1
|
Ahmer MF, Uddin MK. Structure properties and industrial applications of anion exchange resins for the removal of electroactive nitrate ions from contaminated water. RSC Adv 2024; 14:33629-33648. [PMID: 39444944 PMCID: PMC11497218 DOI: 10.1039/d4ra03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of nitrates in lakes, rivers, and groundwater is common. Anion exchange resins (AER) are polymeric structures that contain functional groups as well as a variety of particle sizes that are used for removing nitrate ions from solutions. This article provides a concise review of the types and properties of AER, synthesis methods, characterization, and environmental applications of AER. It discusses how different factors affect the adsorption process, isotherm and kinetic parameters, the adsorption mechanism, and the maximum adsorption capacities. Additionally, the present review addresses AER's regeneration and practical stability. It emphasizes the progress and proposes future strategies for addressing nitrate pollution using AER to overcome the challenges. This review aims to act as a reference for researchers working in the advancement of ion exchange resins and presents a clear and concise scientific analysis of the use of AER in nitrate adsorption. It is evident from the literature survey that AER is highly effective at removing nitrate ions from wastewater effluents.
Collapse
Affiliation(s)
- Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Gurugram University Nuh 122107 Haryana India
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Majmaah University Al-Zulfi Campus Al-Majmaah 11952 Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Shiri M, Hosseinzadeh M, Shiri S, Javanshir S. Adsorbent based on MOF-5/cellulose aerogel composite for adsorption of organic dyes from wastewater. Sci Rep 2024; 14:15623. [PMID: 38972892 PMCID: PMC11228018 DOI: 10.1038/s41598-024-65774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Industries persistently contribute to environmental pollution by releasing a multitude of harmful substances, including organic dyes, which represent a significant hazard to human health. As a result, the demand for effective adsorbents in wastewater treatment technology is steadily increasing so as to mitigate or eradicate these environmental risks. In response to this challenge, we have developed an advanced composite known as MOF-5/Cellulose aerogel, utilizing the Pampas plant as a natural material in the production of cellulose aerogel. Our investigation focused on analyzing the adsorption and flexibility characteristics of this novel composite for organic dye removal. Additionally, we conducted tests to assess the aerogel's reusability and determined that its absorption rate remained consistent, with the adsorption capacity of the MOF-5/cellulose aerogel composite only experiencing a marginal 5% reduction. Characterization of the material was conducted through XRD analysis, revealing the cubic structure of MOF aerogel particles under scanning electron microscopy. Our study unequivocally demonstrates the superior adsorption capabilities of the MOF-5/cellulose aerogel composite, particularly evident in its efficient removal of acid blue dye, as evaluated meticulously using UV-Vis spectrophotometric techniques. Notably, our findings revealed an impressive 96% absorption rate for the anionic dye under acidic pH conditions. Furthermore, the synthesized MOF-5/cellulose aerogel composite exhibited Langmuir isotherm behavior and followed pseudo-second-order kinetics during the absorption process. With its remarkable absorption efficiency, MOF-5/cellulose aerogel composites are poised to emerge as leading adsorbents for water purification and various other applications.
Collapse
Affiliation(s)
- Mohammad Shiri
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Soudeh Shiri
- Department of Organic Colorants, Institute of Color Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
3
|
Kong Q, Zhang H, Lan Y, Shi X, Fang Z, Chang Q, Liu J, Wei C. Functional graphene oxide for organic pollutants removal from wastewater: a mini review. ENVIRONMENTAL TECHNOLOGY 2023; 44:3183-3195. [PMID: 35286239 DOI: 10.1080/09593330.2022.2053754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO), an important derivative of graphene, with a variety of active oxygen-containing groups (hydroxyl, carboxyl and epoxy) on its surface is easy to be functionalized to obtain adsorbent with high adsorption capacity. To date, the adsorption behaviour of organic pollutants by functionalized GO adsorbents have been extensively studied, but there has been no systematic review regarding the functionalization method of GO for the purpose to remove organic pollutants from wastewater. The leading objective of this review is to (i) summarize the functionalization strategies of GO for organic pollutants removal (covalent functionalization and non-covalent functionalization), (ii) evaluate the adsorption performance of functional GO towards organic pollutants by taking aromatic pollutants and dyes as examples and (iii) discuss the regeneration property and adsorption mechanism of functional GO adsorbent. In addition, the problems of existing studies and future research directions are also identified briefly.
