1
|
Compton SLE, Heymsfield SB, Brown JC. Nutritional Mechanisms of Cancer Cachexia. Annu Rev Nutr 2024; 44:77-98. [PMID: 39207878 DOI: 10.1146/annurev-nutr-062122-015646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Collapse
Affiliation(s)
- Stephanie L E Compton
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Steven B Heymsfield
- Metabolism and Body Composition Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Justin C Brown
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
2
|
Dave S, Patel BM. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting. Fundam Clin Pharmacol 2023; 37:1079-1091. [PMID: 37474262 DOI: 10.1111/fcp.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Srusti Dave
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
3
|
Zhang R, Peng X, Du JX, Boohaker R, Estevao IL, Grajeda BI, Cox MB, Almeida IC, Lu W. Oncogenic KRASG12D Reprograms Lipid Metabolism by Upregulating SLC25A1 to Drive Pancreatic Tumorigenesis. Cancer Res 2023; 83:3739-3752. [PMID: 37695315 PMCID: PMC10840918 DOI: 10.1158/0008-5472.can-22-2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/24/2022] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Xiaogang Peng
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - James Xianxing Du
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | - Rebecca Boohaker
- Oncology Department, Southern Research Institute, Birmingham, Alabama, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Marc B Cox
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Depart of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
4
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
6
|
Wu S, Wang J, Fu Z, Familiari G, Relucenti M, Aschner M, Li X, Chen H, Chen R. Matairesinol Nanoparticles Restore Chemosensitivity and Suppress Colorectal Cancer Progression in Preclinical Models: Role of Lipid Metabolism Reprogramming. NANO LETTERS 2023; 23:1970-1980. [PMID: 36802650 DOI: 10.1021/acs.nanolett.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oncogenic-driven lipogenic metabolism is a common hallmark of colorectal cancer (CRC) progression. Therefore, there is an urgent need to develop novel therapeutic strategies for metabolic reprogramming. Herein, the metabolic profiles in the plasma between CRC patients and paired healthy controls were compared using metabolomics assays. Matairesinol downregulation was evident in CRC patients, and matairesinol supplementation significantly represses CRC tumorigenesis in azoxymethane/dextran sulfate sodium (AOM/DSS) colitis-associated CRC mice. Matairesinol rewired lipid metabolism to improve the therapeutic efficacy in CRC by inducing mitochondrial damage and oxidative damage and blunting ATP production. Finally, matairesinol-loaded liposomes significantly promoted the enhanced antitumor activity of 5-Fu/leucovorin combined with oxaliplatin (FOLFOX) in CDX and PDX mouse models by restoring chemosensitivity to the FOLFOX regimen. Collectively our findings highlight matairesinol-mediated lipid metabolism reprogramming as a novel druggable strategy to restore CRC chemosensitivity, and this nanoenabled approach for matairesinol will improve the chemotherapeutic efficacy with good biosafety.
Collapse
Affiliation(s)
- Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Medical and Legal Locomotive Apparatus, Section of Human Anatomy Via Alfonso Borelli, Sapienza University of Rome, Roma 5000161, Italia
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma 5000161, Italia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P.R. China
| | - Hanqing Chen
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, P. R. China
- Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing 100069, P.R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
7
|
Sheas MN, Ali SR, Safdar W, Tariq MR, Ahmed S, Ahmad N, Hameed A, Qazi AS. Nutritional Assessment in Cancer Patients. Cancer Treat Res 2023; 185:285-310. [PMID: 37306914 DOI: 10.1007/978-3-031-27156-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Malnutrition in cancer patients is highly prevalent. The metabolic and physiologic changes associated with the disease and the side effects of treatment regimens all combine together to produce a detrimental effect on the patient's nutritional status. A poor nutritional status significantly reduces the efficacy of treatment methods and the patient's overall chances of survival. Therefore, an individualized nutrition care plan is essential to counter malnutrition in cancer. Nutritional assessment is the first step of this process which sets the foundation for developing an effective intervention plan. Currently, there is no single standard method for nutritional assessment in cancer. Hence, to get a true picture of the patient's nutritional state, a comprehensive analysis of all aspects of the patient's nutritional status is the only reliable strategy. The assessment includes anthropometric measurements and evaluation of body protein status, body fat, inflammation markers, and immune markers. A thorough clinical examination which factors in the medical history and physical signs, along with the dietary intake patterns of the patient, is also important components of nutritional assessment of cancer patients. To facilitate with the process, various nutritional screening tools like patient-generated subjective global assessment (PGSGA), nutrition risk screening (NRS), and malnutrition screening tool (MST) have been developed. While these tools have their own benefits, they only give a glimpse of the nutritional problems and do not bypass the need for a complete assessment employing various methods. This chapter covers all four of the elements of nutritional assessment for cancer patients in detail.
Collapse
Affiliation(s)
- Muhammad Naveed Sheas
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
- Faculty of Medicine and Allied Health Sciences, Islamia University, Bahawalpur, Pakistan
| | - Syeda Ramsha Ali
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammad Rizwan Tariq
- Department of Food Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Naveed Ahmad
- Multan College of Food and Nutritional Sciences, Multan Medical and Dental College, Multan, Pakistan
| | - Amna Hameed
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Lyu J, Yang N, Guan W, Xiao L, Nie X, Liang L, Bai H, Li C, Kuang H, Wang X, Li T. Post-treatment serum triglyceride: An effective biomarker for body fat mass and overall survival in esophageal squamous cell cancer patients treated with chemoradiotherapy. Front Nutr 2022; 9:1050643. [PMID: 36532533 PMCID: PMC9755343 DOI: 10.3389/fnut.2022.1050643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/16/2022] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVES Although lipids have been assessed for their possible roles in cancer survival prediction, studies on the association between serum triglyceride (TG) levels and the prognosis of esophageal squamous cell carcinoma (ESCC) patients are limited. This study aimed to evaluate whether serum TG is associated with outcomes in patients with ESCC and investigate any interaction between serum TG and clinical parameters, especially body fat mass. MATERIALS AND METHODS We conducted a prospective case study on patients diagnosed with ESCC between March 2012 and November 2018. We measured patients' serum TG levels before and after treatment. The association between serum TG and overall survival (OS) was evaluated using hazard ratios. We sought to determine a threshold point using optimal stratification. Survival analysis was performed using Kaplan-Meier curves and a Cox proportional hazards model. RESULTS Of the 257 participants diagnosed with ESCC, 200 (77.8%) were men. Median follow-up time was 22.4 months (range 3.3-92.4 months). Using univariate Cox proportional hazard analysis and subsequent multivariate analysis, post-TG levels, Karnofsky performance scores, T stages, and chemotherapy cycles were shown to be independent prognostic factors for OS (p < 0.05). The post-TG cut-off point to best classify patients with respect to time to mortality was 1.47 mmol/L. A post-TG level of ≥ 1.47 mmol/L could independently predict a better OS (hazard ratio: 0.55, 95% confidence interval: 0.37-0.79). The associations were consistent across the subtypes of clinical parameters. Furthermore, the post-body mass index, post-subcutaneous adipose tissue area, post-visceral adipose tissue area, post-total adiposity tissue area, and post-total adipose density exhibited a strong positive association with post-TG levels. CONCLUSION Post-TG levels were found to be a significant positive prognostic biomarker for body fat mass and OS in ESCC patients.
