1
|
Khajavian M, Ismail S. Deep eutectic solvent-modified polyvinyl alcohol/chitosan thin film membrane for dye adsorption: Machine learning modeling, experimental, and density functional theory calculations. Int J Biol Macromol 2025; 294:139479. [PMID: 39756729 DOI: 10.1016/j.ijbiomac.2025.139479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The polyvinyl alcohol/chitosan (PVA/CS) thin film membrane was modified using a deep eutectic solvent (DES) to enhance its adsorption capability and mechanical strength for the removal of brilliant green (BG) dye. Batch adsorption experiments, machine learning (ML) modeling, and density functional theory (DFT) analyses were performed to evaluate the adsorption of BG using PVA/CS and DES-modified PVA/CS (DES/PVA/CS) membranes. Incorporating DES (5 wt%) into the PVA/CS membrane increased its elongation at break from 8.176 % to 22.817 %. The random forest ML model exhibited superior predictive accuracy (R2 = 0.93) compared to the artificial neural network (R2 = 0.68) for modeling the adsorption process. The adsorption experiments were conducted under optimal operating conditions for PVA/CS (pH 7.5, adsorbent mass 0.06 g, and initial BG concentration 65 mg/L) and DES/PVA/CS (pH 8, adsorbent mass 0.06 g, and initial BG concentration 80 mg/L), achieving maximum adsorption capacities of 23.15 mg/g for PVA/CS and 124.63 mg/g for DES/PVA/CS. DFT calculations showed adsorption energies of -20.76 kcal/mol and -23.13 kcal/mol for BG/PVA/CS and BG/DES/PVA/CS complexes, respectively. DES, a green modifier, significantly enhanced the adsorption capacity, mechanical stability, and functional group diversity of PVA/CS membranes, thereby enabling more efficient dye removal.
Collapse
Affiliation(s)
- Mohammad Khajavian
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
2
|
Spaolonzi MP, Oliveira MG, Ribeiro MCB, da Silva MGC, Vieira MGA. Propranolol adsorption onto multiwalled carbon nanotubes modified by green synthesis: pH, kinetic, and equilibrium studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53642-53654. [PMID: 38066272 DOI: 10.1007/s11356-023-31320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/28/2023] [Indexed: 09/07/2024]
Abstract
This research investigated the adsorption of propranolol (PROP) by functionalized green carbon nanotubes (MWCNT-B), assessing the influence of pH, in addition to kinetic, equilibrium, and thermodynamic studies and reuse of the material. For this purpose, speciation of PROP and the point of zero charge (pHPZC) of MWCNT-B were performed, indicating a pKa of 9.67 and pHPZC of 3.31. The adsorption tests at different pH values revealed that in the range of pH 3 to 9, there is no significant variation in PROP uptake, despite this, at pH 11, the removal decreases. Regarding PROP adsorption, the equilibrium time ranged from 30 to 90 min, and the PFO model best represented the kinetic data. The Langmuir model was more predictive in representing isotherms (R2 > 0.95), and the adsorption process was spontaneous and favorable (ΔG < - 20 kJ mol-1) and indicated exothermic behavior (ΔH = - 33 kJ mol-1) for PROP removal. In addition, the material showed satisfactory thermal regeneration results and can be reused for four cycles. The results suggest that MWCNT-B is an attractive adsorbent and exhibits effective removal of propranolol from aqueous matrices.
Collapse
Affiliation(s)
- Marcela Pires Spaolonzi
- School of Chemical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Mariana Gomes Oliveira
- School of Chemical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Mariana Cardoso Barros Ribeiro
- School of Chemical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Haider FU, Zulfiqar U, Ul Ain N, Hussain S, Maqsood MF, Ejaz M, Yong JWH, Li Y. Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116620. [PMID: 38905935 DOI: 10.1016/j.ecoenv.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Mukkaram Ejaz
- Silesian University of Technology, Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Konarskiego 22B, Gliwice 44-100, Poland.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
4
|
Nain K, Dhillayan D, Bansal S, Hundal Q, Saharan P, Bhukal S. Adsorption potential of ionic liquid-modified ZnO nanoparticles for highly efficient removal of azo dye: detailed isotherms and kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40083-40099. [PMID: 37335507 DOI: 10.1007/s11356-023-28175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
In this study, bare and ionic liquid-modified ZnO nanoparticles have been fabricated using microwave irradiation method. The fabricated nanoparticles were characterized by different techniques, viz. XRD, FT-IR, FESEM, and UV-Visible spectroscopy, and were explored as adsorbent for effective sequestration of azo dye (Brilliant Blue R-250) from aqueous media. Various factors affecting the adsorption efficiency of synthesized nanoparticles (bare/ionic liquid-modified) such as concentration of dye, pH of reaction media, dose of nanoparticles, and reaction time were thoroughly investigated with varying experimental conditions; on a magnetic stirrer and in a sonicator. The results exhibited a high adsorption efficiency of ionic liquid-modified nanoparticles for removal of dye as compared to the bare one. Also, an enhanced adsorption was observed via sonication in comparison with magnetic stirring. Different isotherms such as Langmuir, Freundlich, and Tempkin were elaborated. Evaluation of adsorption kinetics showed a linear pseudo-second-order equation for adsorption process. The exothermic and spontaneous nature of adsorption was further confirmed by thermodynamic investigations. As per the results obtained, it is suggested that the fabricated ionic liquid-modified ZnO nanoparticles could successfully remediate the toxic anionic dye from aqueous media. Hence, this system can be utilized for large-scale industrial applications.
