1
|
Bonefas KM, Venkatachalam I, Iwase S. KDM5C is a sex-biased brake against germline gene expression programs in somatic lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622665. [PMID: 39574581 PMCID: PMC11581037 DOI: 10.1101/2024.11.08.622665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The division of labor among cellular lineages is a pivotal step in the evolution of multicellularity. In mammals, the soma-germline boundary is formed during early embryogenesis, when genes that drive germline identity are repressed in somatic lineages through DNA and histone modifications at promoter CpG islands (CGIs). Somatic misexpression of germline genes is a signature of cancer and observed in select neurodevelopmental disorders. However, it is currently unclear if all germline genes use the same repressive mechanisms and if factors like development and sex influence their dysregulation. Here, we examine how cellular context influences the formation of somatic tissue identity in mice lacking lysine demethylase 5c (KDM5C), an X chromosome eraser of histone 3 lysine 4 di and tri-methylation (H3K4me2/3). We found male Kdm5c knockout (-KO) mice aberrantly express many tissue-specific genes within the brain, the majority of which are unique to the germline. By developing a comprehensive list of mouse germline-enriched genes, we observed Kdm5c-KO cells aberrantly express key drivers of germline fate during early embryogenesis but late-stage spermatogenesis genes within the mature brain. KDM5C binds CGIs within germline gene promoters to facilitate DNA CpG methylation as embryonic stem cells differentiate into epiblast-like cells (EpiLCs). However, the majority of late-stage spermatogenesis genes expressed within the Kdm5c-KO brain did not harbor promoter CGIs. These CGI-free germline genes were not bound by KDM5C and instead expressed through ectopic activation by RFX transcription factors. Furthermore, germline gene repression is sexually dimorphic, as female EpiLCs require a higher dose of KDM5C to maintain germline silencing. Altogether, these data revealed distinct regulatory classes of germline genes and sex-biased silencing mechanisms in somatic cells.
Collapse
Affiliation(s)
- Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ilakkiya Venkatachalam
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Mesa H, Zhang EY, Wang Y, Zhang Q. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. J Cell Physiol 2024; 239:e30999. [PMID: 36966431 DOI: 10.1002/jcp.30999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Elaine Y Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Brentwood High School, Brentwood, Tennessee, USA
| | - Yingcai Wang
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Qi Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
3
|
Sanaie S, Koohi N, Mosaddeghi-Heris R, Rezai S, Movagharnia E, Karimi H, Moghaddamziabari S, Hamzehzadeh S, Gholipour-Khalili E, Talebi M, Naseri A. Serum lipids and cognitive outcomes in multiple sclerosis; a systematic review and meta-analysis. Mult Scler Relat Disord 2024; 85:105530. [PMID: 38522226 DOI: 10.1016/j.msard.2024.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/19/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Cognitive impairment is highly prevalent in multiple sclerosis (MS) with poorly understood underlying mechanisms. Lipids are considered to be associated with MS progression through the inflammatory and oxidative stress pathways, brain atrophy, cellular signaling, and tissue physiology. In addition, serum lipids are proposed as a modifiable factor affecting the neuropsychiatric condition; therefore, this study aims to assess the association between serum lipid levels and cognitive outcomes in MS. METHODS This study was carried out following the PRISMA 2020 statement. A systematic search was conducted in PubMed, Scopus, Web of Science, and Embase in March 2023, and the Joanna Briggs Institute (JBI)'s critical appraisal tools were utilized for risk of bias (RoB) assessments in the included studies. The quantitative synthesis was performed with the comprehensive meta-analysis (CMA3) software. RESULTS Out of 508 screened records, 7 studies were eventually found to meet our inclusion criteria. In two studies, the course of MS in the sample of the study was only Relapsing-Remitting MS (RRMS), whereas the other five studies' sample was a combination of different phenotypes. Studies utilized different scales such as Minimal Assessment of Cognitive Function in MS (MACFIMS), Brief International Cognitive Assessment for MS (BICAMS), Montreal Cognitive Assessment (MoCA), Brief Repeatable Battery of Neuropsychological Tests (BRB-N) for cognitive evaluations. Dealing with possible confounders such as age, disease duration and level of disability was the most common possible source of bias in the included studies. One study revealed an inverse relationship between serum levels of apolipoproteins (including ApoA-I, ApoB, and ApoB/ApoA-I) and Symbol Digit Modalities Test (SDMT) scores. Also, a correlation between 24S-hydroxycholesterol (24OHC) serum concentrations and SDMT score was reported in one study. The association between serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) and different aspects of cognitive function was reported in the studies; however, serum levels of high-density lipoprotein cholesterol (HDL) were not found to be associated. The quantitative synthesis revealed a significant correlation between TC and the MoCA scores (r =-0.238; 95 %CI: -0.366 to -0.100; p-value = 0.001); however, the correlation between TG levels and MoCA were not statistically significant (r:-0.070; 95 %CI: -0.209 to 0.072; p-value: 0.334). In addition, the mata-analyses were not associated with significant findings regarding the correlation between lipid profiles (including HDL, LDL, TG, and TC) and other cognitive assessment scales including SDMT, Brief Visuospatial Memory Test (BVMT), and California Verbal Learning Test (CVLT) (p-values>0.05). DISCUSSION Available evidence suggested a link between TC and LDL with cognitive outcomes of MS patients which was not evident in our quantitative synthesis. The limited number of studies, high RoB, different cognitive assessment scales and reporting methods, and the cross-sectional design of the included studies, were the main limitations that alleviate the clinical significance of the findings of this study and suggested further investigations on this topic. FUNDING AND REGISTRATION The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 71,909). This study is registered in the international prospective register of systematic reviews (PROSPERO ID: CRD42023441625).