Collapse
Affiliation(s)
- Jiahua Lyu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ningjing Yang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang Guan
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Nie
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Long Liang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hansong Bai
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Churong Li
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Kuang
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
10
|
Wang L, van Iersel LEJ, Pelgrim CE, Lu J, van Ark I, Leusink-Muis T, Gosker HR, Langen RCJ, Schols AMWJ, Argilés JM, van Helvoort A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue: In Vivo and In Vitro Studies. Cells 2022; 11:cells11182893. [PMID: 36139468 PMCID: PMC9497292 DOI: 10.3390/cells11182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1β, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Lieke E. J. van Iersel
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Josep M. Argilés
- Biochemistry and Molecular Biology of Cancer, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Correspondence: ; Tel.: +31-0-622-483-913
| |
Collapse
|
11
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
12
|
Hu R, Xu Y, Han B, Chen Y, Li W, Guan G, Hu P, Zhou Y, Xu Q, Chen L. MiR-202-3p determines embryo viability during mid-blastula transition. Front Cell Dev Biol 2022; 10:897826. [PMID: 36003151 PMCID: PMC9393261 DOI: 10.3389/fcell.2022.897826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental growth is an intricate process involving the coordinated regulation of the expression of various genes, and microRNAs (miRNAs) play crucial roles in diverse processes throughout animal development. The mid-blastula transition (MBT) is a developmental milestone when maternal RNAs are cleared and the zygotic genome programmed asynchronous cell division begins to drive embryogenesis. While mechanisms underlying MBT have been intensively revealed, factors regulating cell proliferation at the transition remain largely unknown. We report here a microRNA, miR-202-3p to be a key factor that determines embryonic fate during MBT in zebrafish. A miR-202-3p antagomir specifically terminated embryo development at the mid-blastula stage. In vivo deletion of the miR-202 locus recapitulated the fatal phenotypes, which were rescued only by miR-202-3p or its precursor. Transcriptome comparison revealed >250 RNAs including both maternal and zygotic origins were dysregulated at MBT in the miR-202−/− embryos, corresponding with arrays of homeostatic disorders leading to massive apoptosis. A trio of genes: nfkbiaa, perp and mgll, known to be intimately involved with cell proliferation and survival, were identified as direct targets of miR-202-3p. Importantly, over- or under-expression of any of the trio led to developmental delay or termination at the blastula or gastrula stages. Furthermore, nfkbiaa and perp were shown to inter-regulate each other. Thus, miR-202-3p mediates a regulatory network whose components interact closely during MBT to determine embryonic viability and development.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanna Xu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingshe Han
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yi Chen
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Guijun Guan
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Zhou
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Joint Research Centre for Marine Biosciences (Ministry of Science and Technology), College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Centre for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
13
|
Sitlinger A, Deal MA, Garcia E, Connelly M, Thompson D, Stewart T, Macdonald G, Hanson ED, Neely M, Neely B, Artese A, Weinberg JB, Brander D, Bartlett DB. Associations of clinical and circulating metabolic biomarkers with low physical fitness and function in adults with chronic lymphocytic leukemia. Front Oncol 2022; 12:933619. [PMID: 35992862 PMCID: PMC9381973 DOI: 10.3389/fonc.2022.933619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Many patients with chronic lymphocytic leukemia (CLL) experience physical dysfunction and low overall fitness. It remains unknown what factors drive CLL physical dysfunction. We assessed physical function and metabolic lipoprotein panels in 106 patients with CLL. In univariate analyses of clinical factors, a longer time since diagnosis was associated with a higher likelihood of dysfunctional aerobic fitness (OR = 3.56, 95% CI: 1.37–9.22; p = 0.002) and physical performance (SPPB: OR = 2.03, 95% CI: 1.20–3.44; p = 0.004). Having received treatment was associated with a higher likelihood of dysfunctional aerobic fitness (OR = 1.57, 95% CI: 1.02–2.40; p = 0.036), SPPB (OR = 1.85, 95% CI: 1.13–3.03; p = 0.011) and grip strength (OR = 1.67, 95% CI: 1.10–2.55; p = 0.015). We found that several small HDL particle parameters, higher levels of citrate (OR = 2.01, 95% CI: 1.22–3.31; p = 0.030), and lower levels of hemoglobin (OR = 0.50, 95% CI: 0.31–0.82; p = 0.030) were associated with a higher likelihood of dysfunctional aerobic fitness. Multivariable least absolute shrinkage and selection operator (LASSO)-penalized regression analyses using variable importance measures (VIM) showed that 7.8-nm HDL particles (VIM = 1.000) and total HDL particle levels (VIM = 1.000) were more informative than clinical measures for the odds of dysfunctional aerobic fitness and 6-min walk functional fitness, respectively, while 10.3-nm HDL particles (VIM = 0.383) were more informative for grip strength. Time since diagnosis (VIM = 0.680) and having received treatment (VIM = 0.490) were more informative than lipoprotein measures for the odds of having dysfunctional SPPB. Taken together, we establish significant relationships between clinical and metabolic factors and physical characteristics that might prompt early use of ancillary support services.
