1
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Zisti F, Al-Behadili FJM, Nadimpour M, Rahimpoor R, Mengelizadeh N, Alsalamy A, Alawadi A, Doghiam Abdullah M, Balarak D. Synthesis and characterization of Fe 3O 4@SiO 2 -supported metal-organic framework PAEDTC@MIL-101 (Fe) for degradation of chlorpyrifos and diazinon pesticides. ENVIRONMENTAL RESEARCH 2024; 245:118019. [PMID: 38142730 DOI: 10.1016/j.envres.2023.118019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
In this study, a new core-shell Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) photocatalyst was prepared by sol-gel method and used to degrade diazinon (DZN) and chlorpyrifos (CPS) from aqueous solutions. The characteristics analyzed by various techniques indicate that the core-shell photocatalyst with a specific surface area of 992 m2/g, pore size of 1.35 nm and saturation magnetization of nanocomposite was 12 emu/g has been successfully synthesized and can be separated from the reaction solution by a magnetic field. The maximum efficiencies of DZN (98.8%) and CPS (99.9%) were provided at pH of 5, photocatalyst dosage of 0.6 g/L, pollutant concentration of 25 mg/L, radiation intensity of 15 W, and time of 60 min. The presence of anions such as sulfate, nitrate, bicarbonate, phosphate, and chloride had a negative effect on the performance of the photocatalysis system. Compared to the adsorption and photolysis systems alone, the photocatalytic process based on Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) under two UV and visible light sources showed a high efficiency of 90% in the reaction time of 60 min. The BOD5/COD ratio improved after 50 min to above 0.4 with TOC and COD removal rates >80%. Scavenging tests showed that •OH radical, hole (h+), electron (e-), and O2•- anion were produced in the reaction reactor, and the •OH radical was the dominant species in the degradation of DZN and CPS. The stability tests confirmed the recyclability of the photocatalyst in 360 min of reactions, with a minimum reduction of 7%. Energy consumption for the present system during different reactions was between 15.61 and 25.06 kWh/m3 for DZN degradation and 10-22.87 kWh/m3 for CPS degradation.
Collapse
Affiliation(s)
- Fatemeh Zisti
- Department of Chemistry, University of Brock, St.chatarines, Ontario, Canada
| | | | - Mahsa Nadimpour
- Department of Basic Sciences, Shahid Chamran University, Ahvaz, Iran
| | - Razzagh Rahimpoor
- Department of Occupational Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Alsalamy
- . College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University; Najaf; Iraq; College of Technical Engineering, The Islamic University of Al Diawaniyah; Al Diawaniyah; Iraq; Collage of Technical Engineering; The Islamic University of Babylon; Babylon; Iraq
| | | | - Davoud Balarak
- Department of Environmental Health Engineering, Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
4
|
Pirsaheb M, Hossaini H, Fatahi N, Jafari Z, Jafari F, Jafari Motlagh R. Photocatalytic removal of organophosphorus pesticide by the WO 3-Fe 3O 4/rGO photocatalyst under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2555-2568. [PMID: 38066264 DOI: 10.1007/s11356-023-31257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
The WO3-Fe3O4/reduced graphene oxide (rGO) composite was synthesized with a hydrothermal method for the photocatalytic removal of diazinon (DZ) in visible light. The influence of catalyst concentration (0.5-1.5 g L-1), pH (5-9), and initial pollutant value (5-15 mg L-1) on the pesticide degradation was studied. The performance of the WO3-Fe3O4/rGO nanocomposite for DZ degradation under visible light shows 94% degradation of 5 mg L-1 DZ for 100 min with 1 g L-1 nanocomposite, and the degradation kinetic was modeled in pseudo-first order (PFO) and the maximum kobs was 0.0248 min-1. The photocatalytic mechanism and the intermediates of DZ degradation were identified. In addition, the WO3-Fe3O4/rGO catalyst showed reusability after 4 runs. The results of this work illustrate that the WO3-Fe3O4/rGO nanocomposite can be applied for real use owing to its high catalytic performance.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hiwa Hossaini
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fatahi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Jafari
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fataneh Jafari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Jafari Motlagh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran
| |
Collapse
|
5
|
