1
|
Yuxi-Shen, Shunyi-Fan, Shuyun-Li, Andong-Wang, Xuelian-Xiang, Yamei-Huang, Haili-Zhang, Min-Cui, Jing-Xia, Yong-Huang. Mapping and functional analysis of S1 subunit glycosylation of avian infectious bronchitis virus. Int J Biol Macromol 2024; 283:137050. [PMID: 39510483 DOI: 10.1016/j.ijbiomac.2024.137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Glycosylation of the S1 subunit is a critical post-translational modification in coronavirus antigen proteins and plays a key role in vaccine development. The biological role of highly mutable glycosylation sites in virus evolution, however, remains underexplored. In this study, we identified nine glycosylation sites with high mutation rates on the S1 subunit of Avian Infectious Bronchitis Virus (IBV) through evolutionary analysis. Functional analysis of mutant strains revealed that specific mutations, particularly at position 76 (N → V), significantly enhance the strain's protective efficacy and limit viral replication. These findings provide important insights into the role of glycosylation in viral evolution and offer valuable guidance for the development of more effective IBV vaccines.
Collapse
Affiliation(s)
- Yuxi-Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Shunyi-Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Shuyun-Li
- Meishan Vocational & Technical College, Meishan, Sichuan 620010, PR China
| | - Andong-Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xuelian-Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yamei-Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Haili-Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Min-Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jing-Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China.
| | - Yong-Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
2
|
Banoun H. Analysis of Beyfortus ® (Nirsevimab) Immunization Campaign: Effectiveness, Biases, and ADE Risks in RSV Prevention. Curr Issues Mol Biol 2024; 46:10369-10395. [PMID: 39329969 PMCID: PMC11431526 DOI: 10.3390/cimb46090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Respiratory infections with respiratory syncytial virus (RSV) account for an important part of hospital admissions for acute respiratory infections. Nirsevimab has been developed to reduce the hospital burden of RSV infections. Compared with the product previously used, it has a stronger binding capacity to RSV F protein and a high affinity for FcRn (neonatal receptor for the Fc fragment of IgG), which extends its lifespan. Nirsevimab has been shown to be highly effective in reducing hospitalization rates of RSV infections but a large or unknown number of treated subjects have been excluded in clinical and post-marketing studies. However, analysis of these studies cannot exclude that, in rare cases, nirsevimab facilitates and worsens RSV infection (or other respiratory infections). This could be attributable to antibody-dependent enhancement (ADE) which has been observed with RSV F protein antibodies in inactivated vaccine trials. This risk has been incompletely assessed in pre-clinical and clinical trials (incomplete exploration of nirsevimab effector functions and pharmacokinetics). ADE by disruption of the immune system (not studied and due to FcRn binding) could explain why there is no reduction in all-cause hospital admissions in treated age groups. Given the high price of nirsevimab, the cost-effectiveness of mass immunization campaigns may therefore be debated from an economic as well as a scientific point of view.
Collapse
|
3
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
4
|
Tang N, Lim JT, Dickens B, Chiew C, Ng LC, Chia PY, Leo YS, Lye DC, Tan KB, Wee LE. Effects of Recent Prior Dengue Infection on Risk and Severity of Subsequent SARS-CoV-2 Infection: A Retrospective Cohort Study. Open Forum Infect Dis 2024; 11:ofae397. [PMID: 39091642 PMCID: PMC11293429 DOI: 10.1093/ofid/ofae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Background and Aims Elucidating whether prior dengue potentially confers cross-protection against COVID-19 is of public health importance in tropical countries at risk of overlapping dengue and COVID-19 epidemics. However, studies to date have yielded conflicting results. We aimed to assess effects of recent prior dengue infection on risk and severity of subsequent SARS-CoV-2 infection among adult Singaporeans. Methods A retrospective cohort study including all adult Singaporeans aged ≥18 years was conducted from 1 July 2021 through 31 October 2022, when a dengue outbreak driven by the DENV3 serotype preceded subsequent waves of SARS-CoV-2 Delta/Omicron transmission in Singapore. SARS-CoV-2 and dengue infection status were classified using national registries. Cox regression models adjusted for demographics, COVID-19 vaccination status, comorbidity, and socioeconomic-status were used to assess risks and severity (hospitalization, severe illness) of SARS-CoV-2 infection occurring after previous recorded dengue infection. Results A total of 3 366 399 individuals were included, contributing 1 399 696 530 person-days of observation. A total of 13 434 dengue infections and 1 253 520 subsequent SARS-CoV-2 infections were recorded; with an average of 94.7 days (standard deviation = 83.8) between dengue infection and SARS-CoV-2 infection. Preceding dengue infection was associated with a modest increase in risk of subsequent SARS-CoV-2 infection (adjusted hazards ratio [aHR] = 1.13; 95% confidence interval [CI], 1.08-1.17), and significantly elevated risk of subsequent COVID-19 hospitalization (aHR = 3.25; 95% CI, 2.78-3.82) and severe COVID-19 (aHR = 3.39; 95% CI, 2.29-5.03). Conclusions Increased risk of SARS-CoV-2 infection and adverse COVID-19 outcomes were observed following preceding dengue infection in a national population-based cohort of adult Singaporeans. This observation is of significance in tropical countries with overlapping dengue and COVID-19 outbreaks.