Collapse
Affiliation(s)
- Andrea Sitlinger
- Hematologic Malignancies and Cellular Therapies, Duke University Medical Center, Durham, NC, United States
| | - Michael A. Deal
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, United States
| | - Margery Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, United States
| | - Dana Thompson
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Tiffany Stewart
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Grace Macdonald
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Erik D. Hanson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, United States
| | - Megan Neely
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Ben Neely
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Ashley Artese
- Duke University Aging Center, Duke University Medical Center, Durham, NC, United States
| | - J. Brice Weinberg
- Division of Hematology, Duke University Medical Center and VA Medical Center, Durham, NC, United States
| | - Danielle Brander
- Hematologic Malignancies and Cellular Therapies, Duke University Medical Center, Durham, NC, United States
| | - David B. Bartlett
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke University Aging Center, Duke University Medical Center, Durham, NC, United States
- School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
- *Correspondence: David B. Bartlett,
| |
Collapse
|
14
|
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A, Heller D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep 2022; 12:11544. [PMID: 35798767 PMCID: PMC9263110 DOI: 10.1038/s41598-022-14514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of leading causes of death worldwide in the female population. Deaths from breast cancer could be reduced significantly through earlier and more efficient detection of the disease. Saliva, an oral fluid that contains an abundance of protein biomarkers, has been recognized as a promising diagnostic biofluid that is easy to isolate through non-invasive techniques. Assays on saliva can be performed rapidly and are cost-effective. Therefore, our work aimed to identify salivary biomarkers present in the initial stages of breast cancer, where cell alterations are not yet detectable by histopathological analysis. Using state-of-the-art techniques, we employed a transgenic mouse model of mammary cancer to identify molecular changes in precancerous stage breast cancer through protein analysis in saliva. Through corroborative molecular approaches, we established that proteins related to metabolic changes, inflammatory process and cell matrix degradation are detected in saliva at the onset of tumor development. Our work demonstrated that salivary protein profiles can be used to identify cellular changes associated with precancerous stage breast cancer through non-invasive means even prior to biopsy-evident disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ismael Feitosa Lima
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| | - Débora Heller
- Post Graduate Program in Dentistry, Cruzeiro do Sul University, São Paulo, Brazil. .,Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Periodontology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
15
|
The burning furnace: Alteration in lipid metabolism in cancer-associated cachexia. Mol Cell Biochem 2022; 477:1709-1723. [DOI: 10.1007/s11010-022-04398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
16
|
Abstract
Cachexia, a wasting syndrome that is often associated with cancer, is one of the primary causes of death in cancer patients. Cancer cachexia occurs largely due to systemic metabolic alterations stimulated by tumors. Despite the prevalence of cachexia, our understanding of how tumors interact with host tissues and how they affect metabolism is limited. Among the challenges of studying tumor-host tissue crosstalk are the complexity of cancer itself and our insufficient knowledge of the factors that tumors release into the blood. Drosophila is emerging as a powerful model in which to identify tumor-derived factors that influence systemic metabolism and tissue wasting. Strikingly, studies that are characterizing factors derived from different fly tumor cachexia models are identifying both common and distinct cachectic molecules, suggesting that cachexia is more than one disease and that fly models can help identify these differences. Here, we review what has been learned from studies of tumor-induced organ wasting in Drosophila and discuss the open questions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Saavedra
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
17
|
Queiroz Júnior JRAD, Costa Pereira JPD, Pires LL, Maia CS. The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review. Nutr Cancer 2021; 74:1942-1957. [PMID: 34854769 DOI: 10.1080/01635581.2021.2007962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The malignant neoplastic cell is characterized by its diverse metabolic changes. It occurs in order to maintain the high rate of proliferation. The possibility of new pharmacological targets has inserted tumor metabolism as a target for recent research, emphasizing the enzymatic activity of thiamin. This review aims to elucidate the behavior of thiamin against tumor development. This is a systematic review in which studies indexed in Pubmed, Scopus, SciELO and BVS were searched using the descriptors (Thiamin OR Vitamin B1) AND (Cancer OR Malignant neoplasia) AND (Tumor metabolism). Title and abstract were read. Duplicates, literary reviews, books, conference abstracts, editorials, and papers published prior to 2010 were eliminated. 23 records were included in this review. Low doses of thiamin have been shown to be enough to stimulate tumor growth. Another population studies has shown evidence of tumor regression after correction of vitamin B1 deficiency. There is an open path for the development of new research to better assess the influence of thiamin on cancer cells. Once the connections between thiamin and the metabolism of cancer cells are fully established, new opportunities for therapeutic intervention and dietary modification will appear to reduce the progression of the disease in patients with cancer.
Collapse
Affiliation(s)
| | | | - Leonardo Lucas Pires
- Department of Medical Sciences, Potiguar University, Natal, Rio Grande do Norte, Brazil
| | - Carina Scanoni Maia
- Department of Histology and Embryology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
18
|
Towards Drug Repurposing in Cancer Cachexia: Potential Targets and Candidates. Pharmaceuticals (Basel) 2021; 14:ph14111084. [PMID: 34832866 PMCID: PMC8618795 DOI: 10.3390/ph14111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
As a multifactorial and multiorgan syndrome, cancer cachexia is associated with decreased tolerance to antitumor treatments and increased morbidity and mortality rates. The current approaches for the treatment of this syndrome are not always effective and well established. Drug repurposing or repositioning consists of the investigation of pharmacological components that are already available or in clinical trials for certain diseases and explores if they can be used for new indications. Its advantages comparing to de novo drugs development are the reduced amount of time spent and costs. In this paper, we selected drugs already available or in clinical trials for non-cachexia indications and that are related to the pathways and molecular components involved in the different phenotypes of cancer cachexia syndrome. Thus, we introduce known drugs as possible candidates for drug repurposing in the treatment of cancer-induced cachexia.
Collapse
|
19
|
Detection of Lung Cancer via Blood Plasma and 1H-NMR Metabolomics: Validation by a Semi-Targeted and Quantitative Approach Using a Protein-Binding Competitor. Metabolites 2021; 11:metabo11080537. [PMID: 34436478 PMCID: PMC8401204 DOI: 10.3390/metabo11080537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
Metabolite profiling of blood plasma, by proton nuclear magnetic resonance (1H-NMR) spectroscopy, offers great potential for early cancer diagnosis and unraveling disruptions in cancer metabolism. Despite the essential attempts to standardize pre-analytical and external conditions, such as pH or temperature, the donor-intrinsic plasma protein concentration is highly overlooked. However, this is of utmost importance, since several metabolites bind to these proteins, resulting in an underestimation of signal intensities. This paper describes a novel 1H-NMR approach to avoid metabolite binding by adding 4 mM trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) as a strong binding competitor. In addition, it is demonstrated, for the first time, that maleic acid is a reliable internal standard to quantify the human plasma metabolites without the need for protein precipitation. Metabolite spiking is further used to identify the peaks of 62 plasma metabolites and to divide the 1H-NMR spectrum into 237 well-defined integration regions, representing these 62 metabolites. A supervised multivariate classification model, trained using the intensities of these integration regions (areas under the peaks), was able to differentiate between lung cancer patients and healthy controls in a large patient cohort (n = 160), with a specificity, sensitivity, and area under the curve of 93%, 85%, and 0.95, respectively. The robustness of the classification model is shown by validation in an independent patient cohort (n = 72).
Collapse
|
20
|
Ding Z, Sun D, Han J, Shen L, Yang F, Sah S, Sui X, Wu G. Novel noncoding RNA CircPTK2 regulates lipolysis and adipogenesis in cachexia. Mol Metab 2021; 53:101310. [PMID: 34311131 PMCID: PMC8365522 DOI: 10.1016/j.molmet.2021.101310] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023] Open
Abstract
Objective Cancer-associated cachexia is a devastating pathological disorder characterized by skeletal muscle wasting and fat storage depletion. Circular RNA, a newly discovered class of noncoding RNAs with important roles in regulating lipid metabolism, has not been fully understood in the pathology of cachexia. We aimed to identify circular RNAs that are upregulated in adipose tissues from cachectic patients and explore their function and mechanism in lipid metabolism. Methods Whole transcriptome RNA sequencing was used to screen for differentially expressed circRNAs. Quantitative reverse transcription PCR was applied to detect the expression level of circPTK2 in adipose tissues. The diagnostic value of circPTK2 was evaluated in adipose tissues from patients with and without cachexia. Then, function experiments in vitro and in vivo were performed to evaluate the effects of circPTK2 on lipolysis and adipogenesis. Mechanistically, luciferase reporter assay, RNA immunoprecipitation, and fluorescent in situ hybridization were performed to confirm the interaction between circPTK2 and miR-182-5p in adipocytes. Results We detected 66 differentially expressed circular RNA candidates and proved that circPTK2 was upregulated in adipose tissues from cachectic patients. Then we identified that circPTK2 was closely related to the pathological process of cachexia and could be used as a diagnostic marker. Mechanistically, circPTK2 bound competitively to miR-182-5p and abrogated the suppression on its target gene JAZF1, which finally led to promotion of lipolysis and inhibition of adipogenesis. In vivo experiments demonstrated that overexpression of circPTK2 inhibited adipogenesis and enhanced lipolysis. Conclusions Our findings reveal the novel role of circPTK2 in promoting lipolysis and reducing adipogenesis via a ceRNA mechanism and provide a potential diagnostic biomarker and therapeutic target for cancer-associated cachexia. A novel noncoding RNA termed circPTK2 was highly expressed in adipose tissues of patients with cancer-associated cachexia. CircPTK2 was proven to be a potential diagnostic biomarker for cancer-associated cachexia. CircPTK2 induced lipolysis and suppressed adipogenesis by sponging miR-182-5p to regulate JAZF1 expression. A recombinant adeno-associated virus containing tissue-specific promoter was constructed and utilized in the animal experiment.