Collapse
Affiliation(s)
- Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Hongzheng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Yunlong Lan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Zilong Fang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Qi Chang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Jun Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Tazik M, Dehghani MH, Yaghmaeian K, Nazmara S, Salari M, Mahvi AH, Nasseri S, Soleimani H, Karri RR. 4-Chlorophenol adsorption from water solutions by activated carbon functionalized with amine groups: response surface method and artificial neural networks. Sci Rep 2023; 13:7831. [PMID: 37188708 DOI: 10.1038/s41598-023-35117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
4-Chlorophenol pollution is a significant environmental concern. In this study, powdered activated carbon modified with amine groups is synthesized and investigated its efficiency in removing 4-chlorophenols from aqueous environments. Response surface methodology (RSM) and central composite design (CCD) were used to investigate the effect of different parameters, including pH, contact time, adsorbent dosage, and initial 4-chlorophenol concentration, on 4-chlorophenol removal efficiency. The RSM-CCD approach was implemented in R software to design and analyze the experiments. The statistical analysis of variance (ANOVA) was used to describe the roles of effecting parameters on response. Isotherm and kinetic studies were done with three Langmuir, Freundlich, and Temkin isotherm models and four pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models in both linear and non-linear forms. The synthesized adsorbent was characterized using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses. The results showed that the synthesized modified activated carbon had a maximum adsorption capacity of 316.1 mg/g and exhibited high efficiency in removing 4-chlorophenols. The optimal conditions for the highest removal efficiency were an adsorbent dosage of 0.55 g/L, contact time of 35 min, initial concentration of 4-chlorophenol of 110 mg/L, and pH of 3. The thermodynamic study indicated that the adsorption process was exothermic and spontaneous. The synthesized adsorbent also showed excellent reusability even after five successive cycles. These findings demonstrate the potential of modified activated carbon as an effective method for removing 4-chlorophenols from aqueous environments and contributing to developing sustainable and efficient water treatment technologies.
Collapse
Affiliation(s)
- Moslem Tazik
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
5
|
Yaghmaeian K, Yousefi N, Bagheri A, Mahvi AH, Nabizadeh R, Dehghani MH, Fekri R, Akbari-adergani B. Combination of advanced nano-Fenton process and sonication for destruction of diclofenac and variables optimization using response surface method. Sci Rep 2022; 12:20954. [PMID: 36470913 PMCID: PMC9722934 DOI: 10.1038/s41598-022-25349-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac (DCF) as a non-steroidal pharmaceutical has been detected in aquatic samples more than other compounds due to its high consumption and limited biodegradability. In this study, ultrasound waves were applied along with an advanced nano-Fenton process (US/ANF) to remove DCF, and subsequently, the synergistic effect was determined. Before that, the efficiency of the US and ANF processes was separately studied. The central composite design was used as one of the most applicable responses surface method techniques to determine the main and interactive effect of the factors influencing DCF removal efficiency in US/ANF. The mean DCF removal efficiency under different operational conditions and at the time of 1-10 min was obtained to be about 4%, 83%, and 95% for the US, ANF, and US/ANF, respectively. Quadratic regression equations for two frequencies of US were developed using multiple regression analysis involving main, quadratic, and interaction effects. The optimum condition for DCF removal was obtained at time of 8.17 min, H/F of 10.5 and DCF concentration of 10.12 at 130 kHz US frequency. The synergy index values showed a slight synergistic effect for US/ANF (1.1). Although the synergistic effect of US/ANF is not very remarkable, it can be considered as a quick and efficient process for the removal of DCF from wastewater with a significant amount of mineralization.