Collapse
Affiliation(s)
- Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Narges Koohi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Shirin Rezai
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Movagharnia
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sina Hamzehzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
4
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
5
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Lozupone M, Panza F. Impact of apolipoprotein E isoforms on sporadic Alzheimer's disease: beyond the role of amyloid beta. Neural Regen Res 2024; 19:80-83. [PMID: 37488848 PMCID: PMC10479857 DOI: 10.4103/1673-5374.375316] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 04/16/2023] [Indexed: 07/26/2023] Open
Abstract
The impact of apolipoprotein E (ApoE) isoforms on sporadic Alzheimer's disease has long been studied; however, the influences of apolipoprotein E gene (APOE) on healthy and pathological human brains are not fully understood. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4), which differ in two amino acid residues. Traditionally, ApoE binds cholesterol and phospholipids and ApoE isoforms display different affinities for their receptors, lipids transport and distribution in the brain and periphery. The role of ApoE in the human depends on ApoE isoforms, brain regions, aging, and neural injury. APOE ε4 is the strongest genetic risk factor for sporadic Alzheimer's disease, considering its role in influencing amyloid-beta metabolism. The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood, but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration, lipids metabolism, neurovascular unit, and microglial function. Consistent with the biological function of ApoE, ApoE4 isoform significantly altered signaling pathways associated with cholesterol homeostasis, transport, and myelination. Also, the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis. The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE, brain function, and memory, from a molecular to a clinical level. APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes. Not only in learning and memory but also in neuropsychiatric symptoms that occur in a premorbid condition. Clarifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms, particularly suicidal ideation in Alzheimer's disease patients, may be useful for elucidating also the underlying pathophysiological process and its prognosis. Also, the effects of anti-amyloid-beta drugs, recently approved for the treatment of Alzheimer's disease, could be influenced by the APOE genotype.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
7
|
Davra V, Benzeroual KE. Flavonoids and fibrate modulate apoE4-induced processing of amyloid precursor protein in neuroblastoma cells. Front Neurosci 2023; 17:1245895. [PMID: 38204816 PMCID: PMC10777729 DOI: 10.3389/fnins.2023.1245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Apolipoprotein (apo) E4, being a major genetic risk factor for Alzheimer's disease (AD), is actively involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid β (Aβ) peptide, the principle constituent of amyloid plaques in Alzheimer Disease (AD) patients. ApoE4 is believed to affect APP processing through intracellular cholesterol homeostasis, whereas lowering the cholesterol level by pharmacological agents has been suggested to reduce Aβ production. This study has investigated the effects of hypolipidemic agents fenofibrate, and the flavonoids-naringenin and diosmetin-on apoE4-induced APP processing in rat neuroblastoma cells stably transfected with human wild-type APP 695 (B103-hAPP695wt). Results B103-hAPP695wt cells were pretreated with different doses of flavonoids and fenofibrate for 1 h prior to apoE4 exposure for 24 h. ApoE4-induced production of intra- and extracellular Aβ peptides has been reduced with fenofibrate, naringenin, and diosmetin treatments. Pretreatment with diosmetin has significantly reduced apoE4-induced full-length APP (fl- APP) expression, whereas naringenin and fenofibrate had no effect on it. In addition, the increase in the apoE4-induced secretion of sAPPtotal and sAPPα has been dose-dependently reduced with drug pretreatment. On the other hand, the decrease in the expression of both APP-carboxy terminal fragments (CTF)-α and -β (generated by the α- or β-secretase cleavage of APP) by apoE4 was dose-dependently increased in cells pretreated with fenofibrate and naringenin but not diosmetin. Conclusion Thus, we suggest that fenofibrate, naringenin, and diosmetin treatments can reduce apoE4- induced Aβ production by distinct mechanisms that may prove useful in developing drugs for AD patients.
Collapse
Affiliation(s)
| | - Kenza E. Benzeroual
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
| |
Collapse
|
8
|
Ploypetch S, Wongbandue G, Roytrakul S, Phaonakrop N, Prapaiwan N. Comparative Serum Proteome Profiling of Canine Benign Prostatic Hyperplasia before and after Castration. Animals (Basel) 2023; 13:3853. [PMID: 38136890 PMCID: PMC10740436 DOI: 10.3390/ani13243853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day 30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase, and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant downregulation in the BF subgroup, suggesting A1BG's potential as a predictive protein for canine BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins in canine BPH, reflecting different pathological changes occurring in this condition. These proteins could be a source of potential non-invasive biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Grisnarong Wongbandue
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Nawarus Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| |
Collapse
|
9
|
Liu S, Zhang F, Liang Y, Wu G, Liu R, Li X, Saw PE, Yang Z. Nanoparticle (NP)-mediated APOC1 silencing to inhibit MAPK/ERK and NF-κB pathway and suppress breast cancer growth and metastasis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2451-2465. [PMID: 37668862 DOI: 10.1007/s11427-022-2329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 09/06/2023]
Abstract
Breast cancer is one of the most common malignant tumors with high mortality and poor prognosis in women. There is an urgent need to discover new therapeutic targets for breast cancer metastasis. Herein, we identified that Apolipoprotein C1 (APOC1) was up-regulated in primary tumor of breast cancer patient that recurrence and metastasis by immunohistochemistry (IHC). Kaplan-Meier Plotter database showed that high levels of APOC1 in breast cancer patients were strongly associated with worse overall survival (OS) and relapse-free survival (RFS). Mechanistically, APOC1 silencing significantly inhibits MAPK/ERK kinase pathway and restrains the NF-κB to decrease the transcription of target genes related to growth and metastasis in vitro. Based on this regulatory mechanism, we developed these findings into potential therapeutic drugs, glutathione (GSH) responsive nano-particles (NPs) were used for systemic APOC1 siRNA delivery, NPs (siAPOC1) silenced APOC1 expression, and subsequently resulted in positive anti-tumor effects in orthotopic and liver metastasis models in vivo. Taken together, GSH responsive NP-mediated siAPOC1 delivery was proved to be effective in regulating growth and metastasis in multiple tumor models. These findings show that APOC1 could be a potential biomarker to predict the prognosis of breast cancer patients and NP-mediated APOC1 silencing could be new strategies for exploration of new treatments for breast cancer metastasis.
Collapse
Affiliation(s)
- Shaomin Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Fengqian Zhang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Yixia Liang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Guo Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Rong Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Xiuling Li
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Phei Er Saw
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Pantazopoulou M, Lamprokostopoulou A, Karampela DS, Alexaki A, Delis A, Coens A, Samiotaki M, Kriebardis AG, Melki R, Pagakis SN, Stefanis L, Vekrellis K. Differential intracellular trafficking of extracellular vesicles in microglia and astrocytes. Cell Mol Life Sci 2023; 80:193. [PMID: 37391572 DOI: 10.1007/s00018-023-04841-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
Extracellular vesicles (EVs) have emerged as key players in cell-to-cell communication in both physiological and pathological processes in the Central Nervous System. Thus far, the intracellular pathways involved in uptake and trafficking of EVs within different cell types of the brain are poorly understood. In our study, the endocytic processes and subcellular sorting of EVs were investigated in primary glial cells, particularly linked with the EV-associated α-synuclein (α-syn) transmission. Mouse microglia and astrocytic primary cultures were incubated with DiI-stained mouse brain-derived EVs. The internalization and trafficking pathways were analyzed in cells treated with pharmacological reagents that block the major endocytic pathways. Brain-derived EVs were internalized by both glial cell types; however, uptake was more efficient in microglia than in astrocytes. Colocalization of EVs with early and late endocytic markers (Rab5, Lamp1) indicated that EVs are sorted to endo-lysosomes for subsequent processing. Blocking actin-dependent phagocytosis and/or macropinocytosis with Cytochalasin D or EIPA inhibited EV entry into glial cells, whereas treatment with inhibitors that strip cholesterol off the plasma membrane, induced uptake, however differentially altered endosomal sorting. EV-associated fibrillar α-Syn was efficiently internalized and detected in Rab5- and Lamp1-positive compartments within microglia. Our study strongly suggests that EVs enter glial cells through phagocytosis and/or macropinocytosis and are sorted to endo-lysosomes for subsequent processing. Further, brain-derived EVs serve as scavengers and mediate cell-to-glia transfer of pathological α-Syn which is also targeted to the endolysosomal pathway, suggesting a beneficial role in microglia-mediated clearance of toxic protein aggregates, present in numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Marina Pantazopoulou
- Biomedical Research Foundation Academy of Athens-BRFAA, Clinical-Experimental Surgery & Translational Research, 4, Soranou Tou Efesiou Street, 11527, Athens, Greece.