Collapse
Affiliation(s)
- Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China.
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Fan Yang
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Szechun Sah
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Xiangyu Sui
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Samant SA, Pillai VB, Gupta MP. Skeletal muscle-specific over-expression of the nuclear sirtuin SIRT6 blocks cancer-associated cachexia by regulating multiple targets. JCSM RAPID COMMUNICATIONS 2021; 4:40-56. [PMID: 34212132 PMCID: PMC8237231 DOI: 10.1002/rco2.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND During cancer cachexia, cytokines released from tumour cells can alter body's metabolism, which can lead to onset of this disease process. Biological basis of cachexia is multifactorial; hence, it is important to identify and modulate multiple targets to curtail the process of cachexia. Previously, we reported that the nuclear sirtuin, SIRT6, blocks expression of myostatin, a negative regulator of muscle growth, through modulation of the NF-κB signalling. This study was undertaken to test whether muscle-specific over-expression of SIRT6 can block the cancer-associated muscle wasting in vivo and to identify additional relevant targets of SIRT6, which can explain its ability to maintain muscle health. METHODS We generated a skeletal muscle-specific SIRT6 over-expressing transgenic mouse line (Sk.T6Tg) expressing SIRT6 at a moderate (two-fold to four-fold) level, compared with its control littermates. To generate a cancer-cachexia model, B16F10 mouse melanoma cells were injected subcutaneously in the flanks of mice. Gastrocnemius muscle tissues from non-tumour and tumour controls and Sk.T6Tg mice (n = 5-20) were analysed by histology, immunoblotting, and RT-qPCR. Plasma samples of mice were evaluated using cytokine arrays and ELISA in both non-tumour and tumour conditions. RESULTS Our results demonstrate dual benefits of muscle-specific moderate over-expression of SIRT6 in a mouse model of cancer-cachexia. In tumour-bearing mice, SIRT6 over-expression preserved muscle weight (P < 0.001) and fibre size (P < 0.005) as well as suppressed tumour growth (P < 0.05). SIRT6 over-expression significantly reduced myostatin expression and plasma free fatty acids levels but maintained plasma insulin levels in tumour-bearing mice. These positive effects of SIRT6 were associated with downregulation of the circulatory chemokine, CXCL10, and the myokine, WNT4. SIRT6 also upregulated expression of GLUT4, the major glucose transporter in the skeletal muscle. These results for the first time demonstrate that SIRT6 regulates multiple targets to limit tumour growth and cancer-associated muscle atrophy. CONCLUSION Given the multifactorial nature of cachexia, SIRT6, which concurrently controls multiple pathways, can be a valuable therapeutic target to overcome this debilitating syndrome.
Collapse
Affiliation(s)
- Sadhana A. Samant
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
| | - Vinodkumar B. Pillai
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
| | - Mahesh P. Gupta
- Department of SurgeryUniversity of Chicago5841 South Maryland AvenueChicagoIL60637USA
- Committee on Molecular Medicine and Pathology, Pritzker School of MedicineUniversity of ChicagoChicagoILUSA
| |
Collapse
|
22
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
23
|
Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1429-1446. [PMID: 32985801 PMCID: PMC7749623 DOI: 10.1002/jcsm.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly different physiologic and behavioural responses, which challenge the primacy of energy homeostasis. METHODS We conducted a literature review of scientific studies in humans, laboratory animals, and non-laboratory animals that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein-deficient or essential amino acid-deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity, resting metabolic rate, and tissue catabolism were selected as the focus of discussion. RESULTS Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive state-dependent alterations in energy seeking and partitioning. CONCLUSIONS The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
24
|
Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2020; 73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a wasting disorder characterised by specific skeletal muscle and adipose tissue loss. Cancer cachexia is also driven by inflammation, altered metabolic changes such as increased energy expenditure, elevated plasma glucose, insulin resistance and excess catabolism. In cachexia, host-tumor interaction causes release of the lactate and inflammatory cytokines. Lactate released by tumor cells takes part in hepatic glucose production with the help of gluconeogenic enzymes. Thus, Cori cycle between organs and cancerous cells contributes to increased glucose production and energy expenditure. A high amount of blood glucose leads to increased production of insulin. Overproduction of insulin causes inactivation of PI3K/Akt/m-TOR pathway and finally results in insulin resistance. Insulin is involved in maintaining the vitality of organs and regulate the metabolism of glucose, protein and lipids. Insulin insensitivity decreases the uptake of glucose in the organs and results in loss of skeletal muscles and adipose tissues. However, looking into the complexity of this metabolic syndrome, it is impossible to rely on a single variable to treat patients having cancer cachexia. Hence, it becomes greater a challenge to produce a clinically effective treatment for this metabolic syndrome. Thus, the present paper aims to provide an understanding of pathogenesis and mechanism underlining the altered glucose metabolism and insulin resistance and its contribution to the progression of skeletal muscle wasting and lipolysis, providing future direction of research to develop new pharmacological treatment in cancer cachexia.
Collapse
Affiliation(s)
- Tamhida Masi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
25
|
The Role of Exosomes in the Crosstalk between Adipocytes and Liver Cancer Cells. Cells 2020; 9:cells9091988. [PMID: 32872417 PMCID: PMC7563540 DOI: 10.3390/cells9091988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) that transport bioactive materials between cells and organs. The cargo delivered by exosomes can alter a wide range of cellular responses in recipient cells and play an important pathophysiological role in human cancers. In hepatocellular carcinoma (HCC), for example, adipocyte- and tumor-secreted factors contained in exosomes contribute to the creation of a chronic inflammatory state, which contributes to disease progression. The exosome-mediated crosstalk between adipocytes and liver cancer cells is a key aspect of a dynamic tumor microenvironment. In this review, we summarize the role of increased adiposity and the role of adipocyte-derived exosomes (AdExos) and HCC-derived exosomes (HCCExos) in the modulation of HCC progression. We also discuss recent advances regarding how malignant cells interact with the surrounding adipose tissue and employ exosomes to promote a more aggressive phenotype.