Collapse
Affiliation(s)
- Kamyar Yaghmaeian
- grid.411705.60000 0001 0166 0922Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Yousefi
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- grid.411705.60000 0001 0166 0922Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Health, Safety, and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- grid.411705.60000 0001 0166 0922Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Center for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Fekri
- grid.411600.2Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrouz Akbari-adergani
- grid.415814.d0000 0004 0612 272XNanotechnology Products Laboratory, Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
6
|
Preparation of highly efficient and eco-friendly alumina magnetic hybrid nanosorbent from red mud: Excellent adsorption capacity towards nitrate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mohammadi AA, Moghanlo S, Kazemi MS, Nazari S, Ghadiri SK, Saleh HN, Sillanpää M. Comparative removal of hazardous cationic dyes by MOF-5 and modified graphene oxide. Sci Rep 2022; 12:15314. [PMID: 36097048 PMCID: PMC9468029 DOI: 10.1038/s41598-022-19550-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 12/07/2022] Open
Abstract
Among cationic dyes, malachite green (MG) is commonly used for dying purposes and also as an inhibitor in aquaculture, food, health, and chemical industries due to its cytotoxic effects. Therefore, MG removal is essential to keep the ecosystem and human health safety. Adsorption is a viable and versatile option and exploring efficient adsorbents have high priority. Herein, MOF-5 and aminated corn Stover reduced graphene oxide (ACS-RGO) of typical adsorbents of metal-organic-frameworks (MOFs) and carbon-based classes were studied for MG removal. MOF-5 and ACS-RGO had a specific surface area and total pore volume of 507.4 and 389.0 m2/g, and 0.271 cm3/g and 0.273 cm3/g, respectively. ACS-RGO was superior for MG adsorption and the kinetic rate coefficient for ACS-RGO was ~ 7.2 times compared to MOF-5. For ACS-RGO, MG removal remained high (> 94%) in a wide range of pH. However, dye removal was pH-dependent for MOF-5 and increased from ~ 32% to ~ 67% by increasing pH from 4 to 12. Increasing dye concentration from 25 mg/L to 100 mg/L decreased adsorption by MOF-5 and ACS-RGO for ~ 30% and 7%, respectively. Dye removal was evident in a few tens of seconds after adding ACS-RGO at doses above 0.5 g/L. A significant loss of 46% in adsorption was observed by decreasing MOF-5 mass from 1 to 0.1 g/L. ACS-RGO removed MG in multilayer with an exceptional adsorption capacity of 1088.27 mg/g. In conclusion, ACS-RGO, and MOF-5 showed promising kinetic rates and adsorption capacities toward MG.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Soheila Moghanlo
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Shahram Nazari
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Najafi Saleh
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
8
|
Ismail AS, Ishak N, Kamarudin Q, Hui VES, Mustapa NB, Nasir AM. Synthesis of graphite‐based ion‐imprinted polymer for the selective removal of nitrate ions. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Anis Syahirah Ismail
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Noorhidayah Ishak
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Qasrina Kamarudin
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Vivian Ewe Shin Hui
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Nur Bahijah Mustapa
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| | - Azalina Mohamed Nasir
- Faculty of Chemical Engineering Technology University Malaysia Perlis Padang Besar, Perlis 02100 Malaysia
| |
Collapse
|
9
|
Nitrate and Dissolved Organic Carbon Release in Sandy Soils at Different Liquid/Solid Ratios Amended with Graphene and Classical Soil Improvers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study emphasizes the importance of employing parallel batch tests with different liquid/solid (L/S) ratios to assess their dissolution mechanisms. Changes in physicochemical parameters (electrical conductivity, pH, and oxidation-reduction potential), as well as the sorption/desorption of dissolved organic carbon (DOC) and nitrate (NO3−) due to graphene addition in a calcareous sandy soil (CS) and in a siliciclastic riverine sandy soil (SS) were assessed via batch experiments at different L/S ratios. Graphene’s production is growing at a great pace, so it’s important to test methods to reuse graphene wastes. The results of soil batch experiments mixed with graphene were compared with classical soil improvers (compost, biochar, and zeolites). The batches were performed using the saturation soil extraction method with deionized water as a proxy of rainwater. The contact time was 48 h. At the end of the experiment, water samples were collected to be analyzed for NO3−, DOC, DIC, Ca, and Mg. Graphene did not alter the physiochemical parameters of both soils. Moreover, its addition did not trigger any NO3− increase respect to control and to other improvers. Biochar increased EC and pH beyond recommended limits for most crops’ growth in both soils. As expected, compost addition produced the highest NO3− release.