Anh TM, Pham TD, Viet NM, Anh DTN, Cam NTD, Noi NV, Nhiem DN, Chau CN, Ha TTV, Phuong NM, Rene ER, Minh TD. Synthesis of CoWO 4/g-C 3N 4 Z-scheme heterojunction for the efficient photodegradation of diazinon with the addition of H 2O 2. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 59:1-8. [PMID: 37966056 DOI: 10.1080/03601234.2023.2273773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Pesticides are on the list of substances that are routinely monitored by agencies and organizations in various natural environments and habitats. Diazinon (DZN) is the active ingredient in more than 20 agricultural pesticides, it causes the most damage and has been prohibited in many countries around the world. The final product CoWO4/g-C3N4 Z-scheme heterojunction was successfully synthesized in this work, where CoWO4 nanoparticles were deposited on the surface of g-C3N4. CoWO4/g-C3N4 structure allowed for the efficient separation of photo-generated electron-hole pairs, with electrons at the CoWO4 CB migrating to the g-C3N4 VB and preserving the electrons at the g-C3N4 CB and holes in the CoWO4 VB. The photodegradation efficiency of DZN using CoWO4/g-C3N4 Z-scheme heterojunction was investigated, as compared with its precursors, such as CoWO4, and g-C3N4. CoWO4/g-C3N4 Z-scheme heterojunction demonstrated the highest degradation capacity for DZN removal. Based on the results, the photocatalysis of the CoWO4/g-C3N4 Z-scheme heterojunction can be recycled for the effective removal of DZN by simple washing after three runs, proving the heterojunction's stability and suggesting CoWO4 as a promising material for the removal of DZN from contaminated water sources.
Collapse
Affiliation(s)
- Tran Minh Anh
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
| | - Thanh-Dong Pham
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
| | - Nguyen Minh Viet
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
- Key Lab of Advanced Material for Green Growth, VNU University of Science, Hanoi, Vietnam
| | - Dao Thi Ngoc Anh
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
| | | | - Nguyen Van Noi
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
- Key Lab of Advanced Material for Green Growth, VNU University of Science, Hanoi, Vietnam
| | - Dao Ngoc Nhiem
- Institute of Material Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chu Ngoc Chau
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
| | | | - Nguyen Minh Phuong
- Faculty of Chemistry, Vietnam National University, VNU University of Science, Hanoi, Vietnam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Delft, Netherlands
| | - Tran Dinh Minh
- Department of Education, Central Propaganda and Training Commission, Hanoi, Vietnam
| |
Collapse
|
6
|
Herrera W, Vera J, Aponte H, Hermosilla E, Fincheira P, Parada J, Tortella G, Seabra AB, Diez MC, Rubilar O. Meta-analysis of metal nanoparticles degrading pesticides: what parameters are relevant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60168-60179. [PMID: 37017842 DOI: 10.1007/s11356-023-26756-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
The rise in the global population demands an increasing food supply and methods to boost agricultural production. Pesticides are necessary for agricultural production models, avoiding losses of close to 40%. Nevertheless, the extensive use of pesticides can cause their accumulation in the environment, causing problems for human health, biota, and ecosystems. Thus, new technologies have emerged to remove these wastes efficiently. In recent years, metal and metal oxide nanoparticles (MNPs) have been reported as promising catalysts to degrade pesticides; however, a systematic understanding of their effect on pesticide degradation is still required. Therefore, this study focused on a meta-analysis of articles available in Elsevier's Scopus and Thomas Reuters Web of Science, found by searching for "nanoparticle pesticide" and "pesticide contamination." After passing different filters, the meta-analysis was performed with 408 observations from 94 reviews, which comprise insecticides, herbicides, and fungicides, including organophosphates, organochlorines, carbamates, triazines, and neonicotinoids. Herein, 14 different MNPs (Ag, Ni, Pd, Co3O4, BiOBr, Au, ZnO, Fe, TiO2, Cu, WO3, ZnS, SnO2, and Fe0), improved pesticide degradation, with the highest degradation rates achieved by Ag (85%) and Ni (82.5%). Additionally, the impact of the MNP functionalization, size, and concentration on pesticide degradation was quantified and compared. In general, the degradation rate increased when the MNPs were functionalized (~ 70%) compared to naked (~ 49%). Also, the particle size significantly affected the degradation of pesticides. To our knowledge, this study is the first meta-analysis performed about the impact of MNPs on pesticide degradation, providing an essential scientific basis for future studies.