Collapse
|
26
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
27
|
Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Res 2020; 80:4932-4945. [PMID: 32816911 DOI: 10.1158/0008-5472.can-20-1255] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Abstract
Oncogene-induced metabolic reprogramming is a hallmark of pancreatic cancer (PDAC), yet the metabolic drivers of metastasis are unclear. In PDAC, obesity and excess fatty acids accelerate tumor growth and increase metastasis. Here, we report that excess lipids, stored in organelles called lipid droplets (LD), are a key resource to fuel the energy-intensive process of metastasis. The oncogene KRAS controlled the storage and utilization of LD through regulation of hormone-sensitive lipase (HSL), which was downregulated in human PDAC. Disruption of the KRAS-HSL axis reduced lipid storage, reprogrammed tumor cell metabolism, and inhibited invasive migration in vitro and metastasis in vivo. Finally, microscopy-based metabolic analysis revealed that migratory cells selectively utilize oxidative metabolism during the process of migration to metabolize stored lipids and fuel invasive migration. Taken together, these results reveal a mechanism that can be targeted to attenuate PDAC metastasis. SIGNIFICANCE: KRAS-dependent regulation of HSL biases cells towards lipid storage for subsequent utilization during invasion of pancreatic cancer cells, representing a potential target for therapeutic intervention.See related commentary by Man et al., p. 4886.
Collapse
Affiliation(s)
- Cody N Rozeveld
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Lizhi Zhang
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota. .,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Fat density is a novel prognostic marker in patients with esophageal cancer. Clin Nutr ESPEN 2020; 39:124-130. [PMID: 32859305 DOI: 10.1016/j.clnesp.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS While long-term obesity is a well-known risk factor for esophageal adenocarcinoma (ADC), recent weight loss represents a significant concern in esophageal cancer (EC), in relation with dysphagia and disease aggressiveness. These phenomenons may diversely impact the adipose tissue density, suggested in other cancer settings as an important prognostic biomarker. The analysis of body mass composition (BMC) parameters, including adipose tissue attenuation is studied here in a population of EC operated with curative intent. METHODS BMC was retrospectively evaluated on Computed-Tomography (CT)-scan images from fluorodeoxyglucose (FDG)-positron-emitting (PET)/CT scans performed as a diagnostic procedure in a cohort of 145 EC patients operated with curative intent The mean subcutaneous (SFD) and visceral fat (VFD) density along with the index (area/height2) (SF index (SFI), VF index (VFI)) were assessed on two adjacent slides at the third lumbar vertebra level by two independent investigators. Overall survival (OS) was calculated from the date of the baseline FDG-PET/CT scan. RESULTS Inter-observer correlations are excellent for all BMC parameters (r = 0.94-0.99). As expected, weight loss is associated with worse outcome. We show that low SFD (HR 0.5 (95% CI: 0.3-0.7), p < 0.001) and low VFD (HR 0.6 (95% CI: 0.4-0.9), p = 0.04) at diagnosis are associated with better OS. In contrast, body mass index (BMI) fails to show any relevance in predicting survival. CONCLUSIONS Adipose tissue density is an important prognostic factor in EC.
Collapse
|
29
|
Mannelli M, Gamberi T, Magherini F, Fiaschi T. The Adipokines in Cancer Cachexia. Int J Mol Sci 2020; 21:ijms21144860. [PMID: 32660156 PMCID: PMC7402301 DOI: 10.3390/ijms21144860] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cachexia is a devastating pathology induced by several kinds of diseases, including cancer. The hallmark of cancer cachexia is an extended weight loss mainly due to skeletal muscle wasting and fat storage depletion from adipose tissue. The latter exerts key functions for the health of the whole organism, also through the secretion of several adipokines. These hormones induce a plethora of effects in target tissues, ranging from metabolic to differentiating ones. Conversely, the decrease of the circulating level of several adipokines positively correlates with insulin resistance, metabolic syndrome, diabetes, and cardiovascular disease. A lot of findings suggest that cancer cachexia is associated with changed secretion of adipokines by adipose tissue. In agreement, cachectic patients show often altered circulating levels of adipokines. This review reported the findings of adipokines (leptin, adiponectin, resistin, apelin, and visfatin) in cancer cachexia, highlighting that to study in-depth the involvement of these hormones in this pathology could lead to the development of new therapeutic strategies.
Collapse
|
30
|
Adipocytes in Breast Cancer, the Thick and the Thin. Cells 2020; 9:cells9030560. [PMID: 32120856 PMCID: PMC7140407 DOI: 10.3390/cells9030560] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
It is well established that breast cancer development and progression depend not only on tumor-cell intrinsic factors but also on its microenvironment and on the host characteristics. There is growing evidence that adipocytes play a role in breast cancer progression. This is supported by: (i) epidemiological studies reporting the association of obesity with a higher cancer risk and poor prognosis, (ii) recent studies demonstrating the existence of a cross-talk between breast cancer cells and adipocytes locally in the breast that leads to acquisition of an aggressive tumor phenotype, and (iii) evidence showing that cancer cachexia applies also to fat tissue and shares similarities with stromal-carcinoma metabolic synergy. This review summarizes the current knowledge on the epidemiological link between obesity and breast cancer and outlines the results of the tumor-adipocyte crosstalk. We also focus on systemic changes in body fat in patients with cachexia developed in the course of cancer. Moreover, we discuss and compare adipocyte alterations in the three pathological conditions and the mechanisms through which breast cancer progression is induced.
Collapse
|
31
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
32
|
Association between ANGPTL-4 and the proinflammatory process in cancer cachexia patients. Oncotarget 2019; 10:6444-6455. [PMID: 31741709 PMCID: PMC6849656 DOI: 10.18632/oncotarget.27269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Background Contradictory results are reported for the role of angiopoietin-like 4 (ANGPTL-4) in the development of cancer-cachexia and inflammation, given its importance in angiogenesis and inflammatory signaling. Our aim was to analyze the levels of ANGPTL-4 in colorectal cancer patients with a stable weight and those with cachexia in order to establish a relationship between ANGPTL-4 and the inflammatory process. Results Plasma and tumor levels of ANGPTL-4 were higher in CC in comparison to other groups. A positive association was verified between plasmatic ANGPTL-4 and NFκB levels in tumor from CC. In WSC, we identified an association between the plasmatic ANGPTL-4, IL-15, and IL-10 in tumor and IL-15 in MES. Increased levels of NFκB and TNF-R1 in MES were detected in CC in comparison to WSC. Specifically in CC-group, a positive correlation was found between ANGPTL-4 levels and those of IL-1β, TNF-α, and NFκB in tumor, along with an association between ANGPTL-4 levels with IL-1β and MCP-1 levels in tumor; and ANGPTL-4 and IL-1β levels in MES. Methods We studied 102 patients, who were divided into three groups: control patients (C, n=37), cancer patients with a stable weight (WSC, n=23), and cancer-cachexia patients (CC, n=42). Samples of plasma, tumor, mesenteric (MES) and subcutaneous adipose tissue were removed for the determination of ANGPTL-4 levels and other proinflammatory factors. Conclusions ANGPTL-4 levels were higher in plasma and tumor of CC-group, and positively associated with pro-inflammatory and pro-tumorigenic factors. Our results suggest an opposite effect of ANGPTL-4 depending on the concentration and presence of cachexia.