Collapse
|
10
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Singh S, Anil AG, Kumar V, Kapoor D, Subramanian S, Singh J, Ramamurthy PC. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. CHEMOSPHERE 2022; 287:131996. [PMID: 34455120 DOI: 10.1016/j.chemosphere.2021.131996] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate pollution is eminent in almost all the developing nations as a result of increased natural activities apart from anthropogenic pollution. The release of nitrates in more than critical quantities into the water bodies causes accretion impacts on living creatures, environmental receptors, and human vigour by accumulation through the food chain. Nitrates have recently acquired researchers' huge attention and extend their roots in environmental contamination of surface and groundwater systems. The presence of nitrate in high concentrations in surface and groundwater triggers several health problems, for instance, methemoglobinemia, diabetes, eruption of infectious disorders, harmfully influence aquatic organisms. Sensing nitrate is an alternate option for monitoring the distribution of nitrate in different water bodies. Here we review electrochemical, spectroscopic, and electrical modes of nitrate sensing. It is concluded that, among the various sensors discussed in this review, FET sensors are the most desirable choice. Their sensitivity, ease of use and scope for miniaturisation are exceptional. Advanced functional materials need to be designed to satiate the growing need for environmental monitoring. Different sources of nitrate contamination in ground and surface water can be estimated using different techniques such as nitrate isotopic composition, co contaminants, water tracers, and other specialized techniques. This review intends to explore the research work on remediation of nitrate from wastewater and soil using different processes such as reverse osmosis, chemical denitrification, biological denitrification, ion exchange, electrodialysis, and adsorption. Denitrification proves as a promising alternative over previously reported techniques in terms of their nitrate removal because of its high cost-effectiveness.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Amith G Anil
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute, Jhansi, U.P. , India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| |
Collapse
|
12
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe 3O 4 embedded multi-walled carbon nanotubes. CHEMOSPHERE 2021; 281:130718. [PMID: 34044302 DOI: 10.1016/j.chemosphere.2021.130718] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Multi walled carbon nanotubes (MWCNTs) have attracted more and more attention as adsorbents due to their excellent adsorption properties. By loading metal particles on MWCNTs, the chemical reduction ability of adsorbed pollutants could be provided, so as to achieve the purpose of adsorption and degradation of pollutants. Therefore, the removal process of NO3--N by Fe-Pd-Fe3O4/MWCNTs was studied, including rapid adsorption of initial pollutants, gradual reduction of intermediate products and re-adsorption of final products. The results showed that Fe-Pd-Fe3O4/MWCNTs completely removed NO3--N within 2 h, 39% and 25% of which were converted into NO2--N and NH4+-N. The adsorption efficiency, kinetics, capacity and adsorption energy all followed the order of NH4+-N > NO2--N > NO3--N. With the recoverability and reusability of Fe-Pd-Fe3O4/MWCNTs having been confirmed in 5 consecutive cycles, the removal rate of NO3--N still reached 43%. It has been shown that MWCNTs prolonged the reducing power for NO3--N, due to avoiding the aggregation of metal particles. The rapid adsorption of initial pollutants, effective stepwise reduction and convenient recovery processes were of great value for the rehabilitation of polluted water.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
13
|
