1
|
Jin Z, Zhang P, Huang H, Liu J, Jiang C, Zhang H, Ren L, Sun B, Chang X, Gao T, Sun W. Food-derived skin-care ingredient as a promising strategy for skin aging: Current knowledge and future perspectives. Colloids Surf B Biointerfaces 2024; 244:114170. [PMID: 39180992 DOI: 10.1016/j.colsurfb.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Skin aging involves complex biochemical reactions and has attracted a growing concern recently. For it, there is a great desire to replace the hazardous and easy-recurring "therapy means" with "daily care" based on some natural and healthy ingredients. According to a novel theory called "homology of cosmetic and food", the safety, efficacy and accessibility of food-derived skin-care ingredients offer an attractive option for combating skin aging, which will be an inevitable trend of dermatology in the future. Ultraviolet (UV) radiation is a major trigger of skin aging. It acts on the skin and generates reactive oxygen species, which causing oxidative stress. More, matrix metalloproteinase and melanin levels are also upregulated by the UV-activated mitogen-activated protein kinase (MAPK) pathway and tyrosinase, respectively, resulting in collagen degradation and melanin deposition in the extracellular matrix. Through the existing studies, the relevant key biomarkers and biochemical pathways can be effectively controlled by skin-care ingredients from animal-derived and plant-derived foods as well as traditional herbs, thus preserving human skin from UV-induced aging in terms of antioxidant, collagen protection and melanin inhibition. To extend their application potential, some carriers represented by nanoliposomes can facilitate the transdermal absorption of food-derived skin-care ingredients by the variation of molecular weight and lipid solubility. The present review will provide an overview of the trigger mechanisms of skin aging, and focus on the molecular biology aspects of food-derived skin-care ingredients in skin matrix and the critical summarize of their research state.
Collapse
Affiliation(s)
- Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jialin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Ren
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bingkun Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianghan Chang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Tingyue Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
2
|
More S, Bonnereau J, Wouters D, Spotbeen X, Karras P, Rizzollo F, Killian T, Venken T, Naulaerts S, Vervoort E, Ganne M, Nittner D, Verhoeven J, Bechter O, Bosisio F, Lambrechts D, Sifrim A, Stockwell BR, Swinnen JV, Marine JC, Agostinis P. Secreted Apoe rewires melanoma cell state vulnerability to ferroptosis. SCIENCE ADVANCES 2024; 10:eadp6164. [PMID: 39413195 DOI: 10.1126/sciadv.adp6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
A major therapeutic barrier in melanoma is the coexistence of diverse cellular states marked by distinct metabolic traits. Transitioning from a proliferative to an invasive melanoma phenotype is coupled with increased ferroptosis vulnerability. However, the regulatory circuits controlling ferroptosis susceptibility across melanoma cell states are unknown. In this work, we identified Apolipoprotein E (APOE) as the top lipid-metabolism gene segregating the melanoma MITFhigh/AXLlow proliferative/ferroptosis-resistant from MITFlow/AXLhigh invasive/ferroptosis-sensitive state. Mechanistically, ApoE secreted by the MITFhigh/AXLlow cells protects the invasive phenotype from ferroptosis-inducing agents by reducing the content of peroxidation-prone polyunsaturated fatty acids and boosting GPX4 levels both in vitro and in vivo. Whole-exome sequencing indicates that APOEhigh expression in patients with melanoma is associated with resistance to ferroptosis, regardless of APOE germline status. In aggregate, we found a ferroptosis-resistance mechanism between melanoma cell states relying on secreted ApoE and APOEhigh expression as a potential biomarker for poor ferroptosis response in melanoma.
Collapse
Affiliation(s)
- Sanket More
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julie Bonnereau
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Wouters
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Theo Killian
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven, Leuven, Belgium
| | - Tom Venken
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Nittner
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Spatial Multiomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Alanazi MM, Alsanea S, Kumar A, Alehaideb Z, Matou-Nasri S, AlGhamdi KM. Modulatory effects of oxytocin on normal human cultured melanocyte proliferation, migration, and melanogenesis. Tissue Cell 2024; 91:102579. [PMID: 39388927 DOI: 10.1016/j.tice.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Melanocytes are specialized melanin-producing neural crest-derived cells. Melanocyte proliferation and melanin production (i.e., melanogenesis) are crucial for determining skin color. Disruption of these processes can cause pigmentary skin disorders, including hypo-pigmentary disorders such as vitiligo and hyper-pigmentary disorders such as melasma. Understanding these processes is important for discovering new targets to tackle these skin disorders. Therefore, this study aimed to investigate the effects of oxytocin (OXT) on melanocyte functions. Normal Human Cultured Melanocytes (NHCM) were treated with different OXT doses to investigate OXT effects and mechanisms on NHCM proliferation, migration, and on melanogenesis. OXT significantly increased NHCM proliferation and migration in a dose-dependent manner after 72 h of treatment. In addition, OXT dose-dependently upregulated melanogenesis-related microphtalmia-associated transcription factor, tyrosinase, tyrosinase-related protein (TYRP)-1, and TYRP-2 expression accompanied by an increased trend in melanosome number and maturation stage. Furthermore, OXT at concentrations (62.5-125 nM) increased melanin production. These findings suggest the involvement of OXT receptor (OXTR). In addition, this study demonstrates that OXT stimulates melanocyte proliferation, migration, with a tendency toward melanosome maturation, while it modulates melanin production in a dose-dependent manner. Thus, OXT system including its receptor OXTR may be a potential therapeutic target for skin pigmentary disorders.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia.