Collapse
Affiliation(s)
- Nicole Tang
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jue Tao Lim
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Borame Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Calvin Chiew
- National Centre for Infectious Diseases, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
| | - Lee Ching Ng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kelvin Bryan Tan
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Liang En Wee
- National Centre for Infectious Diseases, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Lechuga GC, Temerozo JR, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Bou-Habib DC, Morel CM, Provance DW, Souza TML, De-Simone SG. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int J Mol Sci 2024; 25:8180. [PMID: 39125749 PMCID: PMC11311977 DOI: 10.3390/ijms25158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Thiago M. L. Souza
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
6
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Antonyan T, Chilingaryan G, Zagorski K, Ghazaryan M, Hovakimyan A, Davtyan H, Petrushina I, King O, Kniazev R, Petrovsky N, Ghochikyan A. MultiTEP-Based Vaccines Targeting SARS-CoV-2 Spike Protein IgG Epitopes Elicit Robust Binding Antibody Titers with Limited Virus-Neutralizing Activity. Pathogens 2024; 13:520. [PMID: 38921817 PMCID: PMC11206316 DOI: 10.3390/pathogens13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates. We prepared and characterized 18 vaccines incorporating small peptide fragments from SARS-CoV-2 Spike protein fused with the MultiTEP sequence using overlapping PCR. Wild-type mice were immunized intramuscularly with the immunogen formulated in AdvaxCpG adjuvant. Serum antibodies were detected by ELISA, surrogate neutralization, and pseudovirus neutralization assays. Finally, the most promising vaccine candidate was administered to three non-human primates. All vaccines generated high titers of spike-binding IgG antibodies. However, only three vaccines generated antibodies that blocked RBD binding to the ACE2 receptor in a surrogate virus neutralization assay. However, none of the vaccines induced antibodies able to neutralize pseudotype viruses, including after the administration of the lead vaccine to NHPs. MultiTEP-based COVID-19 vaccines elicited robust, IgG-binding responses against the Spike protein in mice and non-human primates, but these antibodies were not neutralizing, underscoring the need to refine this approach further.
Collapse
Affiliation(s)
- Tatevik Antonyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Garri Chilingaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Karen Zagorski
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Manush Ghazaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Armine Hovakimyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Hayk Davtyan
- Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Olga King
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Roman Kniazev
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | | | - Anahit Ghochikyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| |
Collapse
|
8
|
Thomas S, Smatti MK, Alsulaiti H, Zedan HT, Eid AH, Hssain AA, Abu Raddad LJ, Gentilcore G, Ouhtit A, Althani AA, Nasrallah GK, Grivel JC, Yassine HM. Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J Med Virol 2024; 96:e29628. [PMID: 38682568 DOI: 10.1002/jmv.29628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Haya Alsulaiti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Hadeel T Zedan
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- College of Medicine-QU Health, Qatar University, Doha, Qatar
| | - Ali A Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Department of Population Health Sciences, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Asmaa A Althani
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Kow CS, Ramachandram DS, Hasan SS, Thiruchelvam K. Letter to the editor: Critical need for robust surveillance in response to DENV-2 and SARS-CoV-2 cross-reactivity. Euro Surveill 2024; 29:2400236. [PMID: 38726696 PMCID: PMC11083973 DOI: 10.2807/1560-7917.es.2024.29.19.2400236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | |
Collapse
|
10
|
Bartels M, Sala Solé E, Sauerschnig LM, Rijkers GT. Back to the Future: Immune Protection or Enhancement of Future Coronaviruses. Microorganisms 2024; 12:617. [PMID: 38543668 PMCID: PMC10975256 DOI: 10.3390/microorganisms12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 11/12/2024] Open
Abstract
Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Ger T. Rijkers
- Science and Engineering Department, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.B.); (E.S.S.); (L.M.S.)