| | | | | | - Anastasia Alexaki
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Anastasios Delis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Audrey Coens
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Fleming 34, 16672, Vari, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Stamatis N Pagakis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Leonidas Stefanis
- Biomedical Research Foundation Academy of Athens-BRFAA, Clinical-Experimental Surgery & Translational Research, 4, Soranou Tou Efesiou Street, 11527, Athens, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| |
Collapse
|
11
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
12
|
Morris JA, Caragine C, Daniloski Z, Domingo J, Barry T, Lu L, Davis K, Ziosi M, Glinos DA, Hao S, Mimitou EP, Smibert P, Roeder K, Katsevich E, Lappalainen T, Sanjana NE. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 2023; 380:eadh7699. [PMID: 37141313 PMCID: PMC10518238 DOI: 10.1126/science.adh7699] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Most variants associated with complex traits and diseases identified by genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally diverse, biobank-scale GWAS data, massively parallel CRISPR screens, and single-cell transcriptomic and proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding blood trait GWAS loci. Using precise variant insertion through base editing, we connected specific variants with gene expression changes. We also identified trans-effect networks of noncoding loci when cis target genes encoded transcription factors or microRNAs. Networks were themselves enriched for GWAS variants and demonstrated polygenic contributions to complex traits. This platform enables massively parallel characterization of the target genes and mechanisms of human noncoding variants in both cis and trans.
Collapse
Affiliation(s)
- John A. Morris
- New York Genome Center, New York, NY, 10013, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| | | | - Zharko Daniloski
- New York Genome Center, New York, NY, 10013, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| | | | - Timothy Barry
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lu Lu
- New York Genome Center, New York, NY, 10013, USA
| | - Kyrie Davis
- New York Genome Center, New York, NY, 10013, USA
| | | | | | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, New York, NY, 10013, USA
| | - Eleni P. Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, 10013, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, 10013, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Eugene Katsevich
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, 10013, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 171 65 Solna, Stockholm, Sweden
| | - Neville E. Sanjana
- New York Genome Center, New York, NY, 10013, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
13
|
Li R, He H, He X. APOC1 promotes the progression of osteosarcoma by binding to MTCH2. Exp Ther Med 2023; 25:163. [PMID: 36911382 PMCID: PMC9996334 DOI: 10.3892/etm.2023.11862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Osteosarcoma is the most prevalent primary malignant bone cancer worldwide. Apolipoprotein C1 (APOC1) and mitochondrial carrier homolog 2 (MTCH2) have been identified to be upregulated during the oncogenesis and metastasis of osteosarcoma. The aim of the present study was to explore the role of APOC1 in osteosarcoma progression and the mechanisms associated with MTCH2. APOC1 and MTCH2 expression in osteosarcoma cells was assessed by reverse transcription-quantitative PCR and western blotting. Then, APOC1 was silenced to detect its effect on cell viability, proliferation and apoptosis using Cell Counting Kit-8, a colony formation assay and TUNEL staining, respectively. Transwell and wound healing assays were used to evaluate cell invasion and migration. The interaction between APOC1 and MTCH2 as predicted by the Biological General Repository for Interaction Datasets and the Search Tool for the Retrieval of Interacting Genes/Proteins databases was verified by co-immunoprecipitation assay. Subsequently, rescue experiments were performed to analyze the regulatory effects of APOC1 on MTCH2 in the biological behavior and Warburg effect of osteosarcoma cells. Significantly upregulated APOC1 and MTCH2 expression was found in osteosarcoma SAOS-2 cells. APOC1 silencing attenuated cell viability, inhibited proliferation and promoted cell apoptosis, coupled with the decreased Bcl-2 expression and increased Bax and cleaved-caspase 3 expression. The invasive and migratory capacities of SAOS-2 cells were also suppressed following APOC1 knockdown. Moreover, APOC1 was confirmed to interact with MTCH2 in osteosarcoma cells. MTCH2 upregulation inhibited the impacts of APOC1 deletion on the malignant behavior of osteosarcoma cells. APOC1 silencing-induced oxidative phosphorylation elevation and Warburg effect decrease were partially restored by MTCH2 upregulation. In sum, APOC1 promoted progression of osteosarcoma by binding to MTCH2, suggesting that targeting the APOC1/MTCH2 axis may be a potential treatment of osteosarcoma.
Collapse
Affiliation(s)
- Renjie Li
- School of Nursing, Sun Yat-Sen University, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huixian He
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinxin He
- School of Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
14
|
Zhang X, Lou Y, Zheng D, Lu J, Qi D. Quantitative proteomic analysis reveals the effects of mu opioid agonists on HT22 cells. Front Pharmacol 2023; 13:1022449. [PMID: 36699066 PMCID: PMC9868271 DOI: 10.3389/fphar.2022.1022449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: At present, the mu opioid receptor is the most important neuroaesthetics receptor in anesthesiology research, and the damage that it does to the nervous system is unknown. Methods: We investigated the effects of loperamide, an agonist of the mu opioid receptor, on protein expression in HT22 cells using stable isotope labeling of amino acids in cell culture (SILAC), immobilized metal affinity chromatography (IMAC) enrichment, and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 7,823 proteins were identified. Results and Discussion: Bioinformatic analysis revealed that mu opioid receptor agonism can induce distinct changes in the proteome of HT22 cells. These findings improve our understanding of narcotic drugs.
Collapse
Affiliation(s)
- Xutong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yani Lou
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongxu Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialin Lu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dansi Qi
- Department of Pathology, Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Dansi Qi,
| |
Collapse
|
15
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
16
|
Yarns BC, Holiday KA, Carlson DM, Cosgrove CK, Melrose RJ. Pathophysiology of Alzheimer's Disease. Psychiatr Clin North Am 2022; 45:663-676. [PMID: 36396271 DOI: 10.1016/j.psc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia worldwide. While neuritic plaques consisting of aggregated amyloid-beta proteins and neurofibrillary tangles of accumulated tau proteins represent the pathophysiologic hallmarks of AD, numerous processes likely interact with risk and protective factors and one's culture to produce the cognitive loss, neuropsychiatric symptoms, and functional impairments that characterize AD dementia. Recent biomarker and neuroimaging research has revealed how the pathophysiology of AD may lead to symptoms, and as the pathophysiology of AD gains clarity, more potential treatments are emerging that aim to modify the disease and relieve its burden.
Collapse
Affiliation(s)
- Brandon C Yarns
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA.
| | - Kelsey A Holiday
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA
| | - David M Carlson
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| | - Coleman K Cosgrove
- Department of Psychiatry, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. Int J Mol Sci 2022; 23:ijms23158311. [PMID: 35955451 PMCID: PMC9369063 DOI: 10.3390/ijms23158311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of protein inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), in the brain is the main feature of Parkinson’s disease (PD). Recent evidence that the prion-like propagation of α-synuclein (α-syn), as a major component of LBs and LNs, plays an important role in the progression of PD has gained much attention, although the molecular mechanism remains unclear. In this study, we evaluated whether neuronal ApoE regulates the cell-to-cell transmission of α-syn and explored its molecular mechanism using in vitro and in vivo model systems. We demonstrate that neuronal ApoE deficiency attenuates both α-syn uptake and release by downregulating LRP-1 and LDLR expression and enhancing chaperone-mediated autophagy activity, respectively, thereby contributing to α-syn propagation. In addition, we observed that α-syn propagation was attenuated in ApoE knockout mice injected with pre-formed mouse α-syn fibrils. This study will help our understanding of the molecular mechanisms underlying α-syn propagation.