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University (KSU), Riyadh, Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
| | - Khalid M AlGhamdi
- Vitiligo Research Chair, Department of Dermatology (DOD), College of Medicine (COM), KSU, Riyadh, Saudi Arabia; Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Liu R, Ma J, Zhang Y, Zhou Z. Integrated transcriptome analysis of CSE1L regarding poor prognosis and immune infiltration in bladder urothelial carcinoma and experimental verification. Front Immunol 2024; 15:1449251. [PMID: 39430746 PMCID: PMC11486715 DOI: 10.3389/fimmu.2024.1449251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most prevalent tumors globally, with its incidence rising notably in developed countries, significantly affecting human health. CSE1L encodes a protein that is involved in various cellular processes and plays a critical role in cancer initiation and progression. However, its role in BLCA remains underexplored. Methods CSE1L expression in BLCA was analyzed using TCGA data and validated by qRT-PCR and Western blot in clinical samples. Survival analysis and Cox regression models were used to evaluate its prognostic value. Functional enrichment and protein interaction analyses were performed, and immune cell infiltration was assessed using CIBERSORT. Drug sensitivity was analyzed using GDSC data. In vitro assays evaluated the effects of CSE1L knockdown on cell proliferation, migration, and invasion. Results CSE1L was found to be significantly overexpressed in BLCA tissues compared to normal tissues. High CSE1L expression was associated with poor overall survival and unfavorable clinicopathological features. Functional enrichment analysis revealed that DEGs related to CSE1L were involved in cell cycle regulation and immune-related pathways. Immune infiltration analysis indicated a significant correlation between CSE1L expression and various immune cell types, particularly T cells and macrophages. Drug sensitivity analysis identified several chemotherapeutic agents, including MG-132, Palbociclib, and Nutlin-3a, which were more effective in the low-CSE1L expression group, while the high-CSE1L expression group showed sensitivity to drugs like S-Trityl-L-cysteine, Bleomycin, and Cisplatin. In vitro knockdown of CSE1L in BLCA cell lines inhibited cell proliferation, migration, and invasion. Conclusions The overexpression of CSE1L is associated with the progression and poor prognosis of bladder cancer, suggesting it could be a promising target for bladder cancer in the future.
Collapse
Affiliation(s)
- Runze Liu
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Ma
- Beijing National Day School, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongbao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Yun JH, Kim YS, Kang HY, Kang SU, Kim CH. A novel liquid plasma derivative inhibits melanogenesis through upregulation of Nrf2. Sci Rep 2024; 14:21851. [PMID: 39300161 DOI: 10.1038/s41598-024-72750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Non-thermal plasma (NTP) is an emerging technology with extensive applications in biomedicine, including treatment of abnormal pigmentation. However, very few studies have investigated how plasma induces anti-melanogenesis. Here, liquid plasma was prepared by treating an NTP jet with helium and oxygen (as carrier gases) for 15 min in serum-free culture media. In the zebrafish model, pigmentation ratio was observed with or without liquid plasma. The anti-melanogenic effect of liquid plasma was evaluated in human melanocytes by assessing the expression of melanogenesis-related genes using western blotting, RT-PCR, and immunohistochemistry. Liquid plasma reduced pigmentation in the zebrafish model and inhibited melanin synthesis in primary human melanocytes. Intracellular reactive oxygen species levels decreased and Nrf2 expression increased in liquid plasma-treated melanocytes. Liquid plasma affected microphthalmia-associated transcription factor (MITF) and tyrosinase mRNA and protein levels, tyrosinase activity, and melanin content. Considering the role of Wnt/β-catenin and PI3K/Akt pathways in melanogenesis, the effect of liquid plasma on this pathway was determined; liquid plasma decreased active β-catenin, LEF1/TCF4, MITF, and tyrosinase levels in a time-dependent manner and inhibited the nuclear translocation of β-catenin. This inhibition subsequently suppressed melanogenesis by downregulating MITF and tyrosinase. These results suggest that liquid plasma may be used for treating pigmentary disorders.
Collapse
Affiliation(s)
- Ju Hyun Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hee Young Kang
- Department of Dermatology, School of Medicine, Ajou University, Suwon, 16499, Korea
| | - Sung Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
6
|
Lee SG, Hwang JW, Kang H. Antioxidant and Skin-Whitening Efficacy of a Novel Decapeptide (DP, KGYSSYICDK) Derived from Fish By-Products. Mar Drugs 2024; 22:374. [PMID: 39195491 PMCID: PMC11355700 DOI: 10.3390/md22080374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
The skin is vulnerable to damage from ultraviolet rays and oxidative stress, which can lead to aging and pigmentation issues. This study investigates the antioxidant and whitening efficacy of a decapeptide (DP, KGYSSYICDK) derived from marine fish by-products and evaluates its potential as a new skin-whitening agent. DP demonstrated high antioxidant activity, showing comparable or superior performance to Vitamin C (Vit. C) in ferric reducing antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. In hydrogen peroxide (H2O2)-treated HaCaT cells, DP increased cell viability and reduced reactive oxygen species (ROS) generation. Furthermore, DP inhibited tyrosinase activity and decreased melanin production in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells in a dose-dependent manner. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that DP reduces the mRNA expression of MITF, tyrosinase, and MC1R, thus suppressing melanin production. DP exhibits strong binding interactions with multiple amino acid residues of tyrosinase, indicating potent inhibitory effects on the enzyme. These results suggest that DP possesses significant antioxidant and whitening properties, highlighting its potential as a skin-whitening agent. Future research should focus on optimizing DP's structure and exploring structure-activity relationships.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Jin-Woo Hwang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Wang S, Yuan A. Hydrolyzed conchiolin protein inhibits melanogenesis through PKA/CREB and MEK/ERK signalling pathways. Int J Cosmet Sci 2024. [PMID: 39128885 DOI: 10.1111/ics.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Hydrolyzed conchiolin protein (HCP) derived from pearl and nacre extracts exerts skin-lightening effects; however, the underlying molecular mechanisms are not fully understood. Herein, we investigated the effect of HCP on melanogenesis and the signalling pathways involved. METHODS B16F10 cells and PIG cells were treated with HCP to verify its ability to inhibit melanin. Western Blot, immunofluorescence, and flow cytometry methods were performed to investigate the effect of HCP on melanogenesis signalling pathway proteins. The inhibitors were used to further validate the effect of HCP on PKA/CREB and MEK/ERK signalling pathways. To further evaluate the whitening ability of HCP, changes in melanin were detected using 3D melanin skin model and zebrafish model. RESULTS HCP was found to significantly inhibit melanin synthesis and decrease the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-2, in a dose-dependent manner. Additionally, we revealed that HCP suppresses melanogenesis via the regulation of the PKA/cAMP response element-binding (CREB) and MEK/extracellular signalling-regulated kinase (ERK) signalling pathways. Using 3D melanin skin models, we demonstrated that HCP can achieve skin-lightening effects by improving apparent chroma, increasing apparent brightness, and inhibiting melanin synthesis. Furthermore, HCP exhibits skin-whitening effects in a zebrafish model. CONCLUSION These results suggest that HCP suppresses the melanogenesis signalling cascade by inhibiting the PKA/CREB, MEK/ERK signalling pathway and downregulating MITF and its downstream signalling pathways, resulting in decreased melanin synthesis. In summary, HCP is a potential anti-pigmentation agent with promising applications in cosmetics and pharmaceutical products.