| |
Collapse
|
11
|
Vanderven HA, Kent SJ. Fc-mediated functions and the treatment of severe respiratory viral infections with passive immunotherapy - a balancing act. Front Immunol 2023; 14:1307398. [PMID: 38077353 PMCID: PMC10710136 DOI: 10.3389/fimmu.2023.1307398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Passive immunotherapies have been used to treat severe respiratory infections for over a century, with convalescent blood products from recovered individuals given to patients with influenza-related pneumonia as long ago as the Spanish flu pandemic. However, passive immunotherapy with convalescent plasma or hyperimmune intravenous immunoglobulin (hIVIG) has not provided unequivocal evidence of a clinical benefit for severe respiratory infections including influenza and COVID-19. Efficacy trials, primarily conducted in late-stage disease, have demonstrated inconsistent efficacy and clinical benefit for hIVIG treatment of severe respiratory infections. To date, most serological analyses of convalescent plasma and hIVIG trial samples have focused on the measurement of neutralizing antibody titres. There is, however, increasing evidence that baseline antibody levels and extra-neutralizing antibody functions influence the outcome of passive immunotherapy in humans. In this perspective, findings from convalescent plasma and hIVIG trials for severe influenza, COVID-19 and respiratory syncytial virus (RSV) will be described. Clinical trial results will be discussed in the context of the potential beneficial and deleterious roles of antibodies with Fc-mediated effector functions, with a focus on natural killer cells and antibody-dependent cellular cytotoxicity. Overall, we postulate that treating respiratory viral infections with hIVIG represents a delicate balance between protection and immunopathology.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC, Australia
| |
Collapse
|
12
|
Tsai PS, Du PX, Keskin BB, Lee NY, Wan SW, Lin YL, Su WY, Lin PC, Lin WH, Shih HC, Ho TS, Syu GD. Antibody Profiling of Dengue Severities Using Flavivirus Protein Microarrays. Anal Chem 2023; 95:15217-15226. [PMID: 37800729 DOI: 10.1021/acs.analchem.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dengue is a viral disease transmitted by Aedes aegypti mosquitoes. According to the World Health Organization, about half of the world's population is at risk of dengue. There are four serotypes of the dengue virus. After infection with one serotype, it will be immune to such a serotype. However, subsequent infection with other serotypes will increase the risk of severe outcomes, e.g., dengue hemorrhagic fever, dengue shock syndrome, and even death. Since severe dengue is challenging to predict and lacks molecular markers, we aim to build a multiplexed Flavivirus protein microarray (Flaviarray) that includes all of the common Flaviviruses to profile the humoral immunity and cross-reactivity in the dengue patients with different outcomes. The Flaviarrays we fabricated contained 17 Flavivirus antigens with high reproducibility (R-square = 0.96) and low detection limits (172-214 pg). We collected serums from healthy subjects (n = 36) and dengue patients within 7 days after symptom onset (mild dengue (n = 21), hospitalized nonsevere dengue (n = 29), and severe dengue (n = 36)). After profiling the serum antibodies using Flaviarrays, we found that patients with severe dengue showed higher IgG levels against multiple Flavivirus antigens. With logistic regression, we found groups of markers with high performance in distinguishing dengue patients from healthy controls as well as hospitalized from mild cases (AUC > 0.9). We further reported some single markers that were suitable to separate dengue patients from healthy controls (AUC > 0.9) and hospitalized from mild outcomes (AUC > 0.8). Together, Flaviarray is a valuable tool to profile antibody specificities, uncover novel markers for decision-making, and shed some light on early preventions and treatments.