Collapse
|
19
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
20
|
Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis‐Tuffin L, Quicksall ZS, Lin S, Tutor‐New FQ, Ho CC, Min Y, Malphrus KG, Nguyen TT, Martin E, Garcia CA, Alkharboosh RM, Grewal S, Chaichana K, Wharen R, Guerrero‐Cazares H, Quinones‐Hinojosa A, Ertekin‐Taner N. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell 2022; 21:e13606. [PMID: 35388616 PMCID: PMC9124307 DOI: 10.1111/acel.13606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.
Collapse
Affiliation(s)
- Tulsi Patel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Mariet Allen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Shu Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Thuy T. Nguyen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Rawan M. Alkharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMinnesotaUSA
- Regenerative Sciences Training ProgramCenter for Regenerative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Sanjeet Grewal
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | - Robert Wharen
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
21
|
Zhang ZH, Cao XC, Peng JY, Huang SL, Chen C, Jia SZ, Ni JZ, Song GL. Reversal of Lipid Metabolism Dysregulation by Selenium and Folic Acid Co-Supplementation to Mitigate Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050829. [PMID: 35624693 PMCID: PMC9138008 DOI: 10.3390/antiox11050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant lipid metabolism is reported to be closely related to the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD). Selenium (Se) and folate are two ideal and safe nutritional supplements, whose biological effects include regulating redox and homocysteine (Hcy) homeostasis in vivo. Here, to achieve effective multitarget therapy for AD, we combined Se and folic acid in a co-supplementation regimen (Se-FA) to study the therapeutic potential and exact mechanism in two transgenic mouse models of AD (APP/Tau/PSEN and APP/PS1). In addition to a reduction in Aβ generation and tau hyperphosphorylation, a restoration of synaptic plasticity and cognitive ability was observed in AD mice upon Se-FA administration. Importantly, by using untargeted metabolomics, we found that these improvements were dependent on the modulation of brain lipid metabolism, which may be associated with an antioxidant effect and the promotion of Hcy metabolism. Thus, from mechanism to effects, this study systematically investigated Se-FA as an intervention for AD, providing important mechanistic insights to inform its potential use in clinical trials.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Z.-H.Z.); (X.-C.C.); (J.-Y.P.); (S.-L.H.); (C.C.); (S.-Z.J.); (J.-Z.N.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-0755-26535432
| |
Collapse
|
22
|
Upadhyay PK, Vishwakarma VK, Srivastav RK. Caveolins: Expression of Regulating Systemic Physiological Functions in Various Predicaments. Drug Res (Stuttg) 2022; 72:238-244. [PMID: 35426095 DOI: 10.1055/a-1785-4133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Caveolins are membrane proteins which contains caveolae. They are present in the plasma membrane. Many researchers found that caveolae have been associated with expression of the caveolins in major physiological networks of mammalian cells. Subtypes of caveolin including caveolin-1 and caveolin-2 have been found in micro arteries of rat brain, while caveolin-3 has been found in astrocytes. Caveolin-1 and caveolae play important roles in Alzheimer's disease, cancer, ischemic preconditioning-mediated cardio-protection, postmenopausal alterations in women, and age-related neurodegeneration. Caveolin-1 may modify fatty acid transmembrane flux in adipocytes. The discovery of a link between ischemia preconditioning, cardio-protection, and endothelial nitric oxide synthase has supported cardiovascular research tremendously. Therefore, caveolins are effective in regulation of cellular, cardiovascular, brain, and immune processes. They ascertain new signalling pathways and link the functionalities of these pathways. This review paper focuses on contribution of caveolins in various conditions, caveolin expression at the molecular level and their physiological effects in many organ systems.
Collapse
Affiliation(s)
| | | | - Ritesh Kumar Srivastav
- Faculty of Pharmacy, Kamla Nehru Institute of Management & Technology, Sultanpur, UP, India
| |
Collapse
|
23
|
Meng L, Wang Z, Ji HF, Shen L. Causal association evaluation of diabetes with Alzheimer's disease and genetic analysis of antidiabetic drugs against Alzheimer's disease. Cell Biosci 2022; 12:28. [PMID: 35272707 PMCID: PMC8908591 DOI: 10.1186/s13578-022-00768-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/26/2022] [Indexed: 03/05/2023] Open
Abstract
Background Despite accumulating epidemiological studies support that diabetes increases the risk of Alzheimer’s disease (AD), the causal associations between diabetes and AD remain inconclusive. The present study aimed to explore: i) whether diabetes is causally related to the increased risk of AD; ii) and if so, which diabetes-related physiological parameter is associated with AD; iii) why diabetes drugs can be used as candidates for the treatment of AD. Two-sample Mendelian randomization (2SMR) was employed to perform the analysis. Results Firstly, the 2SMR analysis provided a suggestive association between genetically predicted type 1 diabetes (T1D) and a slightly increased AD risk (OR = 1.04, 95% CI = [1.01, 1.06]), and type 2 diabetes (T2D) showed a much stronger association with AD risk (OR = 1.34, 95% CI = [1.05, 1.70]). Secondly, further 2SMR analysis revealed that diabetes-related physiological parameters like fasting blood glucose and total cholesterol levels might have a detrimental role in the development of AD. Thirdly, we obtained 74 antidiabetic drugs and identified SNPs to proxy the targets of antidiabetic drugs. 2SMR analysis indicated the expression of three target genes, ETFDH, GANC, and MGAM, were associated with the increased risk of AD, while CPE could be a protective factor for AD. Besides, further PPI network found that GANC interacted with MGAM, and further interacted with CD33, a strong genetic locus related to AD. Conclusions In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.
