1
|
Gharibzahedi SMT, Altintas Z. Eryngo essential oil nanoemulsion stabilized by sonicated-insect protein isolate: An innovative edible coating for strawberry quality and shelf-life extension. Food Chem 2025; 463:141150. [PMID: 39293377 DOI: 10.1016/j.foodchem.2024.141150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
New bioactive coatings with eryngo essential oil (EEO) nanoemulsions stabilized by ultrasonically-treated lesser mealworm protein isolate (LMPI) were developed to extend strawberry shelf life and quality. EEO due to high carvone (43.03 %), phenolics (87.45 mg gallic acid equivalent/g), flavonoids (13.56 mg quercetin equivalent/g), and carotenoids (635.07 mg/kg) contents exhibited a significant antioxidant activity comparable to ascorbic acid (AA) and BHT. Nanoemulsions stabilized with 9 % sonicated LMPI showed smaller droplet size, higher negative ζ-potential, and greater stability, turbidity, and encapsulation efficiency of EEO compared to those stabilized with native LMPI. The FTIR spectra showed that sonicated LMPI had structural changes enhancing its emulsifying activity, with key peaks indicating the presence of hydrogen bonds, carbonyl groups, and protein conformations in both EEO and LMPI. Strawberries coated with optimal EEO-loaded nanoemulsions showed superior quality with minimal storage-dependent physicochemical, textural, color, and sensory changes compared to control samples. This edible coating also maintained higher total monomeric anthocyanin and AA contents with lower peroxidase activity during storage than EEO-based coatings. However, no significant difference in superoxide dismutase activity between samples covered by EEO and EEO-loaded nanoemulsions over 14 days of storage was found. Bioactive nanoemulsions stabilized by insect proteins would be an eco-friendly and safe approach to upholding quality standards in stored fruits and vegetables.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Lima MA, Carusi J, Rocha LDO, Tonon RV, Cunha RL, Rosenthal A. Physicochemical Characterization, Rheological Properties, and Antimicrobial Activity of Sodium Alginate-Pink Pepper Essential Oil (PPEO) Nanoemulsions. Foods 2024; 13:3090. [PMID: 39410124 PMCID: PMC11476015 DOI: 10.3390/foods13193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Essential oils (EOs) have antimicrobial properties, but their low solubility in water and strong flavor pose challenges for direct incorporation into food, as they can negatively impact organoleptic properties. To overcome these issues, strategies such as oil-in-water (O/W) nanoemulsions have been developed to improve EO dispersion and protection while enhancing antimicrobial efficacy. The objective of this study was to create sodium alginate-pink pepper essential oil (PPEO) nanoemulsions using microfluidization. Various formulations were assessed for physicochemical, physical, and antimicrobial properties to evaluate their potential in food applications. The microfluidized emulsions and nanoemulsions had droplet sizes ranging from 160 to 443 nm, polydispersity index (PdI) ranging from 0.273 to 0.638, and zeta potential (ζ) ranging from -45.2 to 66.3 mV. The nanoemulsions exhibited Newtonian behavior and remarkable stability after 20 days of storage. Antimicrobial testing revealed effectiveness against Staphylococcus aureus and Listeria monocytogenes, with minimum inhibitory concentrations (MIC) of 200 µg/mL for both microorganisms and minimum bactericidal concentrations (MBC) of 800 µg/mL and 400 µg/mL, respectively, proving that encapsulation of PPEO in nanoemulsions significantly increased its antibacterial activity. These results present the possibility of using PPEO nanoemulsions as a more effective natural alternative to synthetic preservatives in food systems.
Collapse
Affiliation(s)
- Mariah Almeida Lima
- Food Technology Department, Institute of Technology, University Federal Rural of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.C.); (L.d.O.R.)
| | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Amauri Rosenthal
- Embrapa Food Technology, Rio de Janeiro 23020-470, RJ, Brazil; (R.V.T.); (A.R.)
| |
Collapse
|
3
|
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B 12: A Critical Review. Molecules 2023; 28:7469. [PMID: 38005191 PMCID: PMC10673454 DOI: 10.3390/molecules28227469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
| | - Maryam Moghadam
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Jonas Amft
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Aysu Tolun
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
4
|
Lesser mealworm (Alphitobius diaperinus L.) larvae oils extracted by pure and binary mixed organic solvents: Physicochemical and antioxidant properties, fatty acid composition, and lipid quality indices. Food Chem 2023; 408:135209. [PMID: 36563624 DOI: 10.1016/j.foodchem.2022.135209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/11/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Insect oil is one of the most sustainable lipid sources with remarkable health effects. Herein, the type of organic solvents (i.e., n-hexane, ethanol, and isopropanol) and their binary mixtures was evaluated based on the quantity (e.g., yield extraction) and quality (e.g., bioactive compounds, thermal stability, DPPH scavenging rate, fatty acid profile, and nutritional indices) of lesser mealworm oils. The oils extracted by ethanol/isopropanol and ethanol/n-hexane significantly showed the highest extraction yield and efficiency, lightness, accelerated thermal stability, phenolics, tocopherols, vitamin D, campesterol, β-sitosterol, phosphatidylinositol and phosphatic acid, linoleic acid, and hypocholesterolemic/hypercholesterolemic ratio, while these organic mixtures meaningfully extracted lipids with the lowest peroxide value, free fatty acid, and atherogenicity and thrombogenicity indices. These solvents compared to pure ones could dissolve membrane and internal lipids with the complete disintegration of external structures. The ethanol/isopropanol mixture would be a promising solvent for n-hexane substitution to extract this oil on an industrial scale.
Collapse
|
5
|
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022; 27:7641. [PMID: 36364468 PMCID: PMC9658512 DOI: 10.3390/molecules27217641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3) from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3 mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained (1→4)-α-d-Glc, (1→4,6)-α-d-Glc, (1→6)-α-d-Gal, (1→2)-α-d-Man, (1→4)-α-d-Man, β-l-Ara-(1→, and α-l-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural functional active substance in functional foods.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| |
Collapse
|
6
|
Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022; 64:2548-2578. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study comprehensively reviewed the effect of controlled enzymatic hydrolysis on the bioactivity of pulse protein hydrolysates (PPHs). Proteolysis results in the partial structural unfolding of pulse proteins with an increase in buried hydrophobic groups of peptide sequences. The use of PPHs in a dose-dependent manner can enhance free radical scavenging and improve antioxidant activities regarding inhibition of lipid oxidation, ferric reducing power, metal ion chelation, and β-carotene bleaching inhibition. Ultrafiltered peptide fractions with low molecular weights imparted angiotensin-I converting enzyme (ACE) inhibitory effects during in vitro simulated gastrointestinal digestion and in vivo conditions. Ultrasonication, high-pressure pretreatments, and glycosylation as post-treatments can improve the antiradical, antioxidant, and ACE inhibitory activities of PPHs. The electrostatic attachment of pulse peptides to microbial cells can inhibit the growth and activity of bacteria and fungi. Bioactive pulse peptides can reduce serum cholesterol and triglycerides, and inhibit the formation of adipocyte lipid storage, allergenic factors, inflammatory markers, and arterial thrombus without cytotoxicity. The combination of germination and enzymatic hydrolysis can significantly increase the protein digestibility and bioavailability of essential amino acids. Moreover, the utilization and enrichment of bakery and meat products with functional PPHs ensure quality, safety, and health aspects of food products.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
- USDA-ARS-SRRC Food Processing and Sensory Quality, New Orleans, Louisiana, USA
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| |
Collapse
|
7
|
Preparation of fenpropathrin nanoemulsions for eco-friendly management of Helicoverpa armigera: improved insecticidal activity and biocompatibility. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022; 8:gels8090551. [PMID: 36135262 PMCID: PMC9498499 DOI: 10.3390/gels8090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is a high demand for designing healthy-functional dairy gels with a newly structured protein network in the food industry. Non-fat yogurt gels enriched with stable tarragon essential oil-nanoemulsions (TEO-NEs) using crosslinking of microbial transglutaminase (MTGase) were developed. The gas chromatography-mass spectrometry analysis showed that methyl chavicol (85.66%) was the major component in TEO extracted by the hydrodistillation process. The storage-dependent droplet size and physicochemical stability data of samples at room temperature for 30 days revealed that the TEO-NE containing 0.5% tween-80 and 1:2 TEO/sunflower oil had the lowest peroxide value and droplet growth ratio. The response surface methodology-based formulation optimization of free-fat yogurt gels using MTGase (0.15–0.85 U/g) and the best TEO-NE (0.5–3.02%) using the fitted second-order polynomial models proved that the combination of 0.87% TEO-NE and 0.70 U/g MTGase led to the desired pH (4.569) and acidity (88.3% lactic acid), minimum syneresis (27.03 mL/100 g), and maximum viscosity (6.93 Pa s) and firmness (0.207 N) responses. Scanning electron microscopy images visualized that the MTGase-induced crosslinks improved the gel structure to increase the firmness and viscosity with a reduction in the syneresis rate. The optimal yogurt gel as a nutritious diet not only provided the highest organoleptic scores but also maintained its storage-related quality with the lowest mold/yeast growth and free-radical oxidation changes.
Collapse
|
10
|
Harrison F, Furner-Pardoe J, Connelly E. An assessment of the evidence for antibacterial activity of stinging nettle ( Urtica dioica) extracts. Access Microbiol 2022; 4:000336. [PMID: 35693473 PMCID: PMC9175978 DOI: 10.1099/acmi.0.000336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Stinging nettles (Urtica spp.) have been used in a diverse range of traditional and historical medicines from around the world for the treatment of skin diseases, wounds, urinary disorders, respiratory diseases, bone and joint pain, anaemia and other circulatory problems, as well as in cosmetic preparations for skin and haircare. As part of an interdisciplinary exploration of nettle-based remedies, we performed a systematic review of published evidence for the antimicrobial activity of Urtica spp. extracts against bacteria and fungi that commonly cause skin, soft tissue and respiratory infections. We focussed on studies in which minimum inhibitory concentration (MIC) assays of U. dioica were conducted on the common bacterial opportunistic pathogens Escherichia coli , Pseudomonas aeruginosa , Klebsiella pneumoniae and Staphylococcus aureus . No studies used fresh leaves (all were dried prior to use), and no studies prepared nettles in weak acid (corresponding to vinegar) or in fats/oils, which are common combinations in historical and traditional preparations. We addressed this gap by conducting new antibacterial tests of extracts of fresh U. dioica leaves prepared in vinegar, butter or olive oil against P. aeruginosa and S. aureus . Our systematic review and additional experimental data leads us to conclude that there is no strong evidence for nettles containing molecules with clinically useful antimicrobial activity. It seems most likely that the utility of nettles in traditional topical preparations for wounds may simply be as a 'safe' absorbent medium for keeping antibacterial (vinegar) or emollient (oils) ingredients at the treatment site.
Collapse
Affiliation(s)
- Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jessica Furner-Pardoe
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Erin Connelly
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
AlMatar M, Makky EA, Ramli ANM, Kafkas NE, Köksal F. Polysaccharides to combat viruses (Covid-19) and microbes: New updates. Curr Mol Pharmacol 2022; 15:803-814. [PMID: 35023463 DOI: 10.2174/1874467215666220112150332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022]
Abstract
COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents' development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Education and Art, Department of Biology, Sohar University, Sohar, 311, Sultanate of Oman
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | | | - Fatih Köksal
- Faculty of Medicine, Çukurova University, Adana, 01330, Turkey
| |
Collapse
|
13
|
|
14
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Kalateh-Seifari F, Yousefi S, Ahari H, Hosseini SH. Corn Starch-Chitosan Nanocomposite Film Containing Nettle Essential Oil Nanoemulsions and Starch Nanocrystals: Optimization and Characterization. Polymers (Basel) 2021; 13:2113. [PMID: 34203133 PMCID: PMC8272204 DOI: 10.3390/polym13132113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
In the current study, nanocomposite films were produced based on corn starch:chitosan (CS:CH) biopolymers and the films were reinforced with nettle essential oil nanoemulsions (NEONEs) and starch nanocrystals (SNCs) to improve their physicochemical and mechanical properties. CS: CH at 70:30, 50:50, and 30:70 (w/w) ratios; SNCs at 2, 4, and 6% (w/w), and NEONEs at 0.5, 1, and 1.5% (w/w) were selected as variables. Then the various physical and mechanical attributes of chitosan-starch blended film containing SNCs and NEONEs were optimized using response surface methodology. The desirability function technique for the second-order polynomial models revealed that the following results could be achieved as the optimized treatment: water solubility of 51.56%; water absorption capacity of 128.75%; surface color of L (89.60), a (0.96), and b (1.90); water vapor permeability of 0.335 g/s Pa m, oxygen permeability of 2.60 cm3 μm/m2 d kPa; thickness of 154.41 µm, elongation at break of 53.54%; and tensile strength of 0.20 MPa at CS:CH of 38:62, SNC of 6.0%, and NEONEs of 0.41%. The nanocomposite film obtained can be employed as a novel biofunctional film with boosted physical mechanical and physical characteristics for food packaging applications.
Collapse
Affiliation(s)
- Fatemeh Kalateh-Seifari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Hamed Ahari
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 476714171, Iran; (F.K.-S.); (S.Y.)
| | - Seyed Hedayat Hosseini
- Department of Food Science and Technology, Shahid Beheshti University of Medical Science, Tehran 1983969411, Iran;
| |
Collapse
|
16
|
The Extended Oxidative and Sensory Stability of Traditional Dairy-Based Oil with Steam-Distilled Essential Oils Extracted from the Bioactive-Rich Leaves of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6613198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The oxidation rate and overall sensory acceptability of Iranian animal oil (IAO) during storage were evaluated after adding the bioactive essential oils extracted from medicinal herbs of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. Results showed that the most dominant chemical constituents in Z. tenuior, F. angulata, and B. persicum essential oils were pulegone (12.77%), ferulagon (14.97%), and (+)-trans-carveol (57.70%), respectively. IAO contained more saturated fatty acids (67.43%, mainly palmitic and myristic acids) than unsaturated (32.27%, mostly oleic acid) ones. B. persicum essential oil compared to the other two oils significantly had more total flavonoid (1.08 mg quercetin equivalent/g), phenolic (123.2 mg GAE/g), carotenoid (591.31 mg/kg), and chlorophyll (24.32 mg/kg) contents. A significant dose-dependent increase in the overall sensory acceptability of IAO was found by increasing the concentration of B. persicum essential oil. Similar to tertiary butyl hydroquinone, the oil blend of IAO+10% B. persicum essential oil obtained the maximum overall sensory acceptability scores during 28 d cold storage due to the remarkable in vitro DPPH inhibition (83.45%) and ferric-reducing power (0.754 at Å700nm). A much slower formation rate in primary and secondary oxidation compounds in IAO rich in B. persicum essential oil during the storage was associated with the overall sensory acceptability data (
, r = 0.951). Thus, this bioactive additive as a bio-preservative may well stabilize crude oils and emulsions.
Collapse
|
17
|
Koroleva MY, Yurtov EV. Ostwald ripening in macro- and nanoemulsions. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Hien LTM, Dao DTA. Black pepper essential oil nanoemulsions formulation using EPI and PIT methods. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ly Thi Minh Hien
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Biotechnology, Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Dong Thi Anh Dao
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Mahjoorian A, Jafarian S, Fazeli F. Nettle (Utrica dioica) Essential Oil Incorporation in Edible Film from Caspian Whitefish (Rutilus frisii kutum) Scale: Physical, Antimicrobial, and Morphological Characterization. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1868641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abbas Mahjoorian
- Department of Agricultural Engineering and Technology, Payame Noor University (PNU), Tehran, Iran
| | - Sara Jafarian
- Department of Food Science & Technology, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran
| | - Fatemeh Fazeli
- Department of Food Science & Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
20
|
Niaz T, Sarkar A, Mackie A, Imran M. Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. Int J Biol Macromol 2020; 169:171-182. [PMID: 33340623 DOI: 10.1016/j.ijbiomac.2020.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Emerging antibiotic resistance in pathogens has posed considerable challenges to explore and examine the natural antimicrobials (NAMs). Due to the labile nature of NAMs, nano-delivery systems (NDS) are required to protect them from physiological degradation and allow controlled delivery to the targeted site of infection. In this study, corona modified NDS were developed using bovine serum albumin (BSA) on a chitosan core (CS) for sustained delivery of carvacrol (CAR), a natural antimicrobial agent, in the intestine. The optimal nano-formulations of the core (CS-NDS) and corona modified (BSA-CS-NDS) systems were fabricated with an average diameter of 52.4 ± 10.4 nm and 202.6 ± 6 nm, respectively. A shift in zeta-potential (ZP) from positive (+21 ± 3.6 mV) to negative values (-18 ± 2.6 mV) confirmed the electrostatic deposition of BSA corona on CS core. Under the influence of various simulated gastrointestinal conditions, BSA corona provided extra stability to NDS (ZP -38.5 mV), by ensuring delayed release and limited degradation in the gastric conditions. Mucoadhesive studies with quartz crystal microbalance with dissipation (QCM-D) revealed that BSA corona reduced the mucoadhesion of NDS at gastric pH, which enabled the effective delivery of CAR to the intestinal phase for successful eradication of Salmonella enterica.
Collapse
Affiliation(s)
- Taskeen Niaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park road, Islamabad, Pakistan; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Alan Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park road, Islamabad, Pakistan.
| |
Collapse
|
21
|
Rupa EJ, Li JF, Arif MH, Yaxi H, Puja AM, Chan AJ, Hoang VA, Kaliraj L, Yang DC, Kang SC. Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Molecules 2020; 25:molecules25235733. [PMID: 33291776 PMCID: PMC7730259 DOI: 10.3390/molecules25235733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of -26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.
Collapse
Affiliation(s)
- Esrat Jahan Rupa
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
| | - Jin Feng Li
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
| | - Muhammad Huzaifa Arif
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
| | - Han Yaxi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
| | - Aditi Mitra Puja
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (A.M.P.); (A.J.C.); (L.K.)
| | - Ahn Jong Chan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (A.M.P.); (A.J.C.); (L.K.)
| | - Van-An Hoang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
| | - Lalitha Kaliraj
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (A.M.P.); (A.J.C.); (L.K.)
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (E.J.R.); (J.F.L.); (M.H.A.); (H.Y.); (V.-A.H.)
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (A.M.P.); (A.J.C.); (L.K.)
- Correspondence: (D.C.Y.); (S.C.K.); Tel.: +82-1024835434 (D.C.Y.); +82-1089501273 (S.C.K.)
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (A.M.P.); (A.J.C.); (L.K.)
- Correspondence: (D.C.Y.); (S.C.K.); Tel.: +82-1024835434 (D.C.Y.); +82-1089501273 (S.C.K.)
| |
Collapse
|
22
|
Feng J, Chen W, Liu Q, Chen Z, Yang J, Yang W. Development of abamectin-loaded nanoemulsion and its insecticidal activity and cytotoxicity. PEST MANAGEMENT SCIENCE 2020; 76:4192-4201. [PMID: 32592445 DOI: 10.1002/ps.5976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Owing to the advantages of high-efficiency, environmental protection and safety, nanoemulsions have become a highly popular water-insoluble pesticide delivery system in recent years. RESULTS In this study, abamectin-loaded nanoemulsion with remarkable physical stability and application performance was obtained by selecting the type and concentration of surfactant and the emulsification method. The optimal formula was 2% abamectin and 5% castor oil polyoxyethylene (EL-40) dissolved in 7.5% hydrocarbon solvent (S-200) made up to 100% with deionized water, which conformed to the quality indicators from the Food and Agriculture Organization (FAO) standards. Droplets on cabbage leaves showed a small dynamic contact angle, which ensured that the resulting nanoemulsion exhibited excellent wettability and diffusivity. Compared with emulsifiable concentrates (EC) and microemulsions (ME), the abamectin-loaded nanoemulsion had the lowest LC50 (0.0686 mg L-1 ) to third-instar larva of Plutella xylostella, causing the larval body to blacken and shrivel, which improved insecticidal activity. In addition, the abamectin-loaded nanoemulsion had low cytotoxicity. The viability of dendritic cells with added nanoemulsion reached 100% after 2 h, whereas that of cells with EC and ME was lower. After 24 h, the cell viability of dendritic cells with added ME was 0. CONCLUSION This research facilitated the design and fabrication of nanoemulsions for water-insoluble pesticide to enhance insecticidal activity, lower cytotoxicity and reduce environmental pollution. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenchao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Abbasi H, Karimi S, Gharibzahedi SMT. Rhamnolipid as a unique emulsifier to stabilize sesame oil‐in‐water beverage emulsions formed by ultrasound‐induced cavitation: Optimizing the formulation and physical properties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Habib Abbasi
- Department of Chemical Engineering Jundi‐Shapur University of Technology Dezful Iran
| | - Safoora Karimi
- Department of Chemical Engineering Jundi‐Shapur University of Technology Dezful Iran
| | | |
Collapse
|
24
|
Bagheri R, Ariaii P, Motamedzadegan A. Effects of chitosan incorporated with basil seed gum and nettle (Urtica dioica L.) essential oil on the quality of beef burger during refrigerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00628-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym 2020; 240:116301. [DOI: 10.1016/j.carbpol.2020.116301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
26
|
Vinh TDT, Hien LTM, Dao DTA. Formulation of black pepper ( Piper nigrum L.) essential oil nano-emulsion via phase inversion temperature method. Food Sci Nutr 2020; 8:1741-1752. [PMID: 32328240 PMCID: PMC7174231 DOI: 10.1002/fsn3.1422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 01/05/2023] Open
Abstract
Recent trends in preservation of processed foods involve the use of natural compounds, rather than chemically synthesized additives, to simultaneously confer antimicrobial properties and prevent fat oxidation. In this regard, black pepper essential oils, due to its diversity in biological activities, have been increasingly popular. The compounds are often used in relatively low amounts and in the form of nanoparticles to permit well blending into foods or uniform dispersion on the surface of fresh meat. The purpose of this study is to determine experimental parameters of a nano-emulsion formation process from black pepper essential oil via the phase inversion temperature (PIT) technique. The study results showed that the system achieved the optimal nano-emulsion under following condition: the ratio by weight of water: Tween-80: oil = 86:9.7:4.3, the stirring speed of nano-emulsions at 500 rpm for 45 min (heating at 75°C for 30 min and then rapidly cooling at 5°C for 15 min).
Collapse
Affiliation(s)
- Truong Dam Thai Vinh
- Faculty of Chemical EngineeringHCMC University of TechnologyViet Nam National University HoChiMinh CityHo Chi Minh CityVietnam
| | - Ly Thi Minh Hien
- Faculty of Chemical EngineeringHCMC University of TechnologyViet Nam National University HoChiMinh CityHo Chi Minh CityVietnam
- Faculty of BiotechnologyOpen University Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Dong Thi Anh Dao
- Faculty of Chemical EngineeringHCMC University of TechnologyViet Nam National University HoChiMinh CityHo Chi Minh CityVietnam
| |
Collapse
|
27
|
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 2020; 229:115421. [DOI: 10.1016/j.carbpol.2019.115421] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
28
|
Hossain SMZ, Razzak SA, Hossain MM. Application of Essential Oils as Green Corrosion Inhibitors. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04305-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Hien LTM, Dao DTA. Formation of nanoemulsion from black pepper essential oil by high speed homogenization method. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ly Thi Minh Hien
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Dist; 10 Ho Chi Minh City Viet Nam
- Open University Ho Chi Minh City, 97 Vo Van Tan, 6th Ward, 3rd Dist; Ho Chi Minh City Viet Nam
| | - Dong Thi Anh Dao
- Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Dist; 10 Ho Chi Minh City Viet Nam
| |
Collapse
|
31
|
Optimization of bioactive preservative coatings of starch nanocrystal and ultrasonic extract of sour lemon peel on chicken fillets. Int J Food Microbiol 2019; 300:31-42. [PMID: 31005779 DOI: 10.1016/j.ijfoodmicro.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022]
Abstract
Starch nanocrystal (S-NC) was produced after sulfuric acid hydrolysis of potato starch granules and then characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Response surface methodology (RSM) was applied to optimize S-NC (2-10%) concentration, sour lemon peel extract (SLPE, 2.5-12.5%) amount, mixing temperature (M-TE, 25-65 °C) and mixing time (M-TI,15-75 min) in the preparation of bioactive coating solutions to develop the high-quality chicken fillets during the cold-storage. The optimized conditions for achieving the highest DPPH inhibition percentage (89.14%), antibacterial activity (Staphylococcus aureus, 3.58-mm; Escherichia coli, 3.14-mm; Listeria monocytogenes, 2.31-mm and Salmonella enterica, 2.24-mm) and lightness value (77.82) and the lowest redness (6.69), yellowness (13.21) values and viscosity (27.5 mPa.s) were 4.0% S-NC, 5.62% SLPE, 51.17 °C M-TE and 43.29 min M-TI. Spraying the optimal coating solution on chicken fillets led to a significant improvement in their physicochemical, textural and sensory characteristics compared to the control during 12-day cold-storage.
Collapse
|
32
|
de Matos SP, Lucca LG, Koester LS. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta 2019; 195:204-214. [DOI: 10.1016/j.talanta.2018.11.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022]
|
33
|
Gharibzahedi SMT, Hernández-Ortega C, Welti-Chanes J, Putnik P, Barba FJ, Mallikarjunan K, Escobedo-Avellaneda Z, Roohinejad S. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Alavinia SJ, Mirzargar SS, Rahmati-Holasoo H, Mousavi HE. The in vitro and in vivo effect of tannic acid on Ichthyophthirius multifiliis in zebrafish (Danio rerio) to treat ichthyophthiriasis. JOURNAL OF FISH DISEASES 2018; 41:1793-1802. [PMID: 30168579 DOI: 10.1111/jfd.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The in vitro antiparasitic effect of polyphenol tannic acid (TA) on Ichthyophthirius multifiliis theronts and tomonts was evaluated. In vitro antiparasitic assays revealed that TA in a dose- and time-dependent pattern through the damage of parasite plasma membrane could be 100% effective against I. multifiliis theronts at concentrations of 8 and 11 ppm during all the exposure times (45-270 min). The tomonts proliferation was completely inhibited by penetrating TA (at least 15 ppm for 22-hr exposure) into encysted tomont across the cyst wall. However, 10 ppm TA could result in a ninefold decrease in the population of live tomonts compared to the control group (p < 0.05). Although at theront concentrations of over 6,000 per zebrafish (Danio rerio), a 100% prevalence of ichthyophthiriasis during a 5-day exposure was recorded, results of in vivo tests showed that the parasite that pretreated up to 10 ppm TA for 70 min had not any capability to infect the studied zebrafish population. The acute toxicity (96 hr-LC50 ) of TA for zebrafish was 19.51 ppm. Thus, TA can be considered as a natural therapeutant to safely and efficiently improve the health of aquatic systems by controlling ichthyophthiriasis.
Collapse
Affiliation(s)
- Seyed Jalil Alavinia
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Saeed Mirzargar
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
35
|
Gharibzahedi SMT, George S, Greiner R, Estevinho BN, Frutos Fernández MJ, McClements DJ, Roohinejad S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr Rev Food Sci Food Saf 2018; 17:274-289. [DOI: 10.1111/1541-4337.12324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Saji George
- Dept. of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus; McGill Univ.; Ste-Anne de Bellevue Quebec Canada
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Berta N. Estevinho
- LEPABE, Dept. de Engenharia Química; Faculdade de Engenharia da Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | | | | | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
- Burn and Wound Healing Research Center, Div. of Food and Nutrition; Shiraz Univ. of Medical Sciences; Shiraz Iran
| |
Collapse
|
36
|
Rostami H, Gharibzahedi SMT. Cellulase-assisted extraction of polysaccharides from Malva sylvestris : Process optimization and potential functionalities. Int J Biol Macromol 2017; 101:196-206. [DOI: 10.1016/j.ijbiomac.2017.03.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
|
37
|
Gharibzahedi SMT. Ultrasound-mediated nettle oil nanoemulsions stabilized by purified jujube polysaccharide: Process optimization, microbial evaluation and physicochemical storage stability. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Gharibzahedi SMT, Mohammadnabi S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int J Biol Macromol 2017; 95:769-777. [DOI: 10.1016/j.ijbiomac.2016.11.119] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
|