Collapse
Affiliation(s)
- Wence Herrera
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Joelis Vera
- Programa de Doctorado en Ciencias de la Ingeniería mención Bioprocesos, Universidad de la Frontera, Temuco, Chile
| | - Humberto Aponte
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Laboratorio de Ecología Microbiana Y Biogeoquímica de Suelos, Universidad de O'Higgins, San Fernando, Chile
| | - Edward Hermosilla
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Javiera Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
- Departamento de ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
- Departamento de ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, SP, Santo André, Brazil
| | - Maria Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
- Departamento de ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile.
- Departamento de ingeniería Química, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Zhang Y, Zhou B, Chen H, Yuan R. Heterogeneous photocatalytic oxidation for the removal of organophosphorus pollutants from aqueous solutions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159048. [PMID: 36162567 DOI: 10.1016/j.scitotenv.2022.159048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pollutants (OPs), which are compounds containing carbon‑phosphorus bonds or phosphate derivatives containing organic groups, have received much attention from researchers because of their persistence in the aqueous environment for long periods of time and the threat they pose to human health. Heterogeneous photocatalysis has been widely applied to the removal of OPs from aqueous solutions due to its better removal effect and environmental friendliness. In this review, the removal of OPs from aqueous matrices by heterogeneous photocatalysis was presented. Herein, the application and the heterogeneous photocatalysis mechanism of OPs were described in detail, and the effects of catalyst types on degradation effect are discussed categorically. In particular, the heterojunction type photocatalyst has the most excellent effect. After that, the photocatalytic degradation pathways of several OPs were summarized, focusing on the organophosphorus pesticides and organophosphorus flame retardants, such as methyl parathion, dichlorvos, dimethoate and chlorpyrifos. The toxicity changes during degradation were evaluated, indicating that the photocatalytic process could effectively reduce the toxicity of OPs. Additionally, the effects of common water matrices on heterogeneous photocatalytic degradation of OPs were also presented. Finally, the challenges and perspectives of heterogeneous photocatalysis removal of OPs are summarized and presented.
Collapse
Affiliation(s)
- Yujie Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Mariappan K, Alagarsamy S, Chen SM, Sakthinathan S. Fabrication of ZnWO 4/Carbon Black Nanocomposites Modified Glassy Carbon Electrode for Enhanced Electrochemical Determination of Ciprofloxacin in Environmental Water Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:741. [PMID: 36676478 PMCID: PMC9861401 DOI: 10.3390/ma16020741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The major problem facing humanity in the world right now is the sustainable provision of water and electricity. Therefore, it is essential to advance methods for the long-term elimination or removal of organic contaminants in the biosphere. Ciprofloxacin (CIP) is one of the most harmful pollutants affecting human health through improper industrial usage. In this study, a zinc tungsten oxide (ZnWO4) nanomaterial was prepared with a simple hydrothermal synthesis. The ZnWO4/Carbon black nanocomposites were fabricated for the determination of CIP. The nanocomposites were characterized by field emission scanning electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Electrochemical studies were done using cyclic voltammetry and differential pulse voltammetry methods. Based on the electrode preparation, the electrochemical detection of CIP was carried out, producing exceptional electrocatalytic performance with a limit of detection of 0.02 μM and an excellent sensitivity of (1.71 μA μM-1 cm-2). In addition, the modified electrode displayed great selectivity and acceptable recoveries in an environmental water sample analysis for CIP detection of 97.6% to 99.2%. The technique demonstrated high sensitivity, selectivity, outstanding consistency, and promise for use in ciprofloxacin detection. Ciprofloxacin was discovered using this brand-new voltammetry technique in a water sample analysis.