Collapse
Affiliation(s)
- Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Zhe Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Baril AA, Beiser AS, Sanchez E, Mysliwiec V, Redline S, Gottlieb DJ, O’Connor GT, Gonzales MM, Himali D, Seshadri S, Himali JJ, Pase MP. Insomnia symptom severity and cognitive performance: Moderating role of APOE genotype. Alzheimers Dement 2022; 18:408-421. [PMID: 34310026 PMCID: PMC8802306 DOI: 10.1002/alz.12405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION We evaluated whether insomnia symptom severity was associated with cognitive function, and whether this relationship was modified by biomarkers associated with Alzheimer's disease risk. METHODS We examined insomnia symptoms and neuropsychological performance 3.4 years later in 511 dementia-free Framingham Heart Study participants (62.65 ± 8.7 years, 50.9% male). Additionally, we explored insomnia symptoms combined with self-reported short habitual sleep duration and effect modification by apolipoprotein E (APOE) ε4 allele status. RESULTS More severe insomnia symptoms were associated with lower performance on global cognition, and immediate and delayed Logical Memory recall, especially when insomnia symptoms were combined with short sleep duration. The association between insomnia symptoms and poorer memory recall was more pronounced in APOE ε4 allele carriers. DISCUSSION Insomnia symptom severity was associated with worse subsequent global cognitive and memory performance, which was especially apparent in APOE ε4 allele carriers, suggesting that poor sleep might be particularly detrimental when the brain is already vulnerable to neurodegeneration.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexa S. Beiser
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Erlan Sanchez
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalCIUSSS-NIM, Montreal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Québec, Canada
| | - Vincent Mysliwiec
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - George T. O’Connor
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Dibya Himali
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Jayandra J. Himali
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Matthew P. Pase
- The Framingham Heart Study, Framingham, Massachusetts, USA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Picard C, Nilsson N, Labonté A, Auld D, Rosa-Neto P, Ashton NJ, Zetterberg H, Blennow K, Breitner JCB, Villeneuve S, Poirier J. Apolipoprotein B is a novel marker for early tau pathology in Alzheimer's disease. Alzheimers Dement 2021; 18:875-887. [PMID: 34590423 PMCID: PMC9293308 DOI: 10.1002/alz.12442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION We examine the role of brain apolipoprotein B (apoB) as a putative marker of early tau pathology and cognitive decline. METHODS Cerebrospinal fluid (CSF) samples from cognitively normal and Alzheimer's disease (AD) participants were collected to measure protein levels of apoB and AD biomarkers amyloid beta (Aβ), t-tau and p-tau, as well as synaptic markers GAP43, SYNAPTOTAGMIN-1, synaptosome associated protein 25 (SNAP-25), and NEUROGRANIN. CSF apoB levels were contrasted with positron emission tomography (PET) scan measures of Aβ (18F-NAV4694) and Tau (flortaucipir) along with cognitive assessment alterations over 6 to 8 years. RESULTS CSF apoB levels were elevated in AD participants and correlated with t-tau, p-tau, and the four synaptic markers in pre-symptomatic individuals. In the latter, CSF apoB levels correlated with PET flortaucipir-binding in entorhinal, parahippocampal, and fusiform regions. Baseline CSF apoB levels were associated with longitudinal visuospatial cognitive decline. DISCUSSION CSF apoB markedly associates with early tau dysregulation in asymptomatic subjects and identifies at-risk individuals predisposed to develop visuospatial cognitive decline over time.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada
| | - Nathalie Nilsson
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada
| | | | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | -
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - John C B Breitner
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada.,Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | -
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| |
Collapse
|
26
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
27
|
Silva-Boghossian CM, Dezonne RS. What Are the Clinical and Systemic Results of Periodontitis Treatment in Obese Individuals? ACTA ACUST UNITED AC 2021; 8:48-65. [PMID: 34367878 PMCID: PMC8327900 DOI: 10.1007/s40496-021-00295-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Purpose of Review Periodontitis and obesity are characterized by a dysregulated inflammatory state. Obese individuals have a higher chance of presenting periodontitis. Clinical studies in different populations demonstrate that individuals with obesity have worse periodontal conditions. This current review aims to explore recent literature to understand what the impacts of obesity on periodontal treatment outcomes are and to learn whether periodontal treatment can improve systemic biomarkers in obese individuals. Recent Findings Short- and long-term evaluations demonstrated that non-surgical periodontal treatment could improve clinical parameters in obese individuals, represented as the reduction in mean probing depth, sites with probing depth ≥ 4 mm, and extension of bleeding on probing. However, obese individuals may have less clinical improvement when compared to normal-weight individuals with a similar periodontal profile. Additionally, periodontal treatment may contribute to a reduction in systemic levels of retinol-binding protein 4 and leptin, while promoting an increase in systemic levels of adiponectin. Summary Overall, obese individuals with periodontitis can significantly benefit from non-surgical periodontal treatment. However, clinical improvements seem to be less prominent in obese individuals with periodontitis compared to non-obese individuals with similar periodontal status. Nevertheless, periodontal treatment may impact significantly on the reduction of several biochemical biomarkers of obesity with or without weight reduction. Further investigations are needed to improve our comprehension of the mechanisms underlying those findings.
Collapse
Affiliation(s)
- Carina M. Silva-Boghossian
- Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 325, Cidade Universitaria, Rio de Janeiro, RJ CEP 21941-617 Brazil
| | - Romulo S. Dezonne
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, RJ Brazil
| |
Collapse
|
28
|
Cheraghzadeh M, Nazeri Z, Mohammadi A, Azizidoost S, Aberomand M, Kheirollah A. Amyloid Beta sharply increases HMG-CoA reductase protein levels in astrocytes isolated from C57BL/6 mice. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Legault J, Thompson C, Martineau-Dussault MÈ, André C, Baril AA, Martinez Villar G, Carrier J, Gosselin N. Obstructive Sleep Apnea and Cognitive Decline: A Review of Potential Vulnerability and Protective Factors. Brain Sci 2021; 11:706. [PMID: 34071739 PMCID: PMC8226698 DOI: 10.3390/brainsci11060706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Around 40% of dementia risk is attributable to modifiable risk factors such as physical inactivity, hypertension, diabetes and obesity. Recently, sleep disorders, including obstructive sleep apnea (OSA), have also been considered among these factors. However, despite several epidemiological studies investigating the link between OSA and cognitive decline, there is still no consensus on whether OSA increases the risk of dementia or not. Part of the heterogeneity observed in previous studies might be related to some individual characteristics that modulate the association between OSA and cognitive decline. In this narrative review, we present these individual characteristics, namely, age, sex, menopause, obesity, diabetes mellitus, hypertension, cardiovascular diseases, smoking, excessive alcohol consumption, depression, air pollution, Apolipoprotein E ε4 allele, physical activity, and cognitive reserve. To date, large cohort studies of OSA and cognitive decline tended to statistically control for the effects of these variables, but whether they interact with OSA to predict cognitive decline remains to be elucidated. Being able to better predict who is at risk of cognitive decline when they have OSA would improve clinical management and treatment decisions, particularly when patients present relatively mild OSA.
Collapse
Affiliation(s)
- Julie Legault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada;
| | - Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
30
|
Postrigan AE, Zhalsanova IZ, Fonova EA, Skryabin NA. Modifier Genes as a Cause of Wilson–Konovalov Disease Clinical Polymorphism. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
Since the introduction of menopausal hormone therapy (MHT) in the 1940s, randomized clinical trials and observational studies have been performed to determine the benefits and risks of MHT. However, MHT therapeutic impact remains under debate as multiple factors including genetic biomarkers and medical history contribute to inter-individual variations in neurodegenerative diseases. Herein, we review the characteristics of women who participated in clinical studies and methodological approaches for study analyses to assess the critical variables influencing an association between MHT and risk of neurodegenerative diseases. Outcomes of the review indicated that: (1) observational studies assessed outcomes of MHT in symptomatic women whereas MHT clinical trials were conducted in asymptomatic postmenopausal women not treated for menopausal symptoms, (2) in asymptomatic postmenopausal women, late MHT intervention was of no benefit, (3) different MHT treatments and regimens between observational studies and clinical trials may impact outcomes, and (4) observational studies may provide greater predictive validity for long-term neurological health outcomes as MHT was introduced in symptomatic women and administered over a long period of time. Going forward, achieving precision hormone therapy will require a priori identification of symptomatic women appropriate for MHT and the type and dose of MHT appropriate for their genetic profile and health risks.