Collapse
Affiliation(s)
- Pei-Shan Tsai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Batuhan Birol Keskin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Yu Su
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsun Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsi-Chang Shih
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan R.O.C
- Department of Pediatrics, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
| | - Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
13
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
14
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
15
|
Sawant J, Patil A, Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines (Basel) 2023; 11:1240. [PMID: 37515055 PMCID: PMC10384352 DOI: 10.3390/vaccines11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody Dependent Enhancement (ADE) of an infection has been of interest in the investigation of many viruses. It is associated with the severity of the infection. ADE is mediated by non-neutralizing antibodies, antibodies at sub-neutralizing concentrations, or cross-reactive non-neutralizing antibodies. Treatments like plasma therapy, B cell immunizations, and antibody therapies may trigger ADE. It is seen as an impediment to vaccine development as well. In viruses including the Dengue virus (DENV), severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, and influenza virus, the likely mechanisms of ADE are postulated and described. ADE improves the likelihood of productively infecting cells that are expressing the complement receptor or the Fc receptor (FcR) rather than the viral receptors. ADE occurs when the FcR, particularly the Fc gamma receptor, and/or complement system, particularly Complement 1q (C1q), allow the entry of the virus-antibody complex into the cell. Moreover, ADE alters the innate immune pathways to escape from lysis, promoting viral replication inside the cell that produces viral particles. This review discusses the involvement of FcR and the downstream immunomodulatory pathways in ADE, the complement system, and innate antiviral signaling pathways modification in ADE and its impact on facilitating viral replication. Additionally, we have outlined the modes of ADE in the cases of different viruses reported until now.
Collapse
Affiliation(s)
- Jyoti Sawant
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Ajit Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Swarali Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| |
Collapse
|
16
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
17
|
Nakayama EE, Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms 2023; 11:microorganisms11041015. [PMID: 37110438 PMCID: PMC10145615 DOI: 10.3390/microorganisms11041015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies produced in the body after infection or vaccination may enhance subsequent viral infections in vitro and in vivo. Although rare, symptoms of viral diseases are also enhanced by ADE following infection or vaccination in vivo. This is thought to be due to the production of antibodies with low neutralizing activity that bind to the virus and facilitate viral entry, or antigen-antibody complexes that cause airway inflammation, or a predominance of T-helper 2 cells among the immune system cells which leads to excessive eosinophilic tissue infiltration. Notably, ADE of infection and ADE of disease are different phenomena that overlap. In this article, we will describe the three types of ADE: (1) Fc receptor (FcR)-dependent ADE of infection in macrophages, (2) FcR-independent ADE of infection in other cells, and (3) FcR-dependent ADE of cytokine production in macrophages. We will describe their relationship to vaccination and natural infection, and discuss the possible involvement of ADE phenomena in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
18
|
Marchwicka A, Nowak K, Satyr A, Wołowiec D, Marcinkowska E. Immuno-Stimulating Activity of 1,25-Dihydroxyvitamin D in Blood Cells from Five Healthy People and in Blasts from Five Patients with Leukemias and Pre-Leukemic States. Int J Mol Sci 2023; 24:ijms24076504. [PMID: 37047477 PMCID: PMC10094698 DOI: 10.3390/ijms24076504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
(1) Hematological malignancies are characterized by an immortalization, uncontrolled proliferation of blood cells and their differentiation block, followed by the loss of function. The primary goal in the treatment of leukemias is the elimination of rapidly proliferating leukemic cells (named blasts). However, chemotherapy, which removes proliferating blasts, also prevents the remaining immune cells from being activated. Acute leukemias affect elderly people, who are often not fit to survive aggressive chemotherapy. Therefore, there is a need of milder treatment, named differentiation therapy, which might simulate the immune system of the patient. 1,25-Dihydroxyvitamin D, or low-calcemic analogs of this compound, were proposed as supporting therapy in acute leukemias. (2) Bone marrow blasts from patients with hematological malignancies, and leukocytes from healthy volunteers were ex vivo exposed to 1,25-dihydroxyvitamin D, and then their genomes and transcriptomes were investigated. (3) Our analysis indicates that 1,25-dihydroxyvitamin D regulates in blood cells predominantly genes involved in immune response, such as CAMP (cathelicidin antimicrobial peptide), CP (ceruloplasmin), CXCL9 (C-X-C motif chemokine ligand 9), CD14 (CD14 molecule) or VMO1 (vitelline membrane outer layer 1 homolog). This concerns blood cells from healthy people, as well as blasts from patients with hematological malignancies. In addition, in one patient, 1,25-dihydroxyvitamin D significantly downregulated transcription of genes responsible for cell division and immortalization. (4) In conclusion, the data presented in this paper suggest that addition of 1,25-dihydroxyvitamin D to the currently available treatments would stimulate immune system, inhibit proliferation and reduce immortal potential of blasts.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Kuba Nowak
- Faculty of Mathematics and Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland
| | - Anastasiia Satyr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Dariusz Wołowiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Pasteura 4, 50-367 Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|