Elastase/adverse effects
- Pyrimidines/therapeutic use
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
Collapse
Affiliation(s)
- Laura Lopez‐Sanz
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Luna Jimenez‐Castilla
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Ignacio Prieto
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Sara La Manna
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
| | | | - Luis Miguel Blanco‐Colio
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Jose Luis Martin‐Ventura
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Carmen Gomez‐Guerrero
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| |
Collapse
|
25
|
Garcia-Arguinzonis M, Diaz-Riera E, Peña E, Escate R, Juan-Babot O, Mata P, Badimon L, Padro T. Alternative C3 Complement System: Lipids and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105122. [PMID: 34066088 PMCID: PMC8151937 DOI: 10.3390/ijms22105122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs). By mass spectrometry and differential proteomics, we found the extracellular matrix (ECM) of human aortas to be enriched in active components of the C3 complement system, with a significantly different proteomic signature in AT segments. Thus, C3 products were more abundant in AT-ECM than in macroscopically normal segments. Furthermore, circulating C3 levels were significantly elevated in FH patients with subclinical coronary AT, evidenced by computed tomographic angiography. However, no correlation was identified between circulating C3 levels and the increase in plaque burden, indicating a local regulation of the C3 in AT arteries. In cell culture studies of human VSMCs, we evidenced the expression of C3, C3aR (anaphylatoxin receptor) and the integrin αMβ2 receptor for C3b/iC3b (RT-PCR and Western blot). C3mRNA was up-regulated in lipid-loaded human VSMCs, and C3 protein significantly increased in cell culture supernatants, indicating that the C3 products in the AT-ECM have a local vessel-wall niche. Interestingly, C3a and iC3b (C3 active fragments) have functional effects on VSMCs, significantly reversing the inhibition of VSMC migration induced by aggregated LDL and stimulating cell spreading, organization of F-actin stress fibers and attachment during the adhesion of lipid-loaded human VSMCs. This study, by using a systems biology approach, identified molecular processes involving the C3 complement system in vascular remodeling and in the progression of advanced human atherosclerotic lesions.
Collapse
MESH Headings
- Adult
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Adhesion
- Cells, Cultured
- Complement C3/metabolism
- Female
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Hyperlipoproteinemia Type II/pathology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteome/analysis
- Proteome/metabolism
- Vascular Remodeling
- Wound Healing
- Young Adult
Collapse
Affiliation(s)
- Maisa Garcia-Arguinzonis
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Elisa Diaz-Riera
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Juan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, 28010 Madrid, Spain;
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain; (M.G.-A.); (E.D.-R.); (E.P.); (R.E.); (O.J.-B.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935-565-886; Fax: +34-935-565-559
| |
Collapse
|
26
|
Deng XS, Meng X, Fullerton D, Stone M, Jaggers J. Complement Upregulates Runx-2 to Induce Profibrogenic Change in Aortic Valve Interstitial Cells. Ann Thorac Surg 2021; 112:1962-1972. [PMID: 33545156 DOI: 10.1016/j.athoracsur.2020.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Calcium accumulation and fibrotic activities are principal mechanisms for calcific aortic valve disease (CAVD). Active complement products are observed in human stenotic aortic valves. Runt-related transcription factor 2 (Runx-2) is involved in tissue calcification. We hypothesized that complement upregulates Runx-2 to induce profibrogenic change in human aortic valve interstitial cells (AVICs). METHODS AVICs were isolated from 6 normal and 6 CAVD donor valves. Cells were treated with complement cocktails. Profibrogenic activities and associated signaling molecules were analyzed by Western blot assay and collagen staining. RESULTS Complement time and dose dependently enhanced profibrogenic activities in AVICs, and complement exposure also induced total collagen deposition in AVICs. Complement-induced profibrogenic responses were associated with increased Runx-2 expression and phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Genetic silencing of Runx-2 decreased both matrix metalloproteinase 9 (MMP-9) and collagen I levels. Pharmacological inhibition of ERK1/2 decreased complement-mediated MMP-9, collagen I, and Runx-2 expression as well as total collagen deposition in human AVICs. Further, treating AVICs with heat-deactivated complement resulted in reduced MMP-9, collagen I, and Runx-2 levels compared with active complement treatment. CONCLUSIONS Complement induced profibrogenic activities in AVICs by activation of ERK1/2-mediated Runx-2 signaling pathways. This study demonstrates a potential role for complement-mediated CAVD pathogenesis, establishing a possible therapeutic target to limit CAVD progression.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew Stone
- Cardiothoracic Surgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - James Jaggers
- Cardiothoracic Surgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado.