Collapse
Affiliation(s)
- Karmjeet Nain
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Divya Dhillayan
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Shafila Bansal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Qudrat Hundal
- Mehr Chand Mahajan DAV College for Women-36, Chandigarh, 160036, India
| | - Priya Saharan
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science & Technology, Murthal Sonipat, 131001, India
| | - Santosh Bhukal
- Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
5
|
Bahadi SA, Drmosh QA, Onaizi SA. Adsorptive removal of organic pollutants from aqueous solutions using novel GO/bentonite/MgFeAl-LTH nanocomposite. ENVIRONMENTAL RESEARCH 2024; 248:118218. [PMID: 38266892 DOI: 10.1016/j.envres.2024.118218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.
Collapse
Affiliation(s)
- Salem A Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| | - Q A Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31216, Saudi Arabia.
| |
Collapse
|
6
|
Franco DSP, Georgin J, Ramos CG, Eljaiek SM, Badillo DR, de Oliveira AHP, Allasia D, Meili L. The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit ( Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules 2023; 28:5232. [PMID: 37446896 DOI: 10.3390/molecules28135232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
This study explores the potential of the corozo fruit (Bactris guineensis) palm tree in the Colombian Caribbean as a source for porous carbon material. Its specific surface area, pore volume, and average pore size were obtained using N2 adsorption/desorption isotherms. The images of the precursor and adsorbent surface were obtained using scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectra were obtained to detect the main functional groups present and an X-ray diffraction analysis (XRD) was performed in order to analyze the structural organization of the materials. By carbonizing the fruit stone with zinc chloride, a porous carbon material was achieved with a substantial specific surface area (1125 m2 g⁻1) and pore volume (3.241 × 10-1 cm3 g⁻1). The material was tested for its adsorption capabilities of the drug propranolol. The optimal adsorption occurred under basic conditions and at a dosage of 0.7 g L⁻1. The Langmuir homogeneous surface model effectively described the equilibrium data and, as the temperature increased, the adsorption capacity improved, reaching a maximum of 134.7 mg g⁻1 at 328.15 K. The model constant was favorable to the temperature increase, increasing from 1.556 × 10-1 to 2.299 × 10-1 L mg-1. Thermodynamically, the adsorption of propranolol was found to be spontaneous and benefited from higher temperatures, indicating an endothermic nature (12.39 kJ mol⁻1). The negative ΔG0 values decreased from -26.28 to -29.99 kJ mol-1, with the more negative value occurring at 328 K. The adsorbent material exhibited rapid kinetics, with equilibrium times ranging from 30 to 120 min, depending on the initial concentration. The kinetics data were well-represented by the general order and linear driving force models. The rate constant of the general order model diminished from 1.124 × 10-3 to 9.458 × 10-14 with an increasing concentration. In summary, the leftover stone from the Bactris guineensis plant can be utilized to develop activated carbon, particularly when activated using zinc chloride. This material shows promise for efficiently adsorbing propranolol and potentially other emerging pollutants.
Collapse
Affiliation(s)
- Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Claudete Gindri Ramos
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Salma Martinez Eljaiek
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Daniel Romero Badillo
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | | | - Daniel Allasia
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Lucas Meili
- Process Laboratory, Technology Center, Federal University of Alagoas, Maceió 57072-870, AL, Brazil
| |
Collapse
|
7
|
Niknejad N, Nazari B, Foroutani S, Hussin ARBC. A bibliometric analysis of green technologies applied to water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71849-71863. [PMID: 35091956 DOI: 10.1007/s11356-022-18705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
Collapse
Affiliation(s)
- Naghmeh Niknejad
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Behzad Nazari
- Azman Hashim International Business School, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saman Foroutani
- Department of Computer, Islamic Azad University Safashahr Branch, Safashahr, Fars, Iran.