Collapse
Affiliation(s)
- Y J Kim
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
32
|
Xiao H, Xu Y. Overexpression of Apolipoprotein C1 (APOC1) in Clear Cell Renal Cell Carcinoma and Its Prognostic Significance. Med Sci Monit 2021; 27:e929347. [PMID: 33591959 PMCID: PMC7896428 DOI: 10.12659/msm.929347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aims of this study included 3 aspects: 1) assessing the expression of Apolipoprotein C1 (APOC1) in clear cell renal cell carcinoma (ccRCC) and normal groups; 2) evaluating the prognostic significance of APOC1 expression in the overall survival (OS) of ccRCC patients; and 3) exploring APOC1-related signaling pathways. Material/Methods The APOC1 expression value and clinical data of ccRCC patients were obtained from the cBioPortal database. We then evaluated the association of APOC1 expression with clinical characteristics of ccRCC patients. We also assessed the correlation between APOC1 expression and clinical outcome using Kaplan-Meier method. Our work then verified the independent prognostic factors of ccRCC by Cox regression analysis. Finally, the potential role of genes co-expressed with APOC1 was revealed via functional enrichment analysis. Results Bioinformatic data revealed that APOC1 was expressed at higher levels in ccRCC tissue than in the normal group (all P<0.05). The high expression of APOC1 was associated with unfavorable prognosis of female patients (P<0.01), but not of male patients. APOC1 high expression also shortened the survival time of ccRCC patients age ≥60 years old (P<0.05). Cox regression analysis further indicated that APOC1 expression was an independent prognostic factor for OS of ccRCC patients. Additionally, we found that APOC1 expression was significantly associated with sex, grade, clinical stage, and T stage. Finally, enrichment analysis suggested that APOC1-associated pathways were involved in tumor growth and metastasis. Conclusions The current study indicated that APOC1 was highly expressed in ccRCC and was significantly associated with key clinical features. APOC1 appears to be an independent prognostic factor in patients with ccRCC. Importantly, APOC1 might be a potential therapeutic target for ccRCC via regulating pathways involved in cell growth and metastasis.
Collapse
Affiliation(s)
- Huaying Xiao
- Department of Nephrology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yifang Xu
- Department of Nephrology, Dongyang People's Hospital, Dongyang, Zhejiang, China (mainland)
| |
Collapse
|
33
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
34
|
Jiang H, Tang JY, Xue D, Chen YM, Wu TC, Zhuang QF, He XZ. Apolipoprotein C1 stimulates the malignant process of renal cell carcinoma via the Wnt3a signaling. Cancer Cell Int 2021; 21:41. [PMID: 33430855 PMCID: PMC7802262 DOI: 10.1186/s12935-020-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a clinically common tumor in the urinary system, showing an upward trend of both incidence and mortality. Apolipoprotein C1 (APOC1) has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of APOC1 in RCC process and the underlying mechanism. Methods Differential levels of APOC1 in RCC samples and normal tissues in a downloaded TCGA profile and clinical samples collected in our center were detected by quantitative reverse transcription PCR (qRT-PCR). The prognostic value of APOC1 in RCC was assessed by depicting Kaplan–Meier survival curves. After intervening APOC1 level by transfection of sh-APOC1 or oe-APOC1, changes in phenotypes of RCC cells were examined through CCK-8, colony formation, Transwell assay and flow cytometry. Subsequently, protein levels of EMT-related genes influenced by APOC1 were determined by Western blot. The involvement of the Wnt3a signaling in APOC1-regulated malignant process of RCC was then examined through a series of rescue experiments. Finally, a RCC xenograft model was generated in nude mice, aiming to further clarify the in vivo function of APOC1 in RCC process. Results APOC1 was upregulated in RCC samples. Notably, its level was correlated to overall survival of RCC patients, displaying a certain prognostic value. APOC1 was able to stimulate proliferative, migratory and invasive abilities in RCC cells. The Wnt3a signaling was identified to be involved in APOC1-mediated RCC process. Notably, Wnt3a was able to reverse the regulatory effects of APOC1 on RCC cell phenotypes. In vivo knockdown of APOC1 in xenografted nude mice slowed down the growth of RCC. Conclusions APOC1 stimulates the malignant process of RCC via targeting the Wnt3a signaling.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jing-Yuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Ting-Chun Wu
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer’s Disease. Neuron 2020; 108:801-821. [DOI: 10.1016/j.neuron.2020.09.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 02/01/2023]
|
36
|
Hernández-Ledesma AL, Rodríguez-Méndez AJ, Gallardo-Vidal LS, García-Gasca T, Alatorre-Cruz JM, García-Solís P, López Reyes J, Solís-Saínz JC. Lipid profile: causal relationship on cognitive performance in multiple sclerosis? Mol Biol Rep 2020; 47:9667-9676. [PMID: 33259011 DOI: 10.1007/s11033-020-06011-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
Although cognitive impairment (CI) is classically associated with aging, it has been proposed that neurological pathologies may increase the risk to suffer CI. Despite the evidence of an elevated prevalence of CI in patients with multiple sclerosis (MS), it is not considered among standard clinical evaluations, due the lack of specialists and time required. The aim of this study was to evaluate if lipid profile is associated with cognitive performance in persons with MS. Twenty patients with MS were evaluated. Montreal Cognitive Assessment (MoCA) was employed to determine cognitive performance. CI was observed in 85% of patients, with memory recall and language as the most affected domains. Despite biomarkers were mostly found within reference values, several correlations were observed. MoCA total score was correlated with cholesterol (r = - 0.468, p = 0.037) and LDL (r = - 0.453, p = 0.045). Visuospatial domain was correlated with LDL (r = - 0.493, p = 0.027). Attention domain correlated with triglycerides (r = - 0.455, p = 0.044) and cholesterol (r = - 0.549, p = 0.012). When the person reaches borderline levels of triglycerides, LDL and cholesterol a decrease in cognitive performance can be observed. The mechanism underlying this association has not been established still, it has been proposed that it could be linked with neuroinflammation, alterations in synapses and in the metabolism of amyloid-β protein. This study settles the potential importance that lipid profile could have on cognitive performance in MS. Further studies are needed to establish optimal levels and implication of lipid profile in the diagnosis and monitoring of cognitive performance in Mexican people with MS.
Collapse
Affiliation(s)
- Ana Laura Hernández-Ledesma
- Laboratorio de Neuroinmunoendocrinología, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel #200. Prados de la Capilla. CP 76170, Santiago de Querétaro, México
| | - Adriana Jheny Rodríguez-Méndez
- Laboratorio de Neuroinmunoendocrinología, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel #200. Prados de la Capilla. CP 76170, Santiago de Querétaro, México.
| | | | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | | | - Pablo García-Solís
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Julián López Reyes
- Facultad de Medicina, Clínica del Sistema Nervioso, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Juan Carlos Solís-Saínz
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| |
Collapse
|
37
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
38
|
Qu Y, Hu HY, Ou YN, Shen XN, Xu W, Wang ZT, Dong Q, Tan L, Yu JT. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neurosci Biobehav Rev 2020; 115:189-198. [PMID: 32479774 DOI: 10.1016/j.neubiorev.2020.05.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/24/2020] [Accepted: 05/23/2020] [Indexed: 01/10/2023]
Abstract
Controversies persist about the associations of body mass index (BMI) with risk of cognitive impairment and dementia. This study aimed to evaluate these associations from various aspects, in which Embase, PubMed and Cochrane databases were searched to identify prospective studies up to May 2019. Random-effects meta-analyses and dose-response meta-analysis were conducted, involving twenty-nine of 20,083 identified literatures. Meta-analysis showed that midlife underweight, obesity and late-life underweight conferred 1.39-, 1.31- and 1.64-fold excess risk for cognitive impairment and dementia, while late-life overweight and obesity conferred 21% and 25% reduced risk. In dose-response meta-analysis, all cause dementia (ACD), Alzheimer's disease (AD) and vascular dementia (VaD) risk in midlife was significantly elevated when BMI surpassed 29, 30 and 32 kg/m2. AD risk in late-life was decreased when BMI was under 27 kg/m2, while this protection for VaD was absent when BMI surpassed 39 kg/m2. Higher BMI produced opposite exerted opposite effects on dementia in mid- and late-age population. Firstly reported, a dose-response relationship further supports the guideline from the standpoint of dementia prevention.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
A Novel Nonsense Angiogenin Mutation is Associated With Alzheimer Disease. Alzheimer Dis Assoc Disord 2020; 33:163-165. [PMID: 30188356 DOI: 10.1097/wad.0000000000000272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev 2020; 21:e12991. [PMID: 32020741 DOI: 10.1111/obr.12991] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Conditions and comorbidities of obesity mirror those of ageing and age-related diseases. Obesity and ageing share a similar spectrum of phenotypes such as compromised genomic integrity, impaired mitochondrial function, accumulation of intracellular macromolecules, weakened immunity, shifts in tissue and body composition, and enhanced systemic inflammation. Moreover, it has been shown that obesity reduces life expectancy by 5.8 years in men and 7.1 years in women after the age of 40. Shorter life expectancy could be because obesity holistically accelerates ageing at multiple levels. Besides jeopardizing nuclear DNA and mitochondrial DNA integrity, obesity modifies the DNA methylation pattern, which is associated with epigenetic ageing in different tissues. Additionally, other signs of ageing are seen in individuals with obesity including telomere shortening, systemic inflammation, and functional declines. This review aims to show how obesity and ageing are "two sides of the same coin" through discussing how obesity predisposes an individual to age-related conditions, illness, and disease. We will further demonstrate how the mechanisms that perpetuate the early-onset of chronic diseases in obesity parallel those of ageing.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada
| | - Jose A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Quebec, Montreal, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada.,Research Centre, Centre intégré universitarie de santé et de services sociaux du Nord-de-I'Île-de-Montréal, Hôpital du Sacré-Cœur de Monréal (CIUSS-NIM, HSCM), Quebec, Montreal, Canada
| |
Collapse
|
41
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
42
|
Koller EJ, Gonzalez De La Cruz E, Weinrich M, Williams T, Cruz PE, Ryu D, Golde TE, Sullivan PM, Lewis J, Borchelt DR, Chakrabarty P. Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy. Mol Neurobiol 2020; 57:1986-2001. [PMID: 31903524 DOI: 10.1007/s12035-019-01859-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E4 (APOE4) is the major genetic risk factor for sporadic Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) plaques and tau tangles. Though the role of APOE4 in Aβ pathogenesis has been mechanistically defined in rodent models, much less is known regarding the relationship of APOE4 to tau pathogenesis. Recent studies have indicated a possible correlation between APOE isoform-dependent alterations in tau pathology and neurodegeneration. To explore whether neuronal expression of APOE4 triggers tauopathy, here we delivered adeno-associated viruses (AAV) expressing human APOE4 in two different models of tauopathy-rTg4510 and PS19 lines. Intracerebroventricular delivery of AAV-APOE4 in neonatal rTg4510 and PS19 mice resulted in increased APOE4 protein in neurons but did not result in altered phosphorylated tau burden, pretangle tau pathology, or silver-positive tangle pathology. Biochemical analysis of synaptic proteins did not reveal substantial alterations. Our results indicate that over-expression of APOE4 in neurons, using an AAV-mediated approache, is not sufficient to accelerate or otherwise alter the inherent tau pathology that occurs in mice overexpressing mutant human tau.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Mary Weinrich
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tosha Williams
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Patrick M Sullivan
- Department of Medicine, Duke University, Durham VA Geriatric Research, Education and Clinical Center, Durham, NC, 27710, USA
| | - Jada Lewis
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
43
|
McFarlane O, Kędziora-Kornatowska K. Cholesterol and Dementia: A Long and Complicated Relationship. Curr Aging Sci 2020; 13:42-51. [PMID: 31530269 PMCID: PMC7403650 DOI: 10.2174/1874609812666190917155400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a huge demand for efficient strategies for maintaining cognitive wellbeing with age, especially in the context of population aging. Dementia constitutes the main reason for disability and dependency in the elderly. Identification of potential risk and protective factors, as well as determinants of conversion from MCI to dementia, is therefore crucial. In case of Alzheimer's disease, the most prevalent dementia syndrome amongst the members of modern societies, neurodegenerative processes in the brain can begin many years before first clinical symptoms appear. First functional changes typically mean advanced neuron loss, therefore, the earliest possible diagnosis is critical for implementation of promising early pharmaceutical interventions. OBJECTIVE The study aimed to discuss the relationships between both circulating and brain cholesterol with cognition, and explore its potential role in early diagnosis of cognitive disorders. METHODS Literature review. RESULTS The causal role of high cholesterol levels in AD or MCI has not been confirmed. It has been postulated that plasma levels of 24(S)-OHC can potentially be used as an early biochemical marker of altered cholesterol homeostasis in the CNS. Some studies brought conflicting results, finding normal or lowered levels of 24(S)-OHC in dementia patients compared to controls. In spite of decades of research on the relationship between cholesterol and dementia, so far, no single trusted indicator of an early cognitive deterioration has been identified. CONCLUSION The current state of knowledge makes the use of cholesterol markers of cognitive decline in clinical practice impossible.