| |
Collapse
|
27
|
Zagrapan B, Eilenberg W, Scheuba A, Klopf J, Brandau A, Story J, Dosch K, Hayden H, Domenig CM, Fuchs L, Schernthaner R, Ristl R, Huk I, Neumayer C, Brostjan C. Complement Factor C5a Is Increased in Blood of Patients with Abdominal Aortic Aneurysm and Has Prognostic Potential for Aneurysm Growth. J Cardiovasc Transl Res 2020; 14:761-769. [PMID: 33332020 PMCID: PMC8397625 DOI: 10.1007/s12265-020-10086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
Abstract
In this observational case-control study, circulating levels of complement factors C3a and C5a and leukotriene B4 (LTB4) were analysed in abdominal aortic aneurysm (AAA) patients regarding their association with diagnosis and prognosis. Serum C5a was significantly raised in AAA patients compared to healthy controls—median 84.5 ng/ml (IQR = 37.5 ng/ml) vs. 67.7 ng/ml (IQR = 26.2 ng/ml), p = 0.007—but was not elevated in patients with athero-occlusive disease. Serum C5a levels correlated significantly with the increase in maximum AAA diameter over the following 6 months (r = 0.319, p = 0.021). The median growth in the lowest quartile of C5a (< 70 ng/ml) was 50% less compared to the highest C5a quartile (> 101 ng/ml): 1.0 mm/6 months (IQR = 0.8 mm) vs. 2.0 mm/6 months (IQR = 1.5 mm), p = 0.014. A log-linear mixed model predicted AAA expansion based on current diameter and C5a level. To our knowledge, this is the first study linking complement activation, in particular C5a serum level, with AAA progression.
Collapse
Affiliation(s)
- Branislav Zagrapan
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Wolf Eilenberg
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andreas Scheuba
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Johannes Klopf
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Annika Brandau
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Julia Story
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Katharina Dosch
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Hubert Hayden
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christoph M Domenig
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lukas Fuchs
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Rüdiger Schernthaner
- Department of Biomedical Imaging and Image Guided Therapy: Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ihor Huk
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christoph Neumayer
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery: Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| |
Collapse
|
28
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
29
|
Yang X, Jia J, Yu Z, Duanmu Z, He H, Chen S, Qu C. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit. BMC Cardiovasc Disord 2020; 20:133. [PMID: 32169038 PMCID: PMC7071770 DOI: 10.1186/s12872-020-01391-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have indicated that the JAK/STAT signaling pathway is involved in modulating arterial adventitia inflammation response. In this study, we designed experiments to further investigate the effect of JAK2/STAT3/SOCS3 signaling in rabbit atherosclerosis process. Methods Atherosclerosis was induced in the abdominal arteries of rabbits by balloon injury of the aorta supplemented by the atherogenic diet. Simultaneously, in the process of atherosclerosis, animals underwent either ruxolitinib treatment or not for 12 weeks. At the end of the experimental period, all rabbits were sacrificed. The plaque areas in abdominal artery, the lipid burden of plaque and the calcium burden of plaque were detected by H&E staining, Oil Red O staining and Alizarin Red staining, respectively. In addition, rabbit plasma lipids and inflammatory cytokines were measured by biochemical test kits or ELISA kits. Finally, the expression and phosphorylation levels of JAK2/STAT3/SOCS3 pathway-related proteins were detected by RT-qPCR, western blot and immunohistochemistry assays. Results H&E staining and CT scan analysis showed that rabbit atherosclerosis model was constructed successfully. Ruxolitinib, an inhibitor of the Janus kinase 2 (JAK2), substantially reduced