Collapse
Affiliation(s)
- Kiruthika Mariappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhong-Xiao East Road, Taipei 106, Taiwan
| |
Collapse
|
9
|
Naimi-Joubani M, Ayagh K, Tahergorabi M, Shirzad-Siboni M, Yang JK. Design and modeling of diazinon degradation in hydrous matrix by Ni-doped ZnO nanorods under ultrasonic irradiation: process optimization using RSM (CCD), kinetic study, reaction pathway, mineralization, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3527-3548. [PMID: 35947265 DOI: 10.1007/s11356-022-21861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In first, the Ni-doped ZnO nanorods used as an appeal sonocatalyst was synthesized through co-precipitation method. Afterwards, the crystalline structure, functional groups, surface morphology, and elemental composition were characterized by a set of analysis. Removal of diazinon ((DZ) as a renowned pesticide) was investigated using sonocatalytic performance of US/Ni-doped ZnO system. In this empirical study, response surface methodology (RSM) based central composite design (CCD) was applied for optimization of operational factors. Under the optimum conditions such as initial pH = 5, initial DZ concentration = 15 mg L-1, sonocatalyst dosage = 1 g L-1, and in the presence of organic compounds (oxalic acid, humic acid, and folic acid) = 3 mg L-1, the sonocatalytic degradation of DZ after 15 min was 82.29%. The F-value (6.64) and P-value (< 0.0001) for DZ degradation in the quadratic model imply the proposed model was significant. A-factor (pH) considers as a prominent factor owing to having the highest F-value. In addition, the sonocatalytic data in this study exhibited valid fitting for the first order kinetic model (R2 > 0.98). After six consecutive cycles, the Ni-doped ZnO nanorods could be recyclable for sonocatalytic degradation of DZ. The five main compounds produced during the US/Ni-doped ZnO embracing 2-isopropyl-6-methyl-4-pyrimidinol (IMP), diethyl phosphonate, diazoxon, hydroxyldiazinon, and diazinon methyl ketone are formed in the path of DZ degradation. OFAT style also revealed 99.99% of DZ degradation with 73.26% of mineralization rate in optimum status. The Ni-doped ZnO presented agreeable sonocatalytic facility in the refinement of real water and wastewater matrix. Finally, the results of toxicity evaluation (Daphnia magna) in the sonocatalytic degradation of DZ (by US/Ni-doped ZnO system) showed that the toxicity of the DZ solution lessened under US waves (LC50 and TU 48 h equal to 36.472 and 2.741 volume percent, respectively).
Collapse
Affiliation(s)
- Mohammad Naimi-Joubani
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Kobra Ayagh
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahsa Tahergorabi
- Department of Environmental Health Engineering, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mehdi Shirzad-Siboni
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran.
| | - Jae- Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, Korea
| |
Collapse
|
10
|
Rani M, Yadav J, Shanker U, Sillanpää M. Green Synthesized Zinc Derived Nanocomposites with Enhanced Photocatalytic Activity: An Updated Review on Structural Modification, Scientific Assessment and Environmental Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Pirsaheb M, Hossaini H, Asadi A, Jafari Z. Persulfate activation by magnetic SnS2-Fe3O4/rGO nanocomposite under visible light for detoxification of organophosphorus pesticide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Samadi-Maybodi A, Ghezel-Sofla H, BiParva P. Co/Ni/Al-LTH Layered Triple Hydroxides with Zeolitic Imidazolate Frameworks (ZIF-8) as High Efficient Removal of Diazinon from Aqueous Solution. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Kajitvichyanukul P, Nguyen VH, Boonupara T, Phan Thi LA, Watcharenwong A, Sumitsawan S, Udomkun P. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review. ENVIRONMENTAL RESEARCH 2022; 212:113336. [PMID: 35580668 DOI: 10.1016/j.envres.2022.113336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pesticides have been frequently used in agricultural fields. Due to the expeditious utilization of pesticides, their excessive usage has negative impacts on the natural environment and human health. This review discusses the successful implications of nanotechnology-based photocatalysis for the removal of environmental pesticide contaminants. Notably, various nanomaterials, including TiO2, ZnO, Fe2O3, nanoscale zero-valent iron, nanocomposite-based materials, have been proposed and have played a progressively essential role in wastewater treatment. In addition, a detailed review of the crucial reaction condition factors, including water matrix, pH, light source, temperature, flow rate (retention time), initial concentration of pesticides, a dosage of photocatalyst, and radical scavengers, is also highlighted. Additionally, the degradation pathway of pesticide mineralization is also elucidated. Finally, the challenges of technologies and the future of nanotechnology-based photocatalysis toward the photo-degradation of pesticides are thoroughly discussed. It is expected that those innovative extraordinary photocatalysts will significantly enhance the performance of pesticides degradation in the coming years.