Noorani Khomeyrani SF, Ahmadi Azqhandi MH, Ghalami-Choobar B. Rapid and efficient ultrasonic assisted adsorption of PNP onto LDH-GO-CNTs: ANFIS, GRNN and RSM modeling, optimization, isotherm, kinetic, and thermodynamic study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Parameter optimization of tetracycline removal by vanadium oxide nano cuboids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Talebi SS, Javid AB, Roudbari AA, Yousefi N, Ghadiri SK, Shams M, Mousavi Khaneghah A. Defluoridationof drinking water by metal impregnated multi-layer green graphene fabricated from trees pruning waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18201-18215. [PMID: 33410018 DOI: 10.1007/s11356-020-11743-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
A novel adsorbent with excellent adsorptive properties for fluoride was prepared through a green and cheap synthesis route. Populus caspica pruning wastes, a cheap agri-waste material, were reduced to multi-layer green graphene (MLG) and then post-modified to aluminum/iron modified multi-layer green graphene (AMLG and IMLG). Batch experiments revealed the effect of pH (3-11), contact time (0.5-12 h), and initial fluoride concentration (5-40 mg/L). The conversion of raw material to MLG increased the specific surface area about 120 times (from 4 to 475 m2/g). Furthermore, a significant improvement in zero points of charge (pHzpc) was attained for IMLG (7.1) and AMLG (8) compared with pristine MLG (4.3). Fluoride showed superior affinity to AMLG and IMLG compared with MLG. Fluoride removal increased gradually by pH from 3 to 8 and then decreased sharply up to pH 11. The study of process dynamics demonstrated the monolayer fluoride adsorption onto AMLG and IMLG controlled by the chemisorptions. The highest predicted adsorption capacities based on the Langmuir model were 31.52, 47.01, and 53.76 mg/g for MLG, IMLG, and AMLG, respectively. Considering economic and technical feasibility presents AMLG and IMLG as a promising candidate against water contamination by elevated fluoride. Graphical abstract.
Collapse
Affiliation(s)
- Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Allaah Bakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Akbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
- The environmental and occupational health research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, P.O. Box: 91735-951, Mashhad, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
16
|
Bonyadi Z, Noghani F, Dehghan A, der Hoek JPV, Giannakoudakis DA, Ghadiri SK, Anastopoulos I, Sarkhosh M, Colmenares JC, Shams M. Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Javid A, Roudbari A, Yousefi N, Fard MA, Barkdoll B, Talebi SS, Nazemi S, Ghanbarian M, Ghadiri SK. Modeling of chromium (VI) removal from aqueous solution using modified green-Graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:515-529. [PMID: 33312580 PMCID: PMC7721790 DOI: 10.1007/s40201-020-00479-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The aim of this study was to investigate the removal of Cr (VI) using Green-Graphene Nanosheets (GGN) synthesized from rice straw. METHODS Synthesis of the GGN was optimized using response surface methodology and central composite design (CCD). The effect of two independent variables including KOH-to-raw rice ash (KOH/RRA) ratio and temperature on the specific surface area of the GGN was determined. To have better removal of Cr (VI), GGN was modified using the grafting amine group method. In the Cr (VI) removal process, the effects of four independent variables including initial Cr (VI) concentration, adsorbent dosage, contact time, and initial solution pH were studied. RESULTS The results of this study showed that the optimum values of the KOH/RRA ratio and temperature for the preparation of GGN were 10.85 and 749.61 °C, respectively. The maximum amount of SSA obtained at optimum conditions for GGN was 551.14 ± 3.83 m 2 /g. The optimum conditions for Cr (VI) removal were 48.35 mg/L, 1.46 g/L, 44.30 min, and 6.87 for Cr (VI) concentration, adsorbent dosage, contact time, and pH, respectively. Based on variance analysis, the adsorbent dose was the most sensitive factor for Cr (VI) removal. Langmuir isotherm (R2 = 0.991) and Pseudo-second-order kinetic models (R2 = 0.999) were the best fit for the study results and the Q max was 138.89 mg/g. CONCLUSIONS It can be concluded that the predicted conditions from the GGN synthesis model and the optimum conditions from the Cr (VI) removal model both agreed with the experimental findings.