the area of atherosclerotic plaques in rabbits treated with high fat diet and balloon injury of the aorta. Moreover, ruxolitinib significantly decreased IL-6, IL-1β, IFN-γ and TNF-α, but increased IL-10 and IL-17 levels in plasma of atherosclerotic rabbits. Additionally, ruxolitinib reduced plasma TC, TG and LDL-C contents and AIP value, while enhanced HDL-C level in atherosclerotic rabbits. Furthermore, we found that JAK2 and STAT3 phosphorylation were up-regulated in rabbits with atherosclerosis when compared with those of the control group, followed by the expression of SOCS3 was also increased due to the activation of JAK2 and STAT3. Interestingly, ruxolitinib could inactivate JAK2 and STAT3 pathway and decrease SOCS3 expression. Conclusion Taken together, the inhibition of JAK2/STAT3/SOCS3 signaling pathway may be a novel method for the clinical treatment of artery atherosclerosis.
Collapse
Affiliation(s)
- Xilan Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jian Jia
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen Yu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zheng Duanmu
- Beijing Information Science & Technology University, Beijing, 100192, China
| | - Huiwei He
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Sen Chen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Chen Qu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
30
|
Huo J, Lu Y, Xia L, Chen D. Structural characterization and anticomplement activities of three acidic homogeneous polysaccharides from Artemisia annua. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112281. [PMID: 31600559 DOI: 10.1016/j.jep.2019.112281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. is a heat-clearing Chinese medicine and well-known for its antimalarial constituent, artemisinin. It has gained increasing attention for its anti-inflammatory and immunoregulatory activities. Interestingly, the crude polysaccahrides of A. annua exhibited potent anticomplement activity. This study was to isolate and characterize its anticomplement homogeneous polysaccharides from A. annua, and reveal the relationship between structures and anticomplement activities of the isolated polysaccharides. MATERIALS AND METHODS Water-soluble crude polysaccharides from the aerial parts of A. annua were extracted and fractionated by DEAE-cellulose and Sephacryl S-300 gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, methylation and NMR analysis were performed to characterize the structures of homogeneous polysaccharides. Their anticomplement activities and targeting components in the complement activation cascade were evaluated by hemolytic assays. RESULTS Three homogeneous polysaccharides (AAP01-1, AAP01-2 and AAP01-3) were obtained from A. annua. AAP01-1 was composed of seven monosaccharides, including mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose. AAP01-2 and AAP01-3 had similar monosaccharides with AAP01-1, except the absence of glucuronic acid. They were all branched acidic heteropolysaccharides with different contents of galacturonic acid (8%, 28% and 15% for AAP01-1, AAP01-2 and AAP01-3, respectively). AAP01-2 showed potent anticomplement activity with CH50 value of 0.360 ± 0.020 mg/mL through the classical pathway and AP50 value of 0.547 ± 0.033 mg/mL through the alternative pathway. AAP01-3 exhibited slightly weaker activity (CH50: 1.120 ± 0.052 mg/mL, AP50: 1.283 ± 0.061 mg/mL), while AAP01-1 was inactive. Moreover, AAP01-2 acted on C1q, C3, C4, C5 and C9 components and AAP01-3 interacted with C3, C4 and C5 components in the activation cascade of complement system. CONCLUSION These results indicated that the relatively high contents of galacturonic acid were important for anticomplement activities of the polysaccharides from A. annua. The anticomplement polysaccharides are another kind of bioactive constituents conferring heat-clearing effects of A. annua.
Collapse
Affiliation(s)
- Jiangyan Huo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Long Xia
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Daofeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|