Collapse
Affiliation(s)
- Puangrat Kajitvichyanukul
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu, India
| | - Thirasant Boonupara
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Apichon Watcharenwong
- School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand; Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sulak Sumitsawan
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Patchimaporn Udomkun
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Mohagheghian A, Besharati-Givi N, Ayagh K, Shirzad-Siboni M. Mineralization of diazinon by low-cost CuO-Kaolin nanocomposite under visible light based RSM methodology: Kinetics, cost analysis, reaction pathway and bioassay. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Prabagar JS, Yashas SR, Gurupadayya B, Wantala K, Diganta DB, Shivaraju HP. Degradation of doxycycline antibiotics using lanthanum copper oxide microspheres under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57204-57214. [PMID: 35344145 DOI: 10.1007/s11356-022-19842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, lanthanum copper oxide was synthesized under hydrothermal techniques and characterized for doxycycline degradation. The catalyst exhibited enhanced photocatalytic doxycycline degradation under visible light owing to its compatible bandgap energy (1.7 eV). The XRD data revealed high crystallinity of the material with no noticeable impurities. Three-dimensional microspheres of varying sizes (average diameter of 2.52 μm) were observed from SEM. EDX confirms the successful synthesis of La2CuO4. The effect of DC concentration, catalyst dosage, and initial pH on the degradation rate of DC was studied methodically. Interestingly, about 85% of doxycycline (10 mg/L) was degraded within 120 min of light-emitting diode irradiation at pH 10. Oxygen vacancies and surface defects were determined through photoluminescence spectra. The recyclability experiments suggested that the catalyst is capable of degrading DC for three consecutive runs. Radical trapping trials suggested that holes (h+), superoxide radicals (●O2-), and hydroxyl radicals (●OH) are involved in the photodegradation of DC. Herein, the novel approach of La2CuO4 synthesis and the efficient visible-light harvesting capability of as-prepared catalyst reveal the potentiality for DC degradation thereby opening a new horizon of research employing La2CuO4 used for various environmental applications.
Collapse
Affiliation(s)
- Jijoe Samuel Prabagar
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
- Center for Water, Food and Energy, Dombaranahalli Post, GREENS Trust, Turuvekere Taluka, Tumkur District, Harikaranahalli, Karnataka, India, 572215
| | - Shivamurthy Ravindra Yashas
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Das Bhusan Diganta
- Department of Chemical Engineering, School of AACME, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Harikaranahalli Puttaiah Shivaraju
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India.
- Center for Water, Food and Energy, Dombaranahalli Post, GREENS Trust, Turuvekere Taluka, Tumkur District, Harikaranahalli, Karnataka, India, 572215.
| |
Collapse
|
16
|
Barjasteh-Askari F, Nasseri S, Nabizadeh R, Najafpoor A, Davoudi M, Mahvi AH. Photocatalytic removal of diazinon from aqueous solutions: a quantitative systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26113-26130. [PMID: 35079967 DOI: 10.1007/s11356-022-18743-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Diazinon is a widely used pesticide that can be effectively degraded in aqueous solutions via photocatalytic oxidation. This quantitative systematic review was conducted to shed light on the various aspects of photocatalytic diazinon removal based on evidence. A systematic search was performed in Scopus, PubMed, Web of Science, Embase, and Ovid databases with keywords including diazinon, photocatalysis, and their equivalents. The search was limited to original articles in English published between January 1, 2010, and March 25, 2021. The results were expressed by descriptive statistics including mean, SD, median, and percentiles, among others. The initial electronic and manual search retrieved 777 articles, among which 41 studies comprising 49 trials were qualified for data synthesis. The reported diazinon degradation rate ranged from 2 to 100%, with a mean ± SD of 59.17 ± 28.03%. Besides, ZnO/UV, WO3/UV, TiO2/UV, and TiO2/Vis, in sequence, were the most widely used processes with the highest efficacies. Solution pH in the range of 5-8, catalyst dose below 600 mg/L, diazinon initial concentration below 40 mg/L, and contact time of 20-140 min could be the optimum conditions. Diazinon degradation obeyed the first-order kinetic model with kobs between 0.0042 and 1.86 min-1 and consumed energy of 38.93-350.36 kWh/m3. Diazoxon and IMP were the most detected by-products of diazinon degradation although bioassay data were scarce. Based on the results, photocatalytic processes are very efficient in removing diazinon from aqueous solutions although more elaborate studies are needed to assess the mineralization rate and effluent toxicity.