Collapse
Affiliation(s)
- Oliwia McFarlane
- Address correspondence to this author at the Department of Public Health, Faculty of Health Sciences, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, P.O. Box: 85-830, Bydgoszcz, Poland; Tel/Fax: ++48-52-585-5408; E-mail:
| | | |
Collapse
|
44
|
Tokuoka SM, Kita Y, Shimizu T, Oda Y. Isobaric mass tagging and triple quadrupole mass spectrometry to determine lipid biomarker candidates for Alzheimer's disease. PLoS One 2019; 14:e0226073. [PMID: 31821352 PMCID: PMC6903722 DOI: 10.1371/journal.pone.0226073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
The isobaric tagging method widely used in proteomic and lipidomic fields, with the multiple reaction monitoring (MRM) approach using a triple quadrupole mass spectrometer, was applied to identify biomarker candidates from plasma samples for Alzheimer’s disease (AD). We focused on the following phospholipids that have amino groups as the functional group: phosphatidylethanolamine (PE), Lyso-PE, phosphatidylserine, and Lyso-phosphatidylserine. We also investigated fatty acids that have a carboxy group. A sixplex tandem mass tag (TMT) was used for the isobaric tagging method in this study. The TMT reaction had high reproducibility in human plasma. A total of 196 human plasma samples from three AD cohorts were used for the study, and compared to pooled plasma quality control (QC) samples. The described method required only 40 MRM measurements, including the pooled QC samples, for a full comparison of the data. We found that the content of free fatty acids increased in AD samples in all the three cohorts, alkenyl PEs (ePEs) decreased over a one-year interval in AD patients, and ePEs weakly correlated with amyloid peptide (a-beta) 1–42 in cerebrospinal fluid. In conclusion, total free fatty acids in plasma are a risk factor for AD, and ePEs monitor candidates for AD. Therefore, TMT-lipidomics is a powerful approach for the determination of plasma biomarkers because of the high sample throughput.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Yoshihiro Kita
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Takao Shimizu
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
| | - Yoshiya Oda
- The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
- * E-mail:
| |
Collapse
|
45
|
Guo Y, Xu W, Li JQ, Ou YN, Shen XN, Huang YY, Dong Q, Tan L, Yu JT. Genome-wide association study of hippocampal atrophy rate in non-demented elders. Aging (Albany NY) 2019; 11:10468-10484. [PMID: 31760383 PMCID: PMC6914394 DOI: 10.18632/aging.102470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Hippocampal atrophy rate has been correlated with cognitive decline and its genetic modifiers are still unclear. Here we firstly performed a genome-wide association study (GWAS) to identify genetic loci that regulate hippocampal atrophy rate. Six hundred and two non-Hispanic Caucasian elders without dementia were included from the Alzheimer's Disease Neuroimaging Initiative cohort. Three single nucleotide polymorphisms (SNPs) (rs4420638, rs56131196, rs157582) in the TOMM40-APOC1 region were associated with hippocampal atrophy rate at genome-wide significance and 3 additional SNPs (in TOMM40 and near MIR302F gene) reached a suggestive level of significance. Strong linkage disequilibrium between rs4420638 and rs56131196 was found. The minor allele of rs4420638 (G) and the minor allele of rs157582 (T) showed associations with lower Mini-mental State Examination score, higher Alzheimer Disease Assessment Scale-cognitive subscale 11 score and smaller entorhinal volume using both baseline and longitudinal measurements, as well as with accelerated cognitive decline. Moreover, rs56131196 (P = 1.96 × 10-454) and rs157582 (P = 9.70 × 10-434) were risk loci for Alzheimer's disease. Collectively, rs4420638, rs56131196 and rs157582 were found to be associated with hippocampal atrophy rate. Besides, they were also identified as genetic loci for cognitive decline.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
47
|
Picard C, Poirier A, Bélanger S, Labonté A, Auld D, Poirier J. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in Alzheimer's disease: A genetic and proteomic multi-cohort study. PLoS One 2019; 14:e0220254. [PMID: 31437157 PMCID: PMC6705826 DOI: 10.1371/journal.pone.0220254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates circulating low-density lipoprotein (LDL) cholesterol levels by binding to LDL receptors (LDLR) and promoting their degradation. Although PCSK9 inhibitors were shown to reduce the risk of cardiovascular disease, a warning was issued concerning their possible impact on cognitive functions. In Alzheimer's disease (AD), it is believed that cognitive impairment is associated with cholesterol metabolism alterations, which could involve PCSK9. The main objective of this study is to determine if PCSK9 plays a significant role in the pre-symptomatic phase of the disease when the pathophysiological markers of AD unfolds and, later, when cognitive symptoms emerge. METHODS AND FINDINGS To test if PCSK9 is associated with AD pathology, we measured its expression levels in 65 autopsy confirmed AD brains and 45 age and gender matched controls. Messenger ribonucleic acid (mRNA) were quantified using real-time polymerase chain reaction (RT-PCR) and protein levels were quantified using enzyme-linked immunosorbent assay (ELISA). PCSK9 was elevated in frontal cortices of AD subjects compared to controls, both at the mRNA and protein levels. LDLR protein levels were unchanged in AD frontal cortices, despite and upregulation at the mRNA level. To verify if PCSK9 dysregulation was observable before the onset of AD, we measured its expression in the cerebrospinal fluid (CSF) of 104 "at-risk" subjects and contrasted it with known apolipoproteins levels and specific AD biomarkers using ELISAs. Positive correlations were found between CSF PCSK9 and apolipoprotein E (APOE), apolipoprotein J (APOJ or CLU), apolipoprotein B (APOB), phospho Tau (pTau) and total Tau. To investigate if PCSK9 levels were driven by genetic variants, we conducted an expression quantitative trait loci (eQTL) study using bioinformatic tools and found two polymorphisms in strong association. Further investigation of these variants in two independent cohorts showed a female specific association with AD risk and with CSF Tau levels in cognitively impaired individuals. CONCLUSIONS PCSK9 levels differ between control and AD brains and its protein levels correlate with those of other lipoproteins and AD biomarkers even before the onset of the disease. PCSK9 regulation seems to be under tight genetic control in females only, with specific variants that could predispose to increased AD risk.
Collapse
Affiliation(s)
- Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Alexandre Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | | | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
| | - Daniel Auld
- Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - on behalf of the PREVENT-AD Research Group
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
48
|
Yi J, Ren L, Wu J, Li W, Zheng X, Du G, Wang J. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:380. [PMID: 31555694 DOI: 10.21037/atm.2019.07.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Gastric cancer (GC) is a common malignant cancer in the worldwide, especially in China. Patients with GC have poor prognosis, which is mainly due to lack of early diagnosis. Up to now, there is no good biomarker to detect GC at early stage. Apolipoprotein C1 (APOC1), a component of both triglyceride-rich lipoproteins and high-density lipoproteins, is reported to be involved in numerous biological processes. Methods Expression of APOC1 mRNA was analyzed by in silicon assay. Concentration of APOC1 in serum was measured by ELISA assay. Expression of APOC1 protein in GC tissue array was checked by immunohistochemistry. Results It was firstly found that concentration of APOC1 in serum was significantly higher in GC than that in control. Expression of APOC1 protein was also higher in GC than that in adjacent issues of GC and normal tissues using tissues array by immunohistochemistry. In addition, the expression of APOC1 is significantly associated with clinical stage (P=0.011), tumor classification (P=0.010), as well as with the lymph node metastasis (P=0.048). Area under the curve (AUC) of receiver operating characteristic (ROC) curve of APOC1 was 0.803. Furthermore, elevated APOC1 expression in GC was found to be correlated with decreased overall survival (P=0.00214). Conclusions All these results suggested that APOC1 might be a potential serum biomarker to diagnose GC and a potential prognostic marker for GC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Liwen Ren
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Wan Li
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
49
|
Activation of Mevalonate Pathway via LKB1 Is Essential for Stability of Treg Cells. Cell Rep 2019; 27:2948-2961.e7. [DOI: 10.1016/j.celrep.2019.05.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
|
50
|
Dhiman K, Blennow K, Zetterberg H, Martins RN, Gupta VB. Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer's disease pathogenesis. Cell Mol Life Sci 2019; 76:1833-1863. [PMID: 30770953 PMCID: PMC11105672 DOI: 10.1007/s00018-019-03040-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clinical trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amyloidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding the contribution of these markers in different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Kunal Dhiman
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
- KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Veer Bala Gupta
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia.
- School of Medicine, Deakin University, Geelong, 3220, VIC, Australia.
| |
Collapse
|