Collapse
|
33
|
Miller J, Alshehri A, Ramage MI, Stephens NA, Mullen AB, Boyd M, Ross JA, Wigmore SJ, Watson DG, Skipworth RJE. Plasma Metabolomics Identifies Lipid and Amino Acid Markers of Weight Loss in Patients with Upper Gastrointestinal Cancer. Cancers (Basel) 2019; 11:cancers11101594. [PMID: 31635032 PMCID: PMC6826420 DOI: 10.3390/cancers11101594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a multifactorial wasting syndrome associated with high morbidity and mortality in patients with cancer. Diagnosis can be difficult and, in the clinical situation, usually relies upon reported weight loss. The ‘omics’ technologies allow us the opportunity to study the end points of many biological processes. Among these, blood-based metabolomics is a promising method to investigate the pathophysiology of human cancer cachexia and identify candidate biomarkers. In this study, we performed liquid chromatography mass spectrometry (LC/MS)-based metabolomics to investigate the metabolic profile of cancer-associated weight loss. Non-selected patients undergoing surgery with curative intent for upper gastrointestinal cancer were recruited. Fasting plasma samples were taken at induction of anaesthesia. LC/MS analysis showed that 6 metabolites were highly discriminative of weight loss. Specifically, a combination profile of LysoPC 18.2, L-Proline, Hexadecanoic acid, Octadecanoic acid, Phenylalanine and LysoPC 16:1 showed close correlation for eight weight-losing samples (≥5% weight loss) and nine weight-stable samples (<5%weight loss) between predicted and actual weight change (r = 0.976, p = 0.0014). Overall, 40 metabolites were associated with ≥5% weight loss. This study provides biological validation of the consensus definition of cancer cachexia (Fearon et al.) and provides feasible candidate markers for further investigation in early diagnosis and the assessment of therapeutic intervention.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Ahmed Alshehri
- The Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK.
| | - Michael I Ramage
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Nathan A Stephens
- The Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK.
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - James A Ross
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Stephen J Wigmore
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - Richard J E Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| |
Collapse
|
34
|
Crystal structure of zinc-α2-glycoprotein in complex with a fatty acid reveals multiple different modes of protein-lipid binding. Biochem J 2019; 476:2815-2834. [PMID: 31506272 DOI: 10.1042/bcj20190354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Human zinc-α2-glycoprotein (ZAG) is a 42 kDa adipokine which regulates body fat mass and is associated with cachexia and obesity. ZAG belongs to the major histocompatibility complex class I protein family and binds long-chain polyunsaturated fatty acids in its groove formed from the α1 and α2 domains. To identify the molecular basis of its lipid-binding function, we determined the first crystal structure at 2.49 Å resolution for fatty acid-bound ZAG, where the ligand was the fluorescent 11-(dansylamino)undecanoic acid (DAUDA). The 192 kDa crystallographic asymmetric unit contained six ZAG and eight fatty acid molecules in unique conformations. Six fatty acid molecules were localised to the ZAG grooves, where their tails were bound in two distinct conformations. The carboxylate groups of three fatty acids projected out of the groove, while the fourth was hydrogen bonded with R73 inside the groove. Other ligand-residue contacts were primarily hydrophobic. A new fatty acid site was revealed for two further DAUDA molecules at the ZAG α3 domains. Following conformational changes from unbound ZAG, the α3 domains formed tetrameric β-barrel structures lined by fatty acid molecules that doubled the binding capacity of ZAG. Analytical ultracentrifugation revealed that ZAG in solution was a monomer in the absence of DAUDA, but formed small amounts of tetramers with DAUDA. By showing that ZAG binds fatty acids in different locations, we demonstrate an augmented mechanism for fatty acid binding in ZAG that is distinct from other known fatty acid binding proteins, and may be relevant to cachexia.
Collapse
|
35
|
Abstract
Cancer is a catabolic inflammatory disease that causes patients to often experience weight loss, or even cachexia in severe cases. Undernourishment in patients with cancer impairs the quality of life and therapeutic response, further leading to poor prognosis. Active and frequent nutritional screening and assessment using valid tools are important for fast and appropriate nutritional intervention. Additionally, a suitable individualized nutritional intervention strategy should be established based on the nutritional assessment result. In general, nutritional intervention begins with nutritional counseling of patients diagnosed with cancer, and a well-planned nutritional counseling improves the treatment adherence and nutritional status. When planning nutritional supplementation for cancer patients, specific nutrients, including amino acids and fatty acids, should be considered. However, there has been no consistent result showing that any particular nutrient significantly improves the prognosis of cancer patients. Hence, continuous attention from clinical physicians is needed to plan nutritional improvement in patients with cancer.
Collapse
Affiliation(s)
- Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
36
|
Faris MAIE, Madkour MI, Obaideen AK, Dalah EZ, Hasan HA, Radwan H, Jahrami HA, Hamdy O, Mohammad MG. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res Clin Pract 2019; 153:166-175. [PMID: 31150725 DOI: 10.1016/j.diabres.2019.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/07/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
AIM Excessive visceral adiposity is a major risk factor for developing insulin resistance and systemic low-grade inflammation. Ramadan diurnal fasting (RDF) is a religious ritual practiced by more than one billion Muslim throughout the world. It has been considered as one of the most common types of complementary and integrative health practices. The aim of this study is to examine the impact of RDF on visceral adiposity, circulating adipokines and glucoregulatory markers in patients with overweight or obesity. METHODS Overweight and obese subjects (n = 61; 23 men and 38 women) were included in the study. Body weight, visceral fat tissue area (measured by 3D-MRI), glucoregulatory factors, serum adipokines concentrations, dietary intake, and physical activity were assessed one week before and at the end of the lunar month of Ramadan. RESULTS From baseline, body weight and visceral fat tissue area serum total cholesterol, triglycerides, HDL-cholesterol, and systolic blood pressure significantly decreased (P < 0.05 for each) at the end of Ramadan. The serum levels of adiponectin, IL-6, TNF-α, and IGF-1 significantly decreased (P < 0.05 for each), but serum visfatin, leptin, apelin, IL-10, and IL-10/IL-6 ratio significantly increased (P < 0.05 for each) at the end of Ramadan. Changes in visceral adiposity significantly correlated with changes in plasma glucose (r = 0.4, P < 0.5) and resistin (r = 0.44, P < 0.001) at the end of Ramadan. CONCLUSION RDF lowers visceral adiposity, body weight and variably affects adipokines without adversely affecting markers of glucose homeostasis in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Mo'ez Al-Islam E Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Mohamed I Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Abdulmunhem K Obaideen
- Department of Medical Diagnostic Imaging, University Hospital Sharjah (UHS), P.O. Box: 72772, Sharjah, United Arab Emirates.
| | - Entesar Z Dalah
- Department of Medical Diagnostic Imaging, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Hayder A Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Haitham A Jahrami
- Rehabilitation Services, Periphery Hospitals, Ministry of Health, P.O. Box: 12, Manama, Bahrain.