| | - Ab Razak Bin Che Hussin
- Azman Hashim International Business School, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
8
|
Al-Odayni AB, Alsubaie FS, Abdu NAY, Al-Kahtani HM, Saeed WS. Adsorption Kinetics of Methyl Orange from Model Polluted Water onto N-Doped Activated Carbons Prepared from N-Containing Polymers. Polymers (Basel) 2023; 15:polym15091983. [PMID: 37177131 PMCID: PMC10180562 DOI: 10.3390/polym15091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents were characterized using FTIR, SEM, TGA, elemental analysis, and surface area. The kinetic experiments were performed in batches at different MO concentrations (C0) and adsorbent dosages. The adsorption kinetic profiles of pseudo-first-order, pseudo-second-order (PSO), Elovich, intraparticle diffusion, and liquid film diffusion models were compared. The results showed a better fit to the PSO model, suggesting a chemisorption process. The adsorption capacity (qe, mg/g) was found to have increased as MO C0 increased, yet decreased as the adsorbent quantity increased. At the adsorption operating condition, including MO C0 (200 ppm) and adsorbent dose (40 mg), the calculated qe values were in the order of PAnAC (405 mg/g) > PPyAC (204 mg/g) > PnyAC (182 mg/g). This trend proved the carbon precursor's importance in the final properties of the intended carbons; elemental analysis confirmed that the more nitrogen atoms are in the activated carbon, the greater the number of active sites in the adsorbent for accommodating adsorbates. The diffusion mechanism also assumed a rate-limiting step controlled by the film and intraparticle diffusion. Therefore, such an efficient performance may support the target route's usefulness in converting nitrogenous-species waste into valuable materials.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Faisal S Alsubaie
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A Y Abdu
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
9
|
He Y, Zhang P, Wang L. Adsorption and Removal of Cr6+, Cu2+, Pb2+, and Zn2+ from Aqueous Solution by Magnetic Nano-Chitosan. Molecules 2023; 28:molecules28062607. [PMID: 36985579 PMCID: PMC10056453 DOI: 10.3390/molecules28062607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Magnetic nano-chitosan (MNC) was prepared and characterized. The kinetics, thermodynamics, and influencing factors of the adsorption of Cr6+, Cu2+, Pb2+, and Zn2+, as well as their competitive adsorption onto MNC in aqueous solution, were studied. The results showed that the adsorption kinetics and thermodynamics of Cr6+, Cu2+, Pb2+, and Zn2+ were well described by the pseudo-second-order kinetic model and Langmuir isothermal adsorption model, indicating that the adsorption was mainly chemical adsorption and endothermic. Increasing the dosage of MNC, the equilibrium adsorption capacity (qe) of Cr6+, Cu2+, Pb2+, and Zn2+ decreased; their removal rate (η) increased. With the increase in the solution’s pH, the qe and η of Cr6+ first increased and then decreased; the qe and η of Cu2+, Pb2+, and Zn2+ increased. With the increase in the metal ion initial concentration, the qe increased; the η of Cr6+, Cu2+, and Zn2+ decreased, while the η of Pb2+ increased first and then decreased. Temperature had a weak influence on the qe of Cr6+ and Pb2+, while it had a strong influence on Cu2+ and Zn2+, the qe and η were greater when the temperature was higher, and the adsorption was spontaneous and endothermic. The qe and η of Cu2+, Pb2+, and Zn2+ decreased in the presence of co-existing ions. The influences among metal ions existed in a binary and ternary ion system. The current study’s results provide a theoretical support for the simultaneous treatment of harmful metal ions in wastewater by MNC.
Collapse
|
10
|
Stracke Pfingsten Franco D, Georgin Vizualization J, Gindri Ramos C, S. Netto M, Lobo B, Jimenez G, Lima EC, Sher F. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
|
12
|
Photocatalytic Activity of the V 2O 5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process. Molecules 2023; 28:molecules28020655. [PMID: 36677711 PMCID: PMC9863256 DOI: 10.3390/molecules28020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10−65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it.
Collapse
|
13
|
The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
15
|
Regenerable Kiwi Peels as an Adsorbent to Remove and Reuse the Emerging Pollutant Propranolol from Water. Processes (Basel) 2022. [DOI: 10.3390/pr10071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work aims to characterize the adsorption process of propranolol HCl, an emerging pollutant and a widely used β-blocker, onto kiwi peels, an agricultural waste. The use of UV-vis spectroscopy was considered to obtain information about the pollutant removal working in the in-batch mode. In a relatively short time, the adsorption process could remove the pollutant from water. A kiwi peel maximum adsorption capacity of 2 mg/g was obtained. With the perspective of scaling up the process, preliminary in-flux measurements were also performed. The investigation of the whole in-batch adsorption process was conducted by studying the effect of ionic strength (adopting salt concentrations from 0 to 0.4 M), pH values (from 2 to 12), adsorbent/pollutant amounts (from 25 to 100 mg and from 7.5 to 15 mg/L, respectively), and temperature values (from 289 to 305 K). The thermodynamics, the adsorption isotherms, and the kinetics of the adsorption process were also carefully investigated. The Langmuir model fitted the experimental data well, with an R2 of 0.9912, restituting KL: 1 L/mg and Q0: 1.8 mg/g. The temperature increase enhanced the pollutant removal due to the endothermic adsorption characteristics. Accordingly, a ΔH°298K of +70 KJ/mol was obtained. The pseudo-first-order kinetic model described the process. Due to the results observed during the study of the effects of pH and ionic strength, the prominent presence of electrostatic interactions, working in synergy with hydrophobic forces and H-bonds between the pollutant and kiwi peel surfaces, was successfully demonstrated. In particular, FTIR-ATR measurements confirmed the latter findings. Finally, desorption experiments for recycling 100% of propranolol for each cycle were performed using 0.1 M MgCl2. Ten cycles of adsorption/desorption were obtained and indicated that the percentage of propranolol removal was not affected during each run, increasing the maximum adsorption from 2 to 20 mg/g.