Collapse
Affiliation(s)
- Fateme Barjasteh-Askari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Aliasghar Najafpoor
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Davoudi
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Thakur PR, Sharma S, Kumar A, Sharma G, Ghfar AA, Naushad M, Stadler FJ. Fabrication of a Z-scheme Zn3V2O8/g-C3N4 nano-heterojunction with high interfacial charge transfer for superior photocatalytic removal of diazinon pesticide under visible light. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02338-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Chauhan G, González-González RB, Iqbal HMN. Bioremediation and decontamination potentials of metallic nanoparticles loaded nanohybrid matrices - A review. ENVIRONMENTAL RESEARCH 2022; 204:112407. [PMID: 34801543 DOI: 10.1016/j.envres.2021.112407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The current nanotechnological advancements provide an astonishing insight to fabricate nanomaterials for nano-bioremediation purposes. Exciting characteristics possessed by hybrid matrices at the nanoscale knock endless opportunities to nano-remediate environmentally-related pollunanomaterials tants of emerging concern. Nanometals are considered among the oldest generation of the world has ever noticed. These tiny nanometals and nanometal oxides showed enormous potential in almost every extent of industrial and biotechnological domains, including their potential multipurpose approach to deal with water impurities. In this manuscript, we discussed their role in the diversity of water treatment technologies used to remove bacteria, viruses, heavy metals, pesticides, and organic impurities, providing an ample perspective on their recent advances in terms of their characteristics, attachment strategies, performance, and their scale-up challenges. Finally, we tried to explore their futuristic contribution to nano-remediate environmentally-related pollutants of emerging concern aiming to collect treated yet safe water that can be reused for multipurpose.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
19
|
Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127416. [PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
Collapse
Affiliation(s)
- F H Abdullah
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - N H H Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - M Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
20
|
Zandsalimi Y, Maleki A, Shahmoradi B, Dehestani S, Rezaee R, McKay G. Photocatalytic removal of 2,4-Dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilised on glass beads. ENVIRONMENTAL TECHNOLOGY 2022; 43:631-645. [PMID: 32677577 DOI: 10.1080/09593330.2020.1797901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Groundwater is the only source of high quality water for human consumption in most parts of the world; however, it can be easily contaminated by domestic, industrial, and agricultural wastes such as fertilisers and pesticides. The main objective of the present research was to study the photocatalytic removal of 2,4-Dichlorophenoxyacetic acid pesticide (2,4-D) from aqueous media. This was a laboratory scale study in which the zinc oxide nanoparticles were doped with 0.5, 1, and 2 molar percent of tungsten oxide. The nanoparticles synthesised were characterised using powder XRD, SEM, FTIR, and UV-Vis Spectroscopy analyses. During the photodegradation of 2,4-D, the operational parameters studied were pH, nanoparticles dosage, initial pesticide concentration, light intensity, contact time, and the mineralisation trend of organic matter. It was found that the doped nanoparticles had a smaller band gap energy, which confirms the effect of doping. The percentage of the dopant can affect the pesticide removal efficiency. The optimal pH value obtained was 7. In addition, the process efficiency, increased from 27% to 78% with increasing UV light intensity from 172 to 505 W/m2 respectively. Moreover, it was found that, with increasing light intensity, contact time and nanoparticle concentration all caused the pesticide removal efficiency to be increased too. In addition, the increase of the pesticide concentration would cause a reduction in the process removal efficiency. This study indicated that the photocatalytic process using tungsten doped zinc oxide nanoparticles can remove the 2,4-D pesticide by around 80% from the aquatic environment.
Collapse
Affiliation(s)
- Yahya Zandsalimi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behzad Shahmoradi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saeed Dehestani
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Gordon McKay
- Division of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
21
|
Rasheed T, Rizwan K, Bilal M, Sher F, Iqbal HMN. Tailored functional materials as robust candidates to mitigate pesticides in aqueous matrices-a review. CHEMOSPHERE 2021; 282:131056. [PMID: 34111632 DOI: 10.1016/j.chemosphere.2021.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Pesticides are among the top-priority contaminants, which significantly contribute to environmental deterioration. Conventional techniques are not efficient enough to remove pollutants from environmental matrices. The development of functional materials has emerged as promising candidates to remove and degrade pesticides and related hazardous compounds. Furthermore, the nanohybrid materials with unique structural and functional characteristics, such as better material anchorage, mass transfer, electron-hole separation, and charged interaction make them a versatile option to treat and reduce pollutants from aqueous matrices. Herein, we present the current progress in the development of functional materials for the abatement of toxic pesticides. The physicochemical characteristics and pesticide-removal functionalities of various metallic functional materials (e.g., zirconium, zinc, titanium, tungsten, and iron), polymer, and carbon-based materials are critically discussed with suitable examples. Finally, the industrial-scale applications of the functional materials, concluding remarks, and future directions in this important arena are given.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry, and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| |
Collapse
|
22
|
Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol 2021; 12:717286. [PMID: 34790174 PMCID: PMC8591295 DOI: 10.3389/fmicb.2021.717286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 12/07/2022] Open
Abstract
Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Barazandeh A, Jamali HA, Karyab H. Equilibrium and kinetic study of adsorption of diazinon from aqueous solutions by nano-polypropylene-titanium dioxide: Optimization of adsorption based on response surface methodology (RSM) and central composite design (CCD). KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0863-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Zekkaoui C, Berrama T, Dumoulin D, Billon G, Kadmi Y. Optimal degradation of organophosphorus pesticide at low levels in water using fenton and photo-fenton processes and identification of by-products by GC-MS/MS. CHEMOSPHERE 2021; 279:130544. [PMID: 34134402 DOI: 10.1016/j.chemosphere.2021.130544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This study aiming to determine the optimal conditions to degrade an organophosphate pesticide diazinon (DZN) at low levels concentrations (μg.mL-1) and to identify the by-products generated. The degradation processes utilized were the Fenton and photo-Fenton. The iron concentration [Fe2+], the hydrogen peroxide concentrations [H2O2], and the solution pH are the investigated parameters. The Doehlert three-parameter experimental design was applied to model and optimize both degradation processes. The mathematical models suggested were assessed and validated by application of analysis of variances ANOVA. In the case of Fenton process, the greatest yield of degradation (79%) was obtained at [Fe2+] = 35 mg.L-1 (0.63 mmol.L-1), [H2O2] = 423 mg.L-1 (12.44 mmol.L-1), and pH = 5.0. In photo-Fenton process, the maximum yield of degradation (96%) was obtained under the conditions of [Fe2+] = 29 mg.L-1 (0.52 mmol.L-1), [H2O2] = 258 mg.L-1 (7.59 mmol.L-1) and pH = 4.6. QuEChERS (quick, easy, cheap, effective, rugged, and safe), as extraction technique, and GC-MS/MS (gas chromatography coupled with triple quadrupole mass spectrometry) were used to identify the by-products degradation of DZN. The identified compounds are diazoxon, triethyl phosphate, triethyl thiophosphate, 2-isopropyl-5-ethyl-6-methylpyrimidine-4-ol, 2-isopropyl-6-methylpyrimidine-4-ol (IMP) and hydroxydiazinon. Three possible pathways for diazinon degradation have been suggested and the hydroxylation, oxidation and hydrolysis are likely probable degradation mechanisms.
Collapse
Affiliation(s)
- Chemseddine Zekkaoui
- Laboratory of Industrial Process Engineering Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El-Alia, 16111, Bab-Ezzouar, Algiers, Algeria; Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France
| | - Tarek Berrama
- Laboratory of Industrial Process Engineering Sciences, University of Sciences and Technology Houari Boumediene, BP 32, El-Alia, 16111, Bab-Ezzouar, Algiers, Algeria
| | - David Dumoulin
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France
| | - Yassine Kadmi
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, 59000, Lille, France; Université D'Artois, IUT de Béthune, 62400, Béthune, France.
| |
Collapse
|
25
|
Abstract
This review aims to give a general overview of the recent use of tungsten-based catalysts for wide environmental applications, with first some useful background information about tungsten oxides. Tungsten oxide materials exhibit suitable behaviors for surface reactions and catalysis such as acidic properties (mainly Brønsted sites), redox and adsorption properties (due to the presence of oxygen vacancies) and a photostimulation response under visible light (2.6–2.8 eV bandgap). Depending on the operating condition of the catalytic process, each of these behaviors is tunable by controlling structure and morphology (e.g., nanoplates, nanosheets, nanorods, nanowires, nanomesh, microflowers, hollow nanospheres) and/or interactions with other compounds such as conductors (carbon), semiconductors or other oxides (e.g., TiO2) and precious metals. WOx particles can be also dispersed on high specific surface area supports. Based on these behaviors, WO3-based catalysts were developed for numerous environmental applications. This review is divided into five main parts: structure of tungsten-based catalysts, acidity of supported tungsten oxide catalysts, WO3 catalysts for DeNOx applications, total oxidation of volatile organic compounds in gas phase and gas sensors and pollutant remediation in liquid phase (photocatalysis).
Collapse
|
26
|
|