Collapse
Affiliation(s)
- Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh Fard
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Brian Barkdoll
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Nazemi
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Ghanbarian
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
19
|
Chen C, Guo Y, Long L, Chen K, Hu X, Xue Y. Biodegradable chitosan-ethylene glycol hydrogel effectively adsorbs nitrate in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32762-32769. [PMID: 32519097 DOI: 10.1007/s11356-020-09438-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Nitrate, existing as inorganic anions in water, possesses high water-solubility and has caused lots of contaminations around the world. It is thus extremely urgent to develop an effective method to effectively remove nitrate from water in a sustainable way. In this study, chitosan-ethylene glycol hydrogel (CEGH) was synthesized using the repeated freezing-thawing procedure. A range of batch sorption experiments were conducted to evaluate CEGH as a nitrate sorbent. The adsorption isotherms of nitrate onto CEGH followed the Langmuir model with coefficient of determination of 0.98 and a maximum Langmuir adsorption capacity of 49.04 mg/g, which is higher than that of other adsorbents. The adsorption of nitrate onto CEGH was affected by pH value and temperature. The results indicate that the main removal mechanism was polarity of CEGH molecules given by functional group O-H and N-H and hydrogen bond interaction between CEGH and nitrate molecules under acidic conditions. Therefore, CEGH, a biodegradable carbon-rich adsorbent, can be widely applied to remove nitrate in wastewater treatment and water body remediation.
Collapse
Affiliation(s)
- Changhong Chen
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yiwei Guo
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Keyan Chen
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Aminated graphitic carbon derived from corn stover biomass as adsorbent against antibiotic tetracycline: Optimizing the physicochemical parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Ghadiri SK, Alidadi H, Tavakkoli Nezhad N, Javid A, Roudbari A, Talebi SS, Mohammadi AA, Shams M, Rezania S. Valorization of biomass into amine- functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study. PLoS One 2020; 15:e0231045. [PMID: 32287274 PMCID: PMC7156080 DOI: 10.1371/journal.pone.0231045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/13/2020] [Indexed: 12/07/2022] Open
Abstract
A green synthesis approach was conducted to prepare amine-functionalized bio-graphene (AFBG) as an efficient and low cost adsorbent that can be obtained from agricultural wastes. In this study, bio-graphene was successfully used to remove Ciprofloxacin (CIP) from synthetic solutions. The efficacy of adsorbent as a function of operating variables (i.e. pH, time, AFBG dose and CIP concentration) was described by a polynomial model. A optimal99.3% experimental removal was achieved by adjusting the mixing time, AFBG dose, pH and CIP concentration to 58.16, 0.99, 7.47, and 52.9, respectively. Kinetic model revealed that CIP diffusion into the internal layers of AFBG controls the rate of the process. Furthermore, the sorption process was in monolayer with a maximum monolayer capacity of 172.6 mg/g. Adsorption also found to be favored under higher CIP concentrations. The thermodynamic parameters (ΔG°<0, ΔH°>0, and ΔS°>0) demonstrated that the process is endothermic and spontaneous in nature. The regeneration study showed that the AFBG could simply regenerated without significant lost in adsorption capacity.
Collapse
Affiliation(s)
- Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Alidadi
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Tavakkoli Nezhad
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (AAM); (MS); (SR)
| | - Shahabaldin Rezania
- Department of Environment & Energy, Sejong University, Seoul, South Korea
- * E-mail: (AAM); (MS); (SR)
| |
Collapse
|
22
|
Dehghan A, Mohammadi AA, Yousefi M, Najafpoor AA, Shams M, Rezania S. Enhanced Kinetic Removal of Ciprofloxacin onto Metal-Organic Frameworks by Sonication, Process Optimization and Metal Leaching Study. NANOMATERIALS 2019; 9:nano9101422. [PMID: 31597245 PMCID: PMC6835299 DOI: 10.3390/nano9101422] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) are currently recognized as unique platforms for environmental studies. This study evaluated the potential of nine MOFs from ZIF-8, ZIF-67, and UIO-66 families for the removal of ciprofloxacin (CIP), a toxic, bio-accumulative, and persistent fluoroquinolone antibiotic. ZIF-67-SO4, with a rhombic crystalline morphology and 1375 m2/g BET surface area, has the highest CIP adsorption efficiency among the studied MOFs. The mathematical sorption model predicted that the highest CIP removal (99.2%) occurs when adsorbent dose, pH, and agitation time are adjusted to 6.82, 832.4 mg/L, and 39.95 min, respectively. Further studies revealed that the CIP adsorbed onto ZIF-67-SO4 in monolayer (qmax: 2537.5 mg/g) and chemisorption controlled the rate of the process. Mass transfer kinetic coefficients improved significantly by sonication at 35 KHz in comparison with mechanical agitation. Thermodynamic parameters (minus signs of ∆G° [7.8 to 14.2], positive signs of ∆H° (58.9 KJ/mol), and ∆S° (0.23 KJ/mol·K)) demonstrated the spontaneous, endothermic, and chemical sorption of CIP. The level of cobalt leached from ZIF-67-SO4 structure varied 1.2–4.5 mg/L, depending on pH, mixing time, and agitation type. In conclusion, the excellent adsorption properties of ZIF-67-SO4 for CIP, made it an outstanding candidate for environmental protection purposes.