Collapse
|
16
|
Mohamed AH, Noorhisham NA, Bakar K, Yahaya N, Mohamad S, Kamaruzaman S, Osman H. Synthesis of imidazolium-based poly(ionic liquids) with diverse substituents and their applications in dispersive solid-phase extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Xing Y, Chen H, Liu S, Wang W, Liang Y, Fu J. Nanolayer-Constructed TiO(OH) 2 Microstructures for the Efficiently Selective Removal of Cationic Dyes via an Electrostatic Interaction and Adsorption Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7346-7356. [PMID: 35637204 DOI: 10.1021/acs.langmuir.2c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient removal of organic dyes from contaminated water has become a great challenge and urgent work due to increasingly serious environmental problems. Here, we have for the first time prepared nanolayer-constructed TiO(OH)2 microstructures which can present negative charge by deprotonation of the hydroxyl group to efficiently and selectively remove cationic dyes from aqueous solution through electrostatic interaction and an attraction mechanism. The nanolayer-constructed TiO(OH)2 microstructures achieve a high adsorption capacity of 257 mg g-1 for methylene blue (MB). The adsorption kinetics, thermodynamics, and isotherms of MB over the TiO(OH)2 microstructures have been studied systemically. The experimental measurements and corresponding analyses demonstrate that the adsorption process of MB on TiO(OH)2 microstructures follows a kinetic model of pseudo-second-order adsorption, agrees well with the Langmuir isotherm mode, and is a spontaneous and exothermic physisorption. Fourier transform infrared (FT-IR) spectra confirm that the prepared TiO(OH)2 microstructures possess hydroxyl group which can deprotonate to present negative charge in solution. Further experimental studies evidently demonstrate that the TiO(OH)2 microstructures also can remove other cationic dyes with positive charge such as basic yellow 1, basic green 4, and crystal violet but cannot adsorb anionic dye of methyl orange (MO) with negative charge in aqueous solution. The measurements for FT-IR spectra and the adsorption of cationic and anionic dyes evidently reveal that the adsorption of cationic dyes over the TiO(OH)2 microstructures is achieved by the electrostatic interaction and attraction between TiO(OH)2 and the dye. This work opens a strategy for the design of new absorbents to efficiently remove organic dyes from aqueous solution through an electrostatic attraction-driven adsorption process.
Collapse
Affiliation(s)
- Yujin Xing
- College of Life and Environmental Science, Minzu University of China, Beijing100081. P. R. China
| | - Huabin Chen
- College of Life and Environmental Science, Minzu University of China, Beijing100081. P. R. China
| | - Sitong Liu
- College of Life and Environmental Science, Minzu University of China, Beijing100081. P. R. China
| | - Wenzhong Wang
- College of Life and Environmental Science, Minzu University of China, Beijing100081. P. R. China
- School of Science, Minzu University of China, Bejing100081, P. R. China
| | - Yujie Liang
- School of Science, Minzu University of China, Bejing100081, P. R. China
| | - Junli Fu
- School of Science, Minzu University of China, Bejing100081, P. R. China
| |
Collapse
|
18
|
Sensitivity Analysis with the Monte Carlo Method and Prediction of Atenolol Removal Using Modified Multiwalled Carbon Nanotubes Based on the Response Surface Method: Isotherm and Kinetics Studies. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/4613023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atenolol (ATN) is a β-blocker drug extensively used to treat arrhythmias and high blood pressure. Because the human body cannot metabolize it completely, this drug has been commonly found in many environmental matrices. In the present study, the response surface method (RSM) was used for adsorption prediction of ATN on modified multiwalled carbon nanotubes (M-MWCNTs) by NaOCl and ultrasonic. The sensitivity analysis was done by the Monte Carlo method. Sensitivity analysis was performed to determine the effective parameter by the Monte Carlo simulator. Statistical analysis of variance (ANOVA) was performed by using the nonlinear second-order model of RSM. The influential parameters including contact time (min), adsorbent dosage (g/L), pH, and the initial concentration (mg/L) of ATN were investigated, and optimal conditions were determined. Kinetic of ATN adsorption on M-MWCNTs was evaluated using pseudo-first, pseudo-second-order, and intraparticle diffusion models. Equilibrium isotherms for this system were analyzed by the ISOFIT software. As per our result, optimum conditions in the adsorption experiments were pH 7, 60 min of contact time, 0.5 mg/L ATN initial concentration, and 150 mg/L adsorbent dose. In terms of ATN removal efficiency, coefficients of R2 and adjusted R2 were 0.999 and 0.998, respectively. Sensitivity analysis also showed that contact time has the greatest effect on increasing the removal of ATN. Pseudo-first-order (R2 value of 0.99) was the best kinetic model for the adsorption of ATN, and for isotherm, BET (AICC value of 3.27) was the best model that fit the experimental data. According to the obtained results from sensitive analysis, time was the most important parameter, and after that, the adsorbent dose and pH affect positively on ATN removal efficiency. It can be concluded that the modified multiwalled carbon nanotubes can be applied as one of the best adsorbents to remove ATN from the aqueous solution.
Collapse
|
19
|
Role of Ionic Liquids in Capillary Electrophoresis. ANALYTICA 2022. [DOI: 10.3390/analytica3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.
Collapse
|
20
|
Madadi Mahani N, Mostaghni F, Shafiekhani H. Cuspareine as alkaloid against COVID-19 designed with ionic liquids: DFT and docking molecular approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112447. [PMID: 35483276 PMCID: PMC9020645 DOI: 10.1016/j.jphotobiol.2022.112447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cuspareine as an antiviral alkaloid can be used in the treatment of COVID-19. In this study, we introduced the ionic liquids (ILs) concluded cuspareinium as a cation with CH3COO-, CF3COO-, and PF6 as anions. The optimized geometry, thermodynamic parameters, and reactivity descriptors were calculated with density functional theory (DFT) approach and time-dependent density functional theory (TD-DFT) using B3LYP/6-311G. In addition, the UV and IR spectra of the introduced ILs were investigated. Based on DFT calculation, the designed IL CH3COO- can be to the most suitable anions due to most solubility in the water. DFT studies displayed that all the introduced ILs have more polarity than pristine cuspareine and CH3COO--cuspareine is the most polarity due to high dipole moment. Also, the thermo- chemical data of the designed ionic liquids revealed that PF6-cuspareine is distinguished to be stable. A molecular docking study of the designed ILs with 6 LU7 protease was performed to display interactions and binding energy. Results of molecular docking displayed that CH3COO- ion liquid has the highest binding energy (- 7.20 kcal/mol) and Ala7, and Lys 5 residues are involved in an interaction. DFT and molecular docking studies of cuspareine as alkaloid based on ionic liquids can be helpful to for more pharmaceutical and biological researches of cuspareine as an antiviral agent against COVID-19.
Collapse
Affiliation(s)
| | - Fatemeh Mostaghni
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| | - Homa Shafiekhani
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| |
Collapse
|
21
|
Madgula K, Dandu S, Kasula S, Halady P. Microwave synthesized ionic liquids as green catalysts for the synthesis of benzimidazoles: Spectral and computational studies for potential anticancer activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Goutham R, Rohit P, Vigneshwar SS, Swetha A, Arun J, Gopinath KP, Pugazhendhi A. Ionic liquids in wastewater treatment: A review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
24
|
Gao X, Li Z, Zhang D, Zhao X, Wang Y. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
1-Methylimidazolium ionic liquid supported on Ni@zeolite-Y: fabrication and performance as a novel multi-functional nanocatalyst for one-pot synthesis of 2-aminothiazoles and 2-aryl benzimidazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Basaleh AA, Al-Malack MH, Saleh TA. Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
28
|
Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Lei M, Yang L, Shen Y, Yang L, Sun J. Efficient Adsorption of Anionic Dyes by Ammoniated Waste Polyacrylonitrile Fiber: Mechanism and Practicability. ACS OMEGA 2021; 6:19506-19516. [PMID: 34368537 PMCID: PMC8340109 DOI: 10.1021/acsomega.1c01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 05/15/2023]
Abstract
Adsorption is one of the commonly used methods in wastewater treatment, but it has the problem of high cost and a complicated production process. In this paper, a low-cost and efficient decolorizing adsorbent was successfully prepared based on waste polyacrylonitrile fiber (PANF). The waste PANF was ammoniated by propylene diamine derivates (PANAMF), and benzylamine (PANABMF) and quaternary ammonium ions (PANQMF) were introduced for PANAMF to regulate hydrophilicity and hydrophobicity. With acidic red 249 as the model anionic dye, influences of the adsorption center structure, the degree of modification, the concentration of acid, the dye structure, and the auxiliary agent in the solution on the dye adsorption performance were studied. Isothermal models, kinetic models, reusability, and continuous application ability of the fiber adsorbent were discussed. PANAMF, PANABMF, and PANAQF exhibit excellent adsorption performance compared to the common adsorbent. After protonation, the saturation adsorption value can reach 2051.3 mg/g for PANAMF. PANAMF also exhibited excellent reusability, and the adsorption capacity after being reused eight times still can keep 72.7% of that for the first time. The adsorption of the anionic dye for PANAMF is a chemisorption process, and the rate-determining step is changed from the diffuse step to the adsorption on the surface with the adsorption time. PANAMF can also be used in the continuous flow process, and the absorption amount is similar to that in the batch adsorption, which shows excellent commercial application potential.
Collapse
Affiliation(s)
- Manjun Lei
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Lihui Yang
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Shen
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Lei Yang
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jie Sun
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
30
|
Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor - aerobic membrane bioreactor. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Theoretical Basis of Quantum-Mechanical Modeling of Functional Nanostructures. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper presents an analytical review of theoretical methods for modeling functional nanostructures. The main evolutionary changes in the approaches of quantum-mechanical modeling are described. The foundations of the first-principal theory are considered, including the stationery and time-dependent Schrödinger equations, wave functions, the form of writing energy operators, and the principles of solving equations. The idea and specifics of describing the motion and interaction of nuclei and electrons in the framework of the theory of the electron density functional are presented. Common approximations and approaches in the methods of quantum mechanics are presented, including the Born–Oppenheimer approximation, the Hartree–Fock approximation, the Thomas–Fermi theory, the Hohenberg–Kohn theorems, and the Kohn–Sham formalism. Various options for describing the exchange–correlation energy in the theory of the electron density functional are considered, such as the local density approximation, generalized and meta-generalized gradient approximations, and hybridization of the generalized gradient method. The development of methods of quantum mechanics to quantum molecular dynamics or the dynamics of Car–Parrinello is shown. The basic idea of combining classical molecular modeling with calculations of the electronic structure, which is reflected in the potentials of the embedded atom, is described.
Collapse
|
32
|
Bohloli A, Asli MD, Moniri E, Gh AB. Modification of WS2 nanosheets with beta-cyclodextrone and N-isopropylacrylamide polymers for tamoxifen adsorption and investigation of in vitro drug release. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04376-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Rui Li J, Chen C, Lin Hu Y. Novel and Efficient Knoevenagel Condensation over Mesoporous SBA‐15 Supported Acetate‐functionalized Basic Ionic Liquid Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202004048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Rui Li
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Chen Chen
- College of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
34
|
Mondal P, Anweshan A, Purkait MK. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. CHEMOSPHERE 2020; 259:127509. [PMID: 32645598 DOI: 10.1016/j.chemosphere.2020.127509] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/28/2023]
Abstract
Green chemistry has been proven to be an efficient route for nanoparticle synthesis. Plant extract based green synthesis of various nanoparticles is extensively studied since the last decade. This paper "Green synthesis and environmental application of Iron-based nanomaterials and nanocomposite: A review" unveils all the possible greener techniques for the synthesis of iron-based nanoparticles and nanocomposites. The use of different plant sources, microorganisms, and various biocompatible green reagents such as biopolymers, cellulose, haemoglobin, and glucose for the synthesis of iron nanoparticles reported in the last decade are summarized. The microwave method, along with hydrothermal synthesis due to their lower energy consumption are also been referred to as a green route. Apart from different plant parts, waste leaves and roots used for the synthesis of iron nanoparticles are extensively briefed here. This review is thus compact in nature which covers all the broad areas of green synthesis of iron nanoparticles (NPs) and iron-based nanocomposites. Detailed discussion on environmental applications of the various green synthesized iron NPs and their composites with performance efficiency is provided in this review article. The advantages of bimetallic iron-based nanocomposites over iron NPs in various environmental applications are discussed in detail. The hazards and toxic properties of green synthesized iron-based NPs are compared with those obtained from chemical methods. The prospects and challenges section of this article provides a vivid outlook of adapting such useful technique into a more versatile process with certain inclusions which may encourage and provide a new direction to future research.
Collapse
Affiliation(s)
- Piyal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - A Anweshan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
35
|
Mosoarca G, Vancea C, Popa S, Gheju M, Boran S. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci Rep 2020; 10:17676. [PMID: 33077788 PMCID: PMC7810873 DOI: 10.1038/s41598-020-74819-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.
Collapse
Affiliation(s)
- Giannin Mosoarca
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223, Timisoara, Romania
| | - Cosmin Vancea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223, Timisoara, Romania.
| | - Simona Popa
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223, Timisoara, Romania.
| | - Marius Gheju
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223, Timisoara, Romania
| | - Sorina Boran
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223, Timisoara, Romania
| |
Collapse
|
36
|
González-Jartín JM, de Castro Alves L, Alfonso A, Piñeiro Y, Vilar SY, Rodríguez I, Gomez MG, Osorio ZV, Sainz MJ, Vieytes MR, Rivas J, Botana LM. Magnetic nanostructures for marine and freshwater toxins removal. CHEMOSPHERE 2020; 256:127019. [PMID: 32417588 DOI: 10.1016/j.chemosphere.2020.127019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Marine and freshwater toxins contaminate water resources, shellfish and aquaculture products, causing a broad range of toxic effects in humans and animals. Different core-shell nanoparticles were tested as a new sorbent for removing marine and freshwater toxins from liquid media. Water solutions were contaminated with 20 μg/L of marine toxins and up to 50 μg/L of freshwater toxins and subsequently treated with 250 or 125 mg/L of nanoparticles. Under these conditions, carbon nanoparticles removed around 70% of saxitoxins, spirolides, and azaspiracids, and up to 38% of diarrheic shellfish poisoning toxins. In the case of freshwater toxins, the 85% of microcystin LR was eliminated; other cyclic peptide toxins were also removed in a high percentage. Marine toxins were adsorbed in the first 5 min of contact, while for freshwater toxins it was necessary 60 min to reach the maximum adsorption. Toxins were recovered by extraction from nanoparticles with different solvents. Gymnodinium catenatum, Prorocentrum lima, and Microcystis aeruginosa cultures were employed to test the ability of nanoparticles to adsorb toxins in a real environment, and the same efficacy to remove toxins was observed in these conditions. These results suggest the possibility of using the nanotechnology in the treatment of contaminated water or in chemical analysis applications.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Lisandra de Castro Alves
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Y Piñeiro
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - Susana Yáñez Vilar
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - Inés Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain; Laboratario CIFGA S.A., Avda. Benigno Rivera, 56, 27003, Lugo, Spain.
| | - Manuel González Gomez
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - Zulema Vargas Osorio
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - María J Sainz
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - J Rivas
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782, Santiago de Compostela, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
37
|
Gondal HY, Mumtaz S, Abbaskhan A, Mumtaz N, Cano I. New alkoxymethyl-functionalized pyridinium-based chiral ionic liquids: synthesis, characterization and properties. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Liu S, Wang W, Cheng Y, Yao L, Han H, Zhu T, Liang Y, Fu J. Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. J Colloid Interface Sci 2020; 574:410-420. [DOI: 10.1016/j.jcis.2020.04.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
|
39
|
Wang M, Wen B, Fan B, Zhang H. Study on adsorption mechanism of silicate adsorbents with different morphologies and pore structures towards formaldehyde in water. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Nie W, Li Y, Chen L, Zhao Z, Zuo X, Wang D, Zhao L, Feng X. Interaction between multi-walled carbon nanotubes and propranolol. Sci Rep 2020; 10:10259. [PMID: 32581369 PMCID: PMC7314780 DOI: 10.1038/s41598-020-66933-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes could accumulate in organism and have a negative impact on the structure and function of the ecosystem when they were discharged into environment. Furthermore, it will affect the migration and fate of pollutants in the water body. The study is mainly to explore the adsorption behavior and mechanism of beta-blocker on multi-walled carbon nanotubes (MWCNTs). Propranolol (PRO) was selected as the representative of beta-blocker. The effects of different environmental factors such as pH, ionic strength and humic acid (HA) on the adsorption process were investigated. The adsorption results were characterized by Zeta potential. At the same time, the effects of different types of drugs on the adsorption process were explored and the possible adsorption mechanisms were analyzed. The experimental results showed that the adsorption behavior was significantly different under different pH conditions. π-π EDA interaction, hydrophobic interaction and hydrogen bonding were speculated to be the main adsorption mechanisms for PRO adsorption on MWCNTs.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China. .,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zhicheng Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Dongdong Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lei Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xinyue Feng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
41
|
Domínguez I, Arrebola FJ, Martínez Vidal JL, Garrido Frenich A. Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J Chromatogr A 2020; 1619:460964. [DOI: 10.1016/j.chroma.2020.460964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 01/26/2023]
|
42
|
Coelho CM, de Andrade JR, da Silva MGC, Vieira MGA. Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16599-16611. [PMID: 32128732 DOI: 10.1007/s11356-020-08109-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Propranolol hydrochloride is a popular anti-hypertensive and pollutant of emerging concern because of potential ecological risks to aquatic environment. In this study, biosorption is presented as an advanced approach for propranolol uptake from aqueous media. The remaining biomass of alginate extraction from brown seaweed (RSF) was tested as biosorbent owing to its key binding sites, namely carboxyl and hydroxyl functional groups. The high 93% removal efficiency achieved consolidates RSF as effective biosorbent for propranolol environmental remediation and values this waste material, which has been largely discarded in industry after alginate extraction. RSF had morphology, porosity, chemical composition, and thermal behavior characterized prior and post to application in propranolol biosorption. Molecular sieving effects were excluded by assessing the molecular geometry of propranolol. The kinetics was inspected by both rate laws and mass transfer models. Langmuir, Freundlich, and Dubinin-Radushkevich equations were tested for experimental isotherms. Propranolol biosorption onto RSF was further inspected by thermodynamic parameters, including isosteric heat.
Collapse
Affiliation(s)
- Caroline Macedo Coelho
- School of Chemical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Júlia Resende de Andrade
- School of Chemical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil.
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil.
| |
Collapse
|
43
|
Reck IM, Baptista ATA, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12192-12201. [PMID: 31989495 DOI: 10.1007/s11356-020-07638-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to evaluate the efficiency of a new magnetic coagulant, obtained from Moringa oleifera seeds protein functionalized with iron oxide nanoparticles to remove four anionic synthetic dyes with coagulation/flocculation assays followed by magnetic sedimentation. The results showed that the presence of a magnetic field during sedimentation considerably accelerates the separation and increases the dye removal efficiency. Amaranth dye removal increased from 45 to 86% and Sunset Yellow from 15 to 69% with the presence of magnetic field, while Reactive Black 5 and Brilliant Blue reached 94% and 52% removal, respectively. For AM and SY dyes, the best protein concentration is 150 mg L-1, for RB5 dye is 115 mg L-1, and for BB dye is 75 mg L-1. The sedimentation time decreased from 30 to 5 min with magnetic sedimentation. The residual value of AM dye decreased from 10.76 mg L-1 to approximately 2.71 mg L-1, and with SY the residual concentration decreased from approximately 16.79 mg L-1 to 6.36 mg L-1. The removal of BB and RB5 dyes reached an approximate final value of 48.2 mg L-1 (52%) and 1.18 mg L-1 (94%).
Collapse
Affiliation(s)
- Isabela Maria Reck
- Postgraduate Program in Food Science, State University of Maringa, Maringa, Parana, 87020-900, Brazil
| | | | - Rebecca Manesco Paixão
- Postgraduate Program in Chemical Engineering, State University of Maringa, Maringa, Parana, 87020-900, Brazil
| | - Rosangela Bergamasco
- Postgraduate Program in Chemical Engineering, State University of Maringa, Maringa, Parana, 87020-900, Brazil
| | - Marcelo Fernandes Vieira
- Postgraduate Program in Chemical Engineering, State University of Maringa, Maringa, Parana, 87020-900, Brazil
| | | |
Collapse
|
44
|
Design and cost analysis of batch adsorber systems for removal of dyes from contaminated groundwater using natural low-cost adsorbents. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2020. [DOI: 10.1007/s40090-020-00205-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Separation and indirect ultraviolet detection of piperidinium cations by using imidazolium ionic liquids in liquid chromatography. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Onac C. Investigation of Electrical Conductivity Properties and Electro Transport of a Novel Multi Walled Carbon Nanotube Electro Membrane under Constant Current. ELECTROANAL 2020. [DOI: 10.1002/elan.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Canan Onac
- Pamukkale UniversityDepartment of ChemistryKınıklı Campus Denizli 20070 Denizli Turkey
| |
Collapse
|
47
|
Yang G, Huang Q, Huang H, Chen J, Lei Y, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Preparation of cationic poly(ionic liquids) functionalization of silica nanoparticles via multicomponent condensation reaction with significant enhancement of adsorption capacity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Surface-Bound Humic Acid Increased Propranolol Sorption on Fe 3O 4/Attapulgite Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10020205. [PMID: 31991558 PMCID: PMC7074867 DOI: 10.3390/nano10020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
This study explored the feasibility of utilizing a novel sorbent humic acid (HA) coated Fe3O4/attapulgite (MATP) magnetic nanoparticles (HMATP) for the sorption of propranolol from aqueous solutions. MATP and bare Fe3O4 nanoparticles were also synthesized under similar preparation conditions. The FTIR, Zeta potential, XRD, VSM, TEM, and TGA analyses were conducted to characterize the sorbent materials. The effects of pH, sorbent dosage, ionic strength, HA in the aqueous solution, contact time and initial sorbate concentration on sorption of propranolol were investigated using batch sorption experiments. The results suggested that the sorption capacity of HMATP showed little change from pH 4 to 10. Na+ and Ca2+ slightly inhibited the sorption of propranolol on HMATP. While HA in solution enhanced both MATP and HMATP, which indicated that HMATP can resist HA interference in water. Further, the less leaching amounts of Fe and HA suggested a good stability of HMATP. In all conditions, sorption capacity of propranolol on HMATP was obviously higher than that on MATP, which indicated that surface-coated HA played an important role in the propranolol sorption process. Electrostatic interaction, cation exchange, hydrogen bonding, and π–π electron donor acceptor interactions were considered as the sorption mechanisms.
Collapse
|
49
|
Zhao J, Shao Q, Ge S, Zhang J, Lin J, Cao D, Wu S, Dong M, Guo Z. Advances in Template Prepared Nano-Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. CHEM REC 2020; 20:710-729. [PMID: 31944590 DOI: 10.1002/tcr.201900093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.
Collapse
Affiliation(s)
- Junkai Zhao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dapeng Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.,Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
50
|
Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04328-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|