| | - Osama Hamdy
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohammad G Mohammad
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
37
|
Schwartsburd P. Cancer-Induced Reprogramming of Host Glucose Metabolism: "Vicious Cycle" Supporting Cancer Progression. Front Oncol 2019; 9:218. [PMID: 31019893 PMCID: PMC6458235 DOI: 10.3389/fonc.2019.00218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestricted cancer growth requires permanent supply of glucose that can be obtained from cancer-mediated reprogramming of glucose metabolism in the cancer-bearing host. The pathological mechanisms by which cancer cells exert their negative influence on host glucose metabolism are largely unknown. This paper proposes a mechanism of metabolic and hormonal changes that may favor glucose delivery to tumor (not host) cells by creating a cancer-host "vicious cycle" whose prolonged action drives cancer progression and promotes host cachexia. To verify this hypothesis, a feedback model of host-cancer interactions that create the "vicious cycle" via cancer-induced reprogramming of host glucose metabolism is proposed. This model is capable of answering some crucial questions as to how anabolic cancer cells can reprogram the systemic glucose metabolism and why these pathways were not observed in pregnancy. The current paper helps to better understanding a pathogenesis of cancer progression and identify hormonal/metabolic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
38
|
Abstract
Cancer cachexia is a metabolic disease characterized by a negative energy balance associated with systemic weight loss and poor quality of life.In particular, skeletal muscle, which represents almost 50% of the total body mass, is strongly affected, and metabolic alterations therein (e.g., insulin resistance and mitochondrial dysfunction) can eventually support tumor growth by facilitating nutrient scavenging by the growing mass. Interestingly, metabolic interventions on wasting muscle have been proven to be protective, advocating for the importance of metabolic regulation in the wasting muscle.Here, we will briefly define the current knowledge of metabolic regulation in cachexia and provide a protocol to grow and differentiate in vitro myotubes for the assessment of mitochondrial metabolism during cachexia.
Collapse
Affiliation(s)
- Myriam Y Hsu
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
39
|
Hardee JP, Counts BR, Carson JA. Understanding the Role of Exercise in Cancer Cachexia Therapy. Am J Lifestyle Med 2019; 13:46-60. [PMID: 30627079 PMCID: PMC6311610 DOI: 10.1177/1559827617725283] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cachexia, the unintentional loss of body weight, is prevalent in many cancer types, and the associated skeletal muscle mass depletion increases patient morbidity and mortality. While anorexia can be present, cachexia is not reversible with nutritional therapies alone. Pharmacological agents have been proposed to treat this condition, but there are currently no approved treatments. Nonetheless, the hallmark characteristics associated with cancer cachexia remain viable foundations for future therapies. Regular physical activity holds a promising future as a nonpharmacological alternative to improve patient survival through cachexia prevention. Evidence suggests exercise training is beneficial during cancer treatment and survival. However, the mechanistic examination of cachectic skeletal muscle's response to exercise is both needed and justified. The primary objective of this review is to discuss the role of exercise for the prevention and treatment of cancer-associated muscle wasting. Initially, we provide an overview of systemic alterations induced by cancer and their role in the regulation of wasting processes during cachexia progression. We then discuss how exercise could alter disrupted regulatory pathways related to growth and metabolism during cancer-induced muscle atrophy. Last, we outline current exercise prescription guidelines and how exercise could be a potential behavioral therapy to curtail cachexia development in cancer patients.
Collapse
Affiliation(s)
- Justin P. Hardee
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - Brittany R. Counts
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - James A. Carson
- James A. Carson, PhD, Department of Exercise Science, University of South Carolina, 921 Assembly Street, Public Health Research Center, Rm 301, Columbia, SC 29208; e-mail:
| |
Collapse
|
40
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
41
|
Xu M, Chang HH, Jung X, Moro A, Chou CEN, King J, Hines OJ, Sinnett-Smith J, Rozengurt E, Eibl G. Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice. BMC Cancer 2018; 18:797. [PMID: 30086728 PMCID: PMC6081906 DOI: 10.1186/s12885-018-4713-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hormone sensitive lipase (HSL) is a neutral lipase that preferentially catalyzes the hydrolysis of diacylglycerol contributing to triacylglycerol breakdown in the adipose tissue. HSL has been implicated to play a role in tumor cachexia, a debilitating syndrome characterized by progressive loss of adipose tissue. Consequently, pharmacological inhibitors of HSL have been proposed for the treatment of cancer-associated cachexia. In the present study we used the conditional KrasG12D (KC) mouse model of pancreatic ductal adenocarcinoma (PDAC) with a deficiency in HSL to determine the impact of HSL suppression on the development of PDAC. METHODS KC;Hsl+/+ and KC;Hsl-/- mice were fed standard rodent chow for 20 weeks. At sacrifice, the incidence of PDAC was determined and inflammation in the mesenteric adipose tissue and pancreas was assessed histologically and by immunofluorescence. To determine statistical significance, ANOVA and two-tailed Student's t-tests were performed. To compare PDAC incidence, a two-sided Fisher's exact test was used. RESULTS Compared to KC;Hsl+/+ mice, KC;Hsl-/- mice gained similar weight and displayed adipose tissue and pancreatic inflammation. In addition, KC;Hsl-/- mice had reduced levels of plasma insulin and leptin. Importantly, the increased adipose tissue and pancreatic inflammation was associated with a significant increase in PDAC incidence in KC;Hsl-/- mice. CONCLUSIONS HSL deficiency is associated with adipose tissue and pancreatic inflammation and accelerates PDAC development in the KC mouse model.
Collapse
Affiliation(s)
- Mu Xu
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Hui-Hua Chang
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Xiaoman Jung
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Aune Moro
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Caroline Ei Ne Chou
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Jonathan King
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - O. Joe Hines
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - James Sinnett-Smith
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Guido Eibl
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
42
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
43
|
Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8018197. [PMID: 29375734 PMCID: PMC5742498 DOI: 10.1155/2017/8018197] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction.
Collapse
|
44
|
Saitoh M, Ishida J, Ebner N, Anker SD, Von Haehling S. Myostatin inhibitors as pharmacological treatment for muscle wasting and muscular dystrophy. JCSM CLINICAL REPORTS 2017. [DOI: 10.17987/jcsm-cr.v2i1.37] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily that is highly expressed in skeletal muscle, was first described in 1997. It has been known that loss of myostatin function induces an increase in muscle mass in mice, cow, dogs and humans. Therefore, myostatin and its receptor have emerged as a therapeutic target for loss of skeletal muscle such as sarcopenia and cachexia, as well as muscular dystrophies. At the molecular level, myostatin binds to and activates the activin receptor IIB (ActRIIB)/Alk 4/5 complex. Therapeutic approaches therefore are being taken both pre-clinically and clinically to inhibit the myostatin signaling pathway. Several myostatin inhibitors , including myostatin antibodies, anti-myostatin peptibody, activin A antibody, soluble (decoy) forms of ActRIIB (ActRⅡB-Fc), anti-myostatin adnectin, ActRⅡB antibody have been tested in the last decade. The current review covers the present knowledge of several myostatin inhibitors as therapeutic approach for patients with loss of skeletal muscle however, the available information about compounds in development is limited.