Collapse
Affiliation(s)
- Aliakbar Dehghan
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran.
| | - Ali Asghar Najafpoor
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran.
| | | |
Collapse
|
23
|
Karyab H, Hajimirmohammad-Ali R, Bahojb A. A lumped-parameter model for investigation of nitrate concentration in drinking water in arid and semi-arid climates and health risk assessment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:457-465. [PMID: 31297220 PMCID: PMC6582111 DOI: 10.1007/s40201-019-00364-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/04/2019] [Indexed: 05/28/2023]
Abstract
PURPOSE This study was conducted to assess the capability of the lumped parameter model (LPM), an efficient model due to its analytical nature and the limited data requirements, to estimate health risks from nitrate in groundwater in arid and semi-arid climates. METHODS To assess the capability of LPM, two scenarios were established: one for estimation of hazard quotient (HQ) via monitoring nitrate concentration in groundwater and the other using the LPM. After nitrate was monitored in 148 randomly-selected wells, a modified LPM was used to estimate water volume and nitrate concentration, which ultimately led to the development of a model for estimating HQ. The performances of LPM were assessed using the coefficient of determination, percentage standard deviation, and root mean square error. To compare health risk maps Kriging, Spline, Inverse distance weighted, and natural neighbor models were run using geographical information system (GIS). RESULTS Linear analysis revealed a strong correlation between HQ values estimated in LPM and monitoring scenarios in arid climate compared to semi-arid (r = 0.962, n = 22, p = 0.00), suggesting that the LPM was more accurate in predicting nitrate concentration in the arid climate. Uncertainty analysis showed that LPM outputs were sensitive to several parameters, especially leakage from cesspits, which are involved in the sources and sinks of nitrate in the groundwater. In addition, it was found that the natural neighbor was the most appropriate model with the lowest errors for preparing health risk maps from nitrate. CONCLUSIONS The obtained results revealed that LPM can be effectively used to estimate nitrate concentration in groundwater in arid climates and thereby LPM is an appropriate model to estimate health risk from nitrate in this climate.
Collapse
Affiliation(s)
- Hamid Karyab
- Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, Qazvin, Iran
| | | | - Akram Bahojb
- Department of Environmental Health Engineering, Public Health Center, Qazvin University of Medical Science, Bahonar Blvd, Qazvin, Iran
| |
Collapse
|
24
|
Li JH, Yang LX, Li JQ, Yin WH, Tao Y, Wu HQ, Luo F. Anchoring nZVI on metal-organic framework for removal of uranium(Ⅵ) from aqueous solution. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
25
|
Jahangiri K, Yousefi N, Ghadiri SK, Fekri R, Bagheri A, Talebi SS. Enhancement adsorption of hexavalent chromium onto modified fly ash from aqueous solution; optimization; isotherm, kinetic and thermodynamic study. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1496841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Katayoun Jahangiri
- Department of Health in Disasters and Emergencies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Rana Fekri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
26
|
Fabrication of magnetite-functionalized-graphene oxide and hexadecyltrimethyl ammonium bromide nanocomposite for efficient nanosorption of sunset yellow. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:287-296. [DOI: 10.1016/j.msec.2018.06.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
|
27
|
Rostamian R, Amiri N, Behnejad H. How does graphene nanosheet affect the pharmaceutical adsorption? A comprehensive insight from molecular dynamics simulation, quantum mechanics and experimental study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Yoo P, Amano Y, Machida M. Adsorption of nitrate onto nitrogen-doped activated carbon fibers prepared by chemical vapor deposition. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0151-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Selective removal of mercury(II) from water using a 2,2-dithiodisalicylic acid-functionalized graphene oxide nanocomposite: Kinetic, thermodynamic, and reusability studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Khazaei M, Nasseri S, Ganjali MR, Khoobi M, Nabizadeh R, Gholibegloo E, Nazmara S. Selective removal of lead ions from aqueous solutions using 1,8-dihydroxyanthraquinone (DHAQ) functionalized graphene oxide; isotherm, kinetic and thermodynamic studies. RSC Adv 2018; 8:5685-5694. [PMID: 35539584 PMCID: PMC9078188 DOI: 10.1039/c7ra13603j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 12/07/2022] Open
Abstract
An anthraquinone - graphene structure was fabricated and applied for the removal of lead(ii) from aqueous solution. The equilibrium occurred in about 10 min revealing the high adsorption rate at the beginning of the process. The maximum Pb(ii) adsorption capacity of the Fe3O4@DHAQ_GO nanocomposite was about 283.5 mg g-1 that was observed at 323 K and pH 5.5. The Pb(ii) adsorption ability increased with the increasing pH. The isotherm and kinetic studies indicated that the Sips isotherm model and the linear form of the pseudo-second kinetic model had a better fit with the experimental results. The positive value of ΔH 0 indicated endothermic interactions between Pb(ii) and Fe3O4@DHAQ_GO. The negative ΔG 0 indicated that the reactions are spontaneous with a high affinity for Pb(ii). The positive ΔS 0 values indicated increasing randomness at the solid-solute interface during the adsorption process. The selective removal of Pb(ii) by the nanocomposite confirms the presence of higher-affinity binding sites for Pb(ii) than Cd(ii), Co(ii), Zn(ii), and Ni(ii) ions. Furthermore, the Fe3O4@DHAQ_GO nanocomposite revealed an excellent preferential adsorbent for Pb(ii) spiked in drinking water samples containing natural ion matrices. EDTA-2NA 0.01 N was found to be a better elution agent than HCl 0.1 M for the nanocomposite regeneration. After five adsorption/desorption cycles using EDTA-2NA 0.01 N, more than 84% of the adsorbed Pb(ii) was still desorbed in 30 min. Capturing sub-ppm initial concentrations of Pb(ii) and the capability to selectively remove lead from drinking water samples make the Fe3O4@DHAQ_GO nanocomposite practically convenient for water treatment purposes. High adsorption capacity and facile chemical synthesis route are the other advancements.
Collapse
Affiliation(s)
- Mohammad Khazaei
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences P. O. Box: 14155-6446 Tehran Iran +98 2188950188 +98 2188954914
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences P. O. Box: 14155-6446 Tehran Iran +98 2188950188 +98 2188954914
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran Tehran Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences P. O. Box: 14155-6446 Tehran Iran +98 2188950188 +98 2188954914
| | - Elham Gholibegloo
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences P. O. Box: 14155-6446 Tehran Iran +98 2188950188 +98 2188954914
| |
Collapse
|
31
|
Ogata F, Nagai N, Kariya Y, Nagahashi E, Kobayashi Y, Nakamura T, Kawasaki N. Adsorption of Nitrite and Nitrate Ions from an Aqueous Solution by Fe–Mg-Type Hydrotalcites at Different Molar Ratios. Chem Pharm Bull (Tokyo) 2018; 66:458-465. [DOI: 10.1248/cpb.c17-01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University
- Antiaging Center, Kindai University
| |
Collapse
|
32
|
|