Collapse
Affiliation(s)
- Yaqi Zhang
- Zhejiang Osmum Biological Co., Ltd, Huzhou, China
| | - Sisi Wang
- Zhejiang Osmum Biological Co., Ltd, Huzhou, China
| | - Anquan Yuan
- Zhejiang Osmum Biological Co., Ltd, Huzhou, China
| |
Collapse
|
8
|
Min Y, Li Q, Yu H, Du S. Examination of wnt signaling mediated melanin transport and shell color formation in Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:488-501. [PMID: 39219677 PMCID: PMC11358575 DOI: 10.1007/s42995-024-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 09/04/2024]
Abstract
Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy. In addition, we characterized CgWnt1 and CgWnt2b-a in Crassostrea gigas, and analyzed Wnt signaling in melanocyte formation. Expression analysis revealed that these genes were predominantly expressed in the mantle of black-shelled individuals, particularly in the outer fold of the mantle. Furthermore, we employed RNA interference and inhibitors to specifically inhibit Wnt signaling in both in vivo and in vitro. The results revealed impaired melanogenesis and diminished tyrosinase activity upon Wnt signaling inhibition. These findings suggest the crucial role of Wnt ligands and downstream factors in melanogenesis. In summary, our study provides valuable insights into the regulatory mechanism of shell pigmentation in C. gigas. By demonstrating the promotion of melanogenesis through Wnt signaling modulation, we contribute to a better understanding of the complex processes underlying molluscan melanin production and shell coloration. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00221-5.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, 21240 USA
| |
Collapse
|
9
|
Liu X, Hu X, Jing M, Huang L, You Y, Zhang Y, Li K, Tu Y, Liu Y, Chen X, Su J, Hejtmancik JF, Hou L, Ma X. Death associated protein like 1 acts as a novel tumor suppressor in melanoma by increasing the stability of P21 protein. Mol Cell Biochem 2024:10.1007/s11010-024-05067-0. [PMID: 38980592 DOI: 10.1007/s11010-024-05067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Melanoma is a primary malignant tumor with high lethality, which occurs in the skin and eye tissues, while the molecular mechanisms of melanomagenesis remain largely unknown. Here, we show that death-associated protein-like 1 (DAPL1) expression is lower in melanoma tissues than in paracancerous tissues or nevus tissues, and Uveal melanoma patients with lower DAPL1 expression have a poorer survival rate than those with higher expression of DAPL1. Overexpression of DAPL1 inhibits proliferation of cultured melanoma cells, whereas knockdown of DAPL1 increases cell proliferation. Tumor transplantation experiment results also demonstrate that DAPL1 inhibits tumorigenesis of melanoma cells both in subretinal and subcutaneous tissues of nude mice in vivo. Finally, DAPL1 inhibits proliferation of melanoma cells by increasing the protein level of P21 via decreasing the ubiquitin mediated degradation of P21 and promoting its stability. Conversely, knockdown of P21 neutralizes the effects of inhibition of DAPL1 on melanoma cell proliferation and enhances the severity of melanoma tumorigenesis. These results suggest that DAPL1 is a novel melanoma tumor suppressor gene and thus a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojuan Hu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meiyu Jing
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lijin Huang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaqi You
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yaru Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ke Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunhai Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Youjia Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaogang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Kim M, Lim KM. DEHP (di(2-ethylhexyl)phthalate) stimulates skin pigmentation by perturbing cytoskeletal homeostasis. Toxicol Res 2024; 40:487-497. [PMID: 38911535 PMCID: PMC11187019 DOI: 10.1007/s43188-024-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Phthalates are extensively employed plasticizers crucial for conferring flexibility and plasticity to polyvinyl chloride. Phthalates, including DEHP (di(2-ethylhexyl)phthalate), present in diverse products, have been identified in fine dust and are capable of infiltrating the body, potentially posing health hazards. Importantly, melanocytes, existing at the basal layer of the epidermis, are susceptible to toxic substances. In our study, we employed the 3D human pigmented epidermis model, MelanoDerm™, along with the B16F10 murine melanoma cell line, to examine the influence of DEHP exposure on melanocytes. The exposure to low concentrations of DEHP (~ 5 μM), resulted in the extension of melanocyte dendrites, indicating the stimulation of melanocytes. Analysis of gene expression and protein profiles unveiled the up-regulation of MITF, Arpc2, and TRP1 genes subsequent to DEHP exposure, indicating alterations in cytoskeletal and melanosome-related genetic and protein components in melanocytes. Notably, increased pigmentation was observed in MelanoDerm™ following DEHP exposure. DEHP-stimulated reactive oxygen species generation appeared to be involved in these events since the antioxidant, ascorbic acid attenuated ROS generation and MITF upregulation. Collectively, our study demonstrated that DEHP exposure can induce cytoskeletal disturbance and skin pigmentation through oxidative stress.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
11
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Liu J, Bitsue HK, Yang Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol Ecol 2024; 33:e17369. [PMID: 38713101 DOI: 10.1111/mec.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.
Collapse
Affiliation(s)
- Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Guida S, Puig S, DI Resta C, Sallustio F, Mangano E, Stabile G, Longo C, Pellacani G, Guida G, Rongioletti F. Melanocortin-1 receptor (MC1R): a review for dermatologists. Ital J Dermatol Venerol 2024; 159:285-293. [PMID: 38376504 DOI: 10.23736/s2784-8671.24.07839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melanocortin-1 receptor (MC1R) and its variants have a pivotal role in melanin synthesis. However, MC1R has been associated to non-pigmentary pathways related to DNA-repair activities and inflammation. The aim of this review is to provide an up-to-date overview about the role of MC1R in the skin. Specifically, after summarizing the current knowledge about MC1R structure and polymorphisms, we report data concerning the correlation between MC1R, phenotypic traits, skin aging, other diseases and skin cancers and their risk assessment through genetic testing.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy -
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy -
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, University of Barcelona, Barcelona, Spain
| | - Chiara DI Resta
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Mangano
- Institute of Biomedical Technologies (ITB), National Research Center (CNR), Segrate, Milan, Italy
| | - Giorgio Stabile
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Skin Cancer Center, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gabriella Guida
- Section of Molecular Biology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Aldo Moro University of Bari, Bari, Italy
| | - Franco Rongioletti
- Dermatology Clinic, IRCCS San Raffaele Hospital, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Cho H, Yang J, Kang JY, Kim KE. Inhibitory Effects of Fermented Sprouted Oat Extracts on Oxidative Stress and Melanin Overproduction. Antioxidants (Basel) 2024; 13:544. [PMID: 38790649 PMCID: PMC11117960 DOI: 10.3390/antiox13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.
Collapse
Affiliation(s)
- Hyeijin Cho
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
15
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
16
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
17
|
Zhu Y, Li Q. Mitf involved in shell pigmentation by activating tyrosinase-mediated melanin synthesis in Pacific oyster (Crassostrea gigas). Gene 2024; 897:148086. [PMID: 38104952 DOI: 10.1016/j.gene.2023.148086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Wu L, Sun W, Zhou J, Li Y, Li J, Song Z, Song C, Xu S, Yue X, Li X. Comparative transcriptome analysis reveals growth and molecular pathway of body color regulation in turbot (Scophthalmus maximus) exposed to different light spectrum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101165. [PMID: 38007980 DOI: 10.1016/j.cbd.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Fish body color changes play vital roles in adapting to ecological light environment and influencing market value. However, the initial mechanisms governing the changes remain unknown. Here, we scrutinized the impact of light spectrum on turbot (Scophthalmus maximus) body coloration, exposing them to red, blue, and full light spectra from embryo to 90 days post hatch. Transcriptome and quantitative real-time PCR (qRT-PCR) analyses were employed to elucidate underlying biological processes. The results showed that red light induced dimorphism in turbot juvenile skin pigmentation: some exhibited black coloration (Red_Black_Surface, R_B_S), while others displayed lighter skin (Red_White_Bottom, R_W_B), with red light leading to reduced skin lightness (L*) and body weight, particularly in R_B_S group. Transcriptomic and qRT-PCR analyses showcased upregulated gene expressions related to melanin synthesis in R_B_S individuals, notably tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), and dopachrome tautomerase (dct), alongside solute carrier family 24 member 5 (slc24a5) and oculocutaneous albinism type II (oca2) as pivotal regulators. Nervous system emerged as a critical mediator in spectral environment-driven color regulation. N-methyl d-aspartate (NMDA) glutamate receptor, and calcium signaling pathway emerged as pivotal links intertwining spectral conditions, neural signal transduction, and color regulation. The individual differences in NMDA glutamate receptor expression and subsequent neural excitability seemed responsible for dichromatic body coloration in red light-expose juveniles. This study provides new insights into the comprehending of fish adaptation to environment and methods for fish body color regulation and could potentially help enhance the economic benefit of fish farming industry.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Wen Sun
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jiale Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Yaolin Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, PR China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xinlu Yue
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Xian Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China.
| |
Collapse
|
20
|
Durbin HJ, Yampara-Iquise H, Rowan TN, Schnabel RD, Koltes JE, Powell JG, Decker JE. Genomic loci involved in sensing environmental cues and metabolism affect seasonal coat shedding in Bos taurus and Bos indicus cattle. G3 (BETHESDA, MD.) 2024; 14:jkad279. [PMID: 38092373 PMCID: PMC10849337 DOI: 10.1093/g3journal/jkad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/17/2023] [Indexed: 02/09/2024]
Abstract
Seasonal shedding of winter hair at the start of summer is well studied in wild and domesticated populations. However, the genetic influences on this trait and their interactions are poorly understood. We use data from 13,364 cattle with 36,899 repeated phenotypes to investigate the relationship between hair shedding and environmental variables, single nucleotide polymorphisms, and their interactions to understand quantitative differences in seasonal shedding. Using deregressed estimated breeding values from a repeated records model in a genome-wide association analysis (GWAA) and meta-analysis of year-specific GWAA gave remarkably similar results. These GWAA identified hundreds of variants associated with seasonal hair shedding. There were especially strong associations between chromosomes 5 and 23. Genotype-by-environment interaction GWAA identified 1,040 day length-by-genotype interaction associations and 17 apparent temperature-by-genotype interaction associations with hair shedding, highlighting the importance of day length on hair shedding. Accurate genomic predictions of hair shedding were created for the entire dataset, Angus, Hereford, Brangus, and multibreed datasets. Loci related to metabolism and light-sensing have a large influence on seasonal hair shedding. This is one of the largest genetic analyses of a phenological trait and provides insight into both agriculture production and basic science.
Collapse
Affiliation(s)
- Harly J Durbin
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Syngenta, Research Triangle Park, NC 27709, USA
| | | | - Troy N Rowan
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Robert D Schnabel
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jeremy G Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jared E Decker
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Mah JL, Dunn CW. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat Ecol Evol 2024; 8:325-338. [PMID: 38182680 DOI: 10.1038/s41559-023-02281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
The origin and evolution of cell types has emerged as a key topic in evolutionary biology. Driven by rapidly accumulating single-cell datasets, recent attempts to infer cell type evolution have largely been limited to pairwise comparisons because we lack approaches to build cell phylogenies using model-based approaches. Here we approach the challenges of applying explicit phylogenetic methods to single-cell data by using principal components as phylogenetic characters. We infer a cell phylogeny from a large, comparative single-cell dataset of eye cells from five distantly related mammals. Robust cell type clades enable us to provide a phylogenetic, rather than phenetic, definition of cell type, allowing us to forgo marker genes and phylogenetically classify cells by topology. We further observe evolutionary relationships between diverse vessel endothelia and identify the myelinating and non-myelinating Schwann cells as sister cell types. Finally, we examine principal component loadings and describe the gene expression dynamics underlying the function and identity of cell type clades that have been conserved across the five species. A cell phylogeny provides a rigorous framework towards investigating the evolutionary history of cells and will be critical to interpret comparative single-cell datasets that aim to ask fundamental evolutionary questions.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Feng Y, Xie N, Inoue F, Fan S, Saskin J, Zhang C, Zhang F, Hansen MEB, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Belay G, Njamnshi AK, Marks MS, Oancea E, Ahituv N, Tishkoff SA. Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans. Nat Genet 2024; 56:258-272. [PMID: 38200130 PMCID: PMC11005318 DOI: 10.1038/s41588-023-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Xie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Human Phenome Institute, School of Life Science, Fudan University, Shanghai, China
| | - Joshua Saskin
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Chao Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone, Botswana
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN); Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elena Oancea
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Balkrishna A, Lochab S, Verma S, Srivastava J, Dev R, Varshney A. Melanogrit potentiates melanogenesis by escalating cellular tyrosinase activity and MITF levels via pERK inhibition. Biosci Rep 2024; 44:BSR20231324. [PMID: 38054639 PMCID: PMC10776901 DOI: 10.1042/bsr20231324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Vitiligo is characterized by the development of white patches on the skin either due to the loss of functional melanocytes or perturbations in the melanogenesis pathway. In the present study, we investigated the therapeutic potential of herbo-mineral formulation, Melanogrit in neutralizing the white patches in the skin. The study utilized UPLC/MS-QToF technique to determine the diversified phytochemical profile in Melanogrit. The murine B16F10 cells when treated with Melanogrit underwent morphological changes, including increased angularity, enlarged cell size, and greater dendritic protrusions. To establish an equivalent model to study melanogenesis, we carefully optimized the dosage of α-melanocyte stimulating hormone (αMSH) in B16F10 cells as an alternative to using melanocyte-keratinocyte cocultures. The study determined a sub-optimal dose of αMSH (0.2 nM) in B16F10 cells that does not manifest any measurable effects on melanogenesis. In contrast, Melanogrit when used in conjunction with 0.2 nM αMSH, induced a dose-dependent increase in extracellular and intracellular melanin levels. Melanogrit transcriptionally up-regulated the decisive genes of the melanogenesis pathway, MITF, TYR, and TRP1, which was evident from the increased cellular tyrosine activity. Our findings also demonstrated that Melanogrit ameliorated the MITF protein levels by inhibiting pERK; notably without involving GSK3β in the process. Taken together, our findings strongly suggest that Melanogrit has the potential to stimulate melanogenesis, making it a promising candidate for clinical applications in the treatment of white skin patches that develop in vitiligo patients.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G41 1AU, U.K
- Vedic Acharya Samaj Foundation, Inc. NFP, 21725 CR 33, Groveland, FL 34736, U.S.A
| | - Savita Lochab
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
An L, Kim D, Donahue LR, Mejooli MA, Eom CY, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. Nat Commun 2024; 15:796. [PMID: 38280858 PMCID: PMC10821900 DOI: 10.1038/s41467-024-45034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal re-pigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Leanne R Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | | | - Chi-Yong Eom
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
25
|
Yu J, Leng J, Hou Z, Sun D, Wu LY. Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis. Brief Bioinform 2024; 25:bbae093. [PMID: 38493346 PMCID: PMC10944575 DOI: 10.1093/bib/bbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data provided new insights into the understanding of epigenetic heterogeneity and transcriptional regulation. With the increasing abundance of dataset resources, there is an urgent need to extract more useful information through high-quality data analysis methods specifically designed for scATAC-seq. However, analyzing scATAC-seq data poses challenges due to its near binarization, high sparsity and ultra-high dimensionality properties. Here, we proposed a novel network diffusion-based computational method to comprehensively analyze scATAC-seq data, named Single-Cell ATAC-seq Analysis via Network Refinement with Peaks Location Information (SCARP). SCARP formulates the Network Refinement diffusion method under the graph theory framework to aggregate information from different network orders, effectively compensating for missing signals in the scATAC-seq data. By incorporating distance information between adjacent peaks on the genome, SCARP also contributes to depicting the co-accessibility of peaks. These two innovations empower SCARP to obtain lower-dimensional representations for both cells and peaks more effectively. We have demonstrated through sufficient experiments that SCARP facilitated superior analyses of scATAC-seq data. Specifically, SCARP exhibited outstanding cell clustering performance, enabling better elucidation of cell heterogeneity and the discovery of new biologically significant cell subpopulations. Additionally, SCARP was also instrumental in portraying co-accessibility relationships of accessible regions and providing new insight into transcriptional regulation. Consequently, SCARP identified genes that were involved in key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to diseases and predicted reliable cis-regulatory interactions. To sum up, our studies suggested that SCARP is a promising tool to comprehensively analyze the scATAC-seq data.
Collapse
Affiliation(s)
- Jiating Yu
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Leng
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Lab, Hangzhou 311121, China
| | - Zhichao Hou
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duanchen Sun
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Ling-Yun Wu
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
27
|
Lee S, An L, Soloway PD, White AC. Dynamic regulation of chromatin accessibility during melanocyte stem cell activation. Pigment Cell Melanoma Res 2023; 36:531-541. [PMID: 37462349 PMCID: PMC10794558 DOI: 10.1111/pcmr.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023]
Abstract
Melanocyte stem cells (McSCs) of the hair follicle are necessary for hair pigmentation and can serve as melanoma cells of origin when harboring cancer-driving mutations. McSCs can be released from quiescence, activated, and undergo differentiation into pigment-producing melanocytes during the hair cycle or due to environmental stimuli, such as ultraviolet-B (UVB) exposure. However, our current understanding of the mechanisms regulating McSC stemness, activation, and differentiation remains limited. Here, to capture the differing possible states in which murine McSCs can exist, we sorted melanocyte nuclei from quiescent (telogen) skin, skin actively producing hair shafts (anagen), and skin exposed to UVB. With these sorted nuclei, we then utilized single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and characterized three melanocyte lineages: quiescent McSCs (qMcSCs), activated McSCs (aMcSCs), and differentiated melanocytes (dMCs) that co-exist in all three skin conditions. Furthermore, we successfully identified differentially accessible genes and enriched transcription factor binding motifs for each melanocyte lineage. Our findings reveal potential gene regulators that determine these melanocyte cell states and provide new insights into how aMcSC chromatin states are regulated differently under divergent intrinsic and extrinsic cues. We also provide a publicly available online tool with a user-friendly interface to explore this comprehensive dataset, which will provide a resource for further studies on McSC regulation upon natural or UVB-mediated stem cell activation.
Collapse
Affiliation(s)
- Seoyeon Lee
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Luye An
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew C White
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
28
|
Bian WP, Xie SL, Wang C, Martinovich GG, Ma YB, Jia PP, Pei DS. mitfa deficiency promotes immune vigor and potentiates antitumor effects in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109130. [PMID: 37777099 DOI: 10.1016/j.fsi.2023.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system. The mitfa-/- zebrafish exhibited reduced melanin levels compared to the nacre mutant. We investigated the impact on the immune system after exposure to Edwardsiella tarda and bifenazate in zebrafish larvae, and observed that the macrophage numbers were reduced in both treated groups. Remarkably, the expression levels of immune-related genes exhibited significant increases after bacterial challenge or bifenazate exposure in the mitfa-/- zebrafish, except for tlr4 and rela. Furthermore, we conducted xenograft experiments using mouse B16 melanoma cells. Notably, the cancer cells didn't show a high cell migration ratio, implying that the immune system was highly activated after the loss of mifta. Taken together, our findings suggest that mitfa-/- zebrafish serve as a valuable model for investigating the relationship between the immune system and melanocytes, providing new insights into the role of mitfa in immune responses.
Collapse
Affiliation(s)
- Wan-Ping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shao-Lin Xie
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chao Wang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | | | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
29
|
Jacobs-Li J, Tang W, Li C, Bronner ME. Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous system. eLife 2023; 12:e79156. [PMID: 37877560 PMCID: PMC10627514 DOI: 10.7554/elife.79156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
During development, much of the enteric nervous system (ENS) arises from the vagal neural crest that emerges from the caudal hindbrain and colonizes the entire gastrointestinal tract. However, a second ENS contribution comes from the sacral neural crest that arises in the caudal neural tube and populates the post-umbilical gut. By coupling single-cell transcriptomics with axial-level-specific lineage tracing in avian embryos, we compared the contributions of embryonic vagal and sacral neural crest cells to the chick ENS and the associated peripheral ganglia (Nerve of Remak and pelvic plexuses). At embryonic day (E) 10, the two neural crest populations form overlapping subsets of neuronal and glia cell types. Surprisingly, the post-umbilical vagal neural crest much more closely resembles the sacral neural crest than the pre-umbilical vagal neural crest. However, some differences in cluster types were noted between vagal and sacral derived cells. Notably, RNA trajectory analysis suggests that the vagal neural crest maintains a neuronal/glial progenitor pool, whereas this cluster is depleted in the E10 sacral neural crest which instead has numerous enteric glia. The present findings reveal sacral neural crest contributions to the hindgut and associated peripheral ganglia and highlight the potential influence of the local environment and/or developmental timing in differentiation of neural crest-derived cells in the developing ENS.
Collapse
Affiliation(s)
- Jessica Jacobs-Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Can Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
30
|
Jha J, Singh MK, Singh L, Pushker N, Meel R, Lomi N, Bakhshi S, Nag TC, Chosdol K, Sen S, Kashyap S. Prognostic significance of melanogenesis pathway and its association with the ultrastructural characterisation of melanosomes in uveal melanoma. Br J Ophthalmol 2023:bjo-2023-323181. [PMID: 37734767 DOI: 10.1136/bjo-2023-323181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Pigmentation could be a relevant prognostic factor in uveal melanoma (UM) development. Microphthalmia-associated transcription factor (MITF) regulates melanin synthesis by activating tyrosinase-related protein 2 (TYRP2) and silver protein (SILV) that induce the melanogenesis pathway. Although their oncogenic potential has been observed in various malignancies but has not been investigated in UM Asian population. Our aim is to study the ultrastructure of melanosomes and the prognostic significance of pigmentation markers such as TYRP2, MITF and SILV in UM. METHODS Transmission electron microscopy was performed to compare the ultrastructure of melanosomes in the normal choroid and UM cases. Immunoexpression of TYRP2, SILV and MITF was analysed in 82 UM samples. The mRNA expression level of all genes was measured in 70 UM cases. A statistical correlation was performed to determine the prognostic significance of all markers. RESULTS Premelanosomes and mature melanosomes undergoing dedifferentiation were observed in high-pigmented UM cases as compared with low-pigmented UM cases. Seventy per cent of UM cases showed high SILV expression while TYRP2 and MITF expression was present in 58% and 56% of cases, respectively. At the mRNA level, upregulation of TYRP2, SILV and MITF markers was seen in around 50% of UM cases, which was statistically significant with high pigmentation. Reduced metastatic-free survival was statistically significant with the MITF protein expression. CONCLUSION Our results demonstrated that ultrastructural changes in melanosomes and high expression of TYRP2, MITF and SILV could dysregulate the melanogenesis pathway and might be responsible for the aggressive behaviour of UM.
Collapse
Affiliation(s)
- Jayanti Jha
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Lata Singh
- Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Pushker
- Ophthalmology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Rachna Meel
- Ophthalmology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Neiwete Lomi
- Ophthalmology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Kunzang Chosdol
- Biochemistry, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Seema Sen
- Ocular Pathology, Dr.R.P. Centre, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Seema Kashyap
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
31
|
Alsayyah A. Differentiating between early melanomas and melanocytic nevi: A state-of-the-art review. Pathol Res Pract 2023; 249:154734. [PMID: 37573619 DOI: 10.1016/j.prp.2023.154734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Clinicians and dermatologists are challenged by accurate diagnosis of melanocytic lesions, due to melanoma's resemblance to benign skin conditions. Several methodologies have been proposed to diagnose melanoma, and to differentiate between a cancerous and a benign skin condition. First, the ABCD rule and Menzies method use skin lesion characteristics to interpret the condition. The 7-point checklist, 3-point checklist, and CASH algorithm are score-based methods. Each of these methods attributes a score point to the features found on the skin lesion. Furthermore, reflectance confocal microscopy (RCM), an integrated clinical and dermoscopic risk scoring system (iDscore), and a deep convoluted neural network (DCNN) also aids in diagnosis. RCM optically sections live tissues to reveal morphological and cellular structures. The skin lesion's clinical parameters determine iDscore's score point system. The DCNN model is based on a detailed learning algorithm. Therefore, we discuss the conventional and new methodologies for the identification of skin diseases. Moreover, our review attempts to provide clinicians with a comprehensible summary of the wide range of techniques that can help differentiate between early melanomas and melanocytic nevi.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
32
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
33
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
34
|
Silva P, Atukorallaya D. Characterising the Effect of Wnt/β-Catenin Signalling on Melanocyte Development and Patterning: Insights from Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:10692. [PMID: 37445870 DOI: 10.3390/ijms241310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.
Collapse
Affiliation(s)
- Praneeth Silva
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
35
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
36
|
An L, Kim D, Donahue L, Mejooli MA, Chi-Yong E, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541644. [PMID: 37293072 PMCID: PMC10245926 DOI: 10.1101/2023.05.22.541644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal repigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Leanne Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | | | - Eom Chi-Yong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| |
Collapse
|
37
|
Wang JH, Hwang SJ, Lee SK, Choi Y, Byun CK, Son CG. Anti-Melanogenic Effects of Fractioned Cynanchum atratum by Regulation of cAMP/MITF Pathway in a UVB-Stimulated Mice Model. Cells 2023; 12:1390. [PMID: 37408224 DOI: 10.3390/cells12101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Based on traditional pharmacological applications and partial in vitro data, Cynanchum atratum (CA) is proposed to act on skin whitening. However, its functional evaluation and underlying mechanisms have yet to be identified. This study aimed to examine the anti-melanogenesis activity of CA fraction B (CAFB) on UVB-induced skin hyperpigmentation. Forty C57BL/6j mice were exposed to UVB (100 mJ/cm2, five times/week) for eight weeks. After irradiation, CAFB was applied to the left ear once a day for 8 weeks (the right ear served as an internal control). The results showed that CAFB significantly reduced melanin production in the ear skin, as indicated by the gray value and Mexameter melanin index. In addition, CAFB treatment notably decreased melanin production in α-MSH-stimulated B16F10 melanocytes, along with a significant reduction in tyrosinase activity. Cellular cAMP (cyclic adenosine monophosphate), MITF (microphthalmia-associated transcription factor), and tyrosinase-related protein 1 (TRP1) were also noticeably downregulated by CAFB. In conclusion, CAFB is a promising ingredient for treating skin disorders caused by the overproduction of melanin and its underlying mechanisms involving the modulation of tyrosinase, mainly mediated by the regulation of the cAMP cascade and MITF pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yujin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si 27136, Republic of Korea
| | - Chang Kyu Byun
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
38
|
Guo Y, Ollé L, Proaño-Pérez E, Aparicio C, Guerrero M, Muñoz-Cano R, Martín M. MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway. Front Immunol 2023; 14:1154108. [PMID: 37234172 PMCID: PMC10206166 DOI: 10.3389/fimmu.2023.1154108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Ollé
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Health Sciences, Technical University of Ambato, Ambato, Ecuador
| | - Cristina Aparicio
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Margarita Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Collin J, Hasoon MSR, Zerti D, Hammadi S, Dorgau B, Clarke L, Steel D, Hussain R, Coxhead J, Lisgo S, Queen R, Lako M. Single-cell RNA sequencing reveals transcriptional changes of human choroidal and retinal pigment epithelium cells during fetal development, in healthy adult and intermediate age-related macular degeneration. Hum Mol Genet 2023; 32:1698-1710. [PMID: 36645183 PMCID: PMC10162434 DOI: 10.1093/hmg/ddad007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Megan S R Hasoon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
- Microscopy Centre and Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L'aquila 67100, Italy
| | - Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Lucy Clarke
- Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, NE1 4LP, UK
| | - David Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| |
Collapse
|
40
|
Howell R, Davies J, Clarke MA, Appios A, Mesquita I, Jayal Y, Ringham-Terry B, Boned Del Rio I, Fisher J, Bennett CL. Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling. SCIENCE ADVANCES 2023; 9:eadd1992. [PMID: 37043573 PMCID: PMC10096595 DOI: 10.1126/sciadv.add1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.
Collapse
Affiliation(s)
| | | | - Matthew A. Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anna Appios
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Inês Mesquita
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Yashoda Jayal
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Ben Ringham-Terry
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Isabel Boned Del Rio
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | |
Collapse
|
41
|
Nameki RA, Chang H, Yu P, Abbasi F, Lin X, Reddy J, Haro M, Fonseca MAS, Freedman ML, Drapkin R, Corona RI, Lawrenson K. Rewiring of master transcription factor cistromes during high-grade serous ovarian cancer development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536378. [PMID: 37090516 PMCID: PMC10120620 DOI: 10.1101/2023.04.11.536378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The transcription factors MECOM, PAX8, SOX17 and WT1 are candidate master regulators of high-grade serous 'ovarian' cancer (HGSC), yet their cooperative role in the hypothesized tissue of origin, the fallopian tube secretory epithelium (FTSEC) is unknown. We generated 26 epigenome (CUT&TAG, CUT&RUN, ATAC-seq and HiC) data sets and 24 profiles of RNA-seq transcription factor knock-down followed by RNA sequencing in FTSEC and HGSC models to define binding sites and gene sets regulated by these factors in cis and trans. This revealed that MECOM, PAX8, SOX17 and WT1 are lineage-enriched, super-enhancer associated master regulators whose cooperative DNA-binding patterns and target genes are re-wired during tumor development. All four TFs were indispensable for HGSC clonogenicity and survival but only depletion of PAX8 and WT1 impaired FTSEC cell survival. These four TFs were pharmacologically inhibited by transcriptional inhibitors only in HGSCs but not in FTSECs. Collectively, our data highlights that tumor-specific epigenetic remodeling is tightly related to MECOM, PAX8, SOX17 and WT1 activity and these transcription factors are targetable in a tumor-specific manner through transcriptional inhibitors.
Collapse
Affiliation(s)
- Robbin A. Nameki
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pak Yu
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Forough Abbasi
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianzhi Lin
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcela Haro
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcos AS Fonseca
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Rosario I. Corona
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women’s Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
42
|
Qiu C, Martin BK, Welsh IC, Daza RM, Le TM, Huang X, Nichols EK, Taylor ML, Fulton O, O’Day DR, Gomes AR, Ilcisin S, Srivatsan S, Deng X, Disteche CM, Noble WS, Hamazaki N, Moens CB, Kimelman D, Cao J, Schier AF, Spielmann M, Murray SA, Trapnell C, Shendure J. A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535726. [PMID: 37066300 PMCID: PMC10104014 DOI: 10.1101/2023.04.05.535726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Truc-Mai Le
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Eva K. Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Megan L. Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Olivia Fulton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Saskia Ilcisin
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Christine M. Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junyue Cao
- Laboratory of Single-cell genomics and Population dynamics, The Rockefeller University, New York, NY, USA
| | - Alexander F. Schier
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
43
|
Saidani M, Darle A, Jarrige M, Polveche H, El Kassar L, Julié S, Bessou-Touya S, Holic N, Lemaitre G, Martinat C, Baldeschi C, Allouche J. Generating Functional and Highly Proliferative Melanocytes Derived from Human Pluripotent Stem Cells: A Promising Tool for Biotherapeutic Approaches to Treat Skin Pigmentation Disorders. Int J Mol Sci 2023; 24:ijms24076398. [PMID: 37047372 PMCID: PMC10094141 DOI: 10.3390/ijms24076398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Melanocytes are essential for skin homeostasis and protection, and their loss or misfunction leads to a wide spectrum of diseases. Cell therapy utilizing autologous melanocytes has been used for years as an adjunct treatment for hypopigmentary disorders such as vitiligo. However, these approaches are hindered by the poor proliferative capacity of melanocytes obtained from skin biopsies. Recent advances in the field of human pluripotent stem cells have fueled the prospect of generating melanocytes. Here, we have developed a well-characterized method to produce a pure and homogenous population of functional and proliferative melanocytes. The genetic stability and potential transformation of melanocytes from pluripotent stem cells have been evaluated over time during the in vitro culture process. Thanks to transcriptomic analysis, the molecular signatures all along the differentiation protocol have been characterized, providing a solid basis for standardizing the protocol. Altogether, our results promise meaningful, broadly applicable, and longer-lasting advances for pigmentation disorders and open perspectives for innovative biotherapies for pigment disorders.
Collapse
|
44
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
45
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Fan S, Spence JP, Feng Y, Hansen MEB, Terhorst J, Beltrame MH, Ranciaro A, Hirbo J, Beggs W, Thomas N, Nyambo T, Mpoloka SW, Mokone GG, Njamnshi A, Folkunang C, Meskel DW, Belay G, Song YS, Tishkoff SA. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell 2023; 186:923-939.e14. [PMID: 36868214 PMCID: PMC10568978 DOI: 10.1016/j.cell.2023.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/16/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.
Collapse
Affiliation(s)
- Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey P Spence
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Terhorst
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcia H Beltrame
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jibril Hirbo
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil Thomas
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, P.O. Box 9790, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana Gaborone, Private Bag UB 0022, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana Gaborone, Private Bag UB 0022, Gaborone, Botswana
| | - Alfred Njamnshi
- Department of Neurology, Central Hospital Yaoundé; Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles Folkunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Maher NG, Scolyer RA, Colebatch AJ. Biology and genetics of acquired and congenital melanocytic naevi. Pathology 2023; 55:169-177. [PMID: 36635156 DOI: 10.1016/j.pathol.2022.12.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Acquired and congenital melanocytic naevi are common benign neoplasms. Understanding their biology and genetics will help clinicians and pathologists correctly diagnose melanocytic tumours, and generate insights into naevus aetiology and melanomagenesis. Genomic data from published studies analysing acquired and congenital melanocytic naevi, including oncogenic driver mutations, common melanoma associated mutations, copy number aberrations, somatic mutation signature patterns, methylation profile, and single nucleotide polymorphisms, were reviewed. Correlation of genomic changes to dermoscopic features, particular anatomic sites and total body naevus counts, was also performed. This review also highlights current scientific theories and evidence concerning naevi growth arrest. Acquired and congenital melanocytic naevi show simple genomes, typically characterised by mutually exclusive single oncogenic driver mutations in either BRAF or NRAS genes. Genomic differences exist between acquired and congenital naevi, common and dysplastic naevi, and by dermoscopic features. Acquired naevi show a higher rate of BRAF hotspot mutations and a lower rate of NRAS hotspot mutations compared to congenital naevi. Dysplastic naevi show upregulation of follicular keratinocyte-related genes compared to common naevi. Anatomical locations and DNA signatures of naevi implicates ultraviolet radiation and non-ultraviolet radiation pathways in naevogenesis. DNA driver point mutations in acquired and congenital melanocytic naevi have been well characterised. Future research is required to better understand transcriptional and epigenetic changes in naevi, as well as those regulating naevus growth arrest and cell environment signalling.
Collapse
Affiliation(s)
- Nigel G Maher
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Andrew J Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
González-Palomo AK, Ruíz-Rodríguez VM, Hernández-Blanco DV, Pérez Vázquez FJ, Alcántara-Quintana LE, Cortés-Garcia JD. Atrazine modifies markers of melanocyte maturation and apoptosis in primary skin cultures. Toxicol Mech Methods 2023; 33:233-238. [PMID: 36093949 DOI: 10.1080/15376516.2022.2124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Atrazine (ATZ) is part of a group of herbicides called triazines. ATZ is widely used in agricultural areas of Mexico, commonly used for the selective control of weeds in corn and sorghum crops. The exposure to ATZ can have serious human health effects since its use was associated with the development of cutaneous melanoma in an epidemiological study. The aim of this study was to evaluate the expression of maturation and apoptotic markers in primary skin cultures exposed to ATZ. The primary skin cultures were exposed to 0.1, and 10 µM ATZ with or without ultraviolet (UV) radiation and the expression of maturation and apoptotic markers were evaluated by RT-qPCR. We observed a significant increase in all the melanocyte maturation markers in cells exposed to ATZ with or without UV, with SOX-9 and FAK (melanoblast markers) being the highest. Also, the expression of BCL-2 (anti-apoptotic marker) was the most increased gene in cells exposed to ATZ with or without UV. Low concentrations of ATZ and UV radiation induce genetic changes associated with the development of immature melanocytes and activate mechanisms associated with the inhibition of apoptosis characteristics of malignant cell transformation, which will allow proposing new therapeutic targets and generating new restrictions or care in farmers exposed to pesticides such as the ATZ.
Collapse
Affiliation(s)
- Ana K González-Palomo
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Victor M Ruíz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, México
| | - Diana V Hernández-Blanco
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.,Departamento de Dermatologia, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosi, Mexico
| | - Francisco J Pérez Vázquez
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Luz E Alcántara-Quintana
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Juan D Cortés-Garcia
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.,Departamento de Dermatologia, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosi, Mexico
| |
Collapse
|
49
|
Garcia-Elfring A, Sabin CE, Iouchmanov AL, Roffey HL, Samudra SP, Alcala AJ, Osman RS, Lauderdale JD, Hendry AP, Menke DB, Barrett RDH. Piebaldism and chromatophore development in reptiles are linked to the tfec gene. Curr Biol 2023; 33:755-763.e3. [PMID: 36702128 DOI: 10.1016/j.cub.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Christina E Sabin
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Anna L Iouchmanov
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Heather L Roffey
- Biology Department, Vanier College, Montreal, QC H4L 3X9, Canada
| | - Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rida S Osman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
50
|
Levy R, Alter Regev T, Paes W, Gumpert N, Cohen Shvefel S, Bartok O, Dayan-Rubinov M, Alon M, Shmueli M, Levin Y, Merbl Y, Ternette N, Samuels Y. Large-Scale Immuno-Peptidome Analysis Reveals Recurrent Post-Translational Splicing of Cancer and Immune-Associated Genes. Mol Cell Proteomics 2023; 22:100519. [PMID: 36828127 PMCID: PMC10119686 DOI: 10.1016/j.mcpro.2023.100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Post-translational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA-class-I molecules in cancer (1). Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate (2-8). Furthermore, the role of the HLA-class-II pathway in PTSP presentation has been studied only in diabetes (9). Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA-class-I and -II complexes. Our results indicate that HLA-class-I spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%), yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA-class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.
Collapse
Affiliation(s)
- Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Alter Regev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nofar Gumpert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sapir Cohen Shvefel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria Dayan-Rubinov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - MeravD Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Ternette
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|