Collapse
|
45
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
46
|
Peng R. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:305-312. [PMID: 28059472 DOI: 10.1002/bmb.21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017.
Collapse
Affiliation(s)
- Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
47
|
Thackeray JT, Pietzsch S, Stapel B, Ricke-Hoch M, Lee CW, Bankstahl JP, Scherr M, Heineke J, Scharf G, Haghikia A, Bengel FM, Hilfiker-Kleiner D. Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression. JCI Insight 2017; 2:93098. [PMID: 28515362 DOI: 10.1172/jci.insight.93098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
Advanced cancer induces fundamental changes in metabolism and promotes cardiac atrophy and heart failure. We discovered systemic insulin deficiency in cachectic cancer patients. Similarly, mice with advanced B16F10 melanoma (B16F10-TM) or colon 26 carcinoma (C26-TM) displayed decreased systemic insulin associated with marked cardiac atrophy, metabolic impairment, and function. B16F10 and C26 tumors decrease systemic insulin via high glucose consumption, lowering pancreatic insulin production and producing insulin-degrading enzyme. As tumor cells consume glucose in an insulin-independent manner, they shift glucose away from cardiomyocytes. Since cardiomyocytes in both tumor models remained insulin responsive, low-dose insulin supplementation by subcutaneous implantation of insulin-releasing pellets improved cardiac glucose uptake, atrophy, and function, with no adverse side effects. In addition, by redirecting glucose to the heart in addition to other organs, the systemic insulin treatment lowered glucose usage by the tumor and thereby decreased tumor growth and volume. Insulin corrected the cancer-induced reduction in cardiac Akt activation and the subsequent overactivation of the proteasome and autophagy. Thus, cancer-induced systemic insulin depletion contributes to cardiac wasting and failure and may promote tumor growth. Low-dose insulin supplementation attenuates these processes and may be supportive in cardio-oncologic treatment concepts.
Collapse
Affiliation(s)
| | - Stefan Pietzsch
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and
| | - Britta Stapel
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and
| | - Melanie Ricke-Hoch
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and
| | - Chun-Wei Lee
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jörg Heineke
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and
| | - Gesine Scharf
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and
| | - Arash Haghikia
- Division of Molecular Cardiology, Department of Cardiology and Angiology, and.,Department of Cardiology, Charité Universitätsmedizin Berlin (Campus Benjamin Franklin), Berlin, Germany
| | | | | |
Collapse
|
48
|
Hirasaka K, Saito S, Yamaguchi S, Miyazaki R, Wang Y, Haruna M, Taniyama S, Higashitani A, Terao J, Nikawa T, Tachibana K. Dietary Supplementation with Isoflavones Prevents Muscle Wasting in Tumor-Bearing Mice. J Nutr Sci Vitaminol (Tokyo) 2017; 62:178-84. [PMID: 27465724 DOI: 10.3177/jnsv.62.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proinflammatory cytokines contribute to the progression of muscle wasting caused by ubiquitin-proteasome-dependent proteolysis. We have previously demonstrated that isoflavones, such as genistein and daidzein, prevent TNF-α-induced muscle atrophy in C2C12 myotubes. In this study, we examined the effect of dietary flavonoids on the wasting of muscle. Mice were divided into the following four groups: vehicle-injected (control) mice fed the normal diet (CN); tumor-bearing mice fed the normal diet (TN); control mice fed the isoflavone diet (CI); and tumor-bearing mice fed the isoflavone diet (TI). There were no significant differences in the intake of food or body weight gain among these four groups. The wet weight and myofiber size of gastrocnemius muscle in TN significantly decreased, compared with those in CN. Interestingly, the wet weight and myofiber size of gastrocnemius muscle in TI were nearly the same as those in CN and CI, although isoflavone supplementation did not affect the increased tumor mass or concentrations of proinflammatory cytokines, such as TNF-α and IL-6, in the blood. Moreover, increased expression of muscle-specific ubiquitin ligase genes encoding MAFbx/Atrogin-1 and MuRF1 in the skeletal muscle of TN was significantly inhibited by the supplementation of isoflavones. In parallel with the expression of muscle-specific ubiquitin ligases, dietary isoflavones significantly suppressed phosphorylation of ERK in tumor-bearing mice. These results suggest that dietary isoflavones improve muscle wasting in tumor-bearing mice via the ERK signaling pathway mediated-suppression of ubiquitin ligases in muscle cells.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Global Changes in Lipid Profiles of Mouse Cortex, Hippocampus, and Hypothalamus Upon p53 Knockout. Sci Rep 2016; 6:36510. [PMID: 27819311 PMCID: PMC5098149 DOI: 10.1038/srep36510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Comprehensive lipidomic profiling in three different brain tissues (cortex, hippocampus, and hypothalamus) of mouse with p53 deficiency was performed by nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) and the profile was compared with that of the wild type. p53 gene is a well-known tumour suppressor that prevents genome mutations that can cause cancers. More than 300 lipids (among 455 identified species), including phospholipids (PLs), sphingolipids, ceramides (Cers), and triacylglycerols (TAGs) were quantitatively analysed by selective reaction monitoring (SRM) of nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS). Among the three different neural tissues, hypothalamus demonstrated the most evident lipid profile changes upon p53 knockout. Alterations of PLs containing acyl chains of docosahexaenoic acid and arachidonic acid (highly enriched polyunsaturated fatty acids in the nervous system) were examined in relation to cell apoptosis upon p53 knockout. Comparison between sphingomyelins (SMs) and Cers showed that the conversion of SM to Cer did not effectively progress in the hypothalamus, resulting in the accumulation of SMs, possibly due to the inhibition of apoptosis caused by the lack of p53. Furthermore, TAGs were considerably decreased only in the hypothalamus, indicative of lipolysis that led to substantial weight loss of adipose tissue and muscles.
Collapse
|
50
|
Kong Y, Zheng Y, Jia Y, Li P, Wang Y. Decreased LIPF expression is correlated with DGKA and predicts poor outcome of gastric cancer. Oncol Rep 2016; 36:1852-60. [PMID: 27498782 PMCID: PMC5022960 DOI: 10.3892/or.2016.4989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) is a common and deadly digestive tract tumor worldwide. Unfortunately, diagnosis of GC is usually confused and misleading because of atypical symptoms or incomplete complaints. Accordingly, exploring gene expression profile and identifying genes with analogical variance trend will bring new perspective into the diagnosis and treatment of GC. Herein, a RNA-Seq dataset from Caucasian GC and their matched non-cancerous samples [Gene Expression Omnibus (GEO): SRP049809] and datasets from four microarrays constituted with tumor and non-tumor tissues (GEO: GSE13911, GSE19826, GSE29272, GSE33335) were analyzed to explore the differentially expressed genes (DGEs). As a result, we identified a core set of 373 DGEs. Among these genes, we found that most downregulated genes were related to lipid-metabolic functions. Especially, the gastric lipase (LIPF) gene, which was connected with various lipid metabolism processes, was significantly decreased among all datasets. We then performed immunohistochemistry experiments using gastric tissue arrays to investigate the clinical effects, and the expression of a LIPF target gene, diacylglycerol kinase α (DGKA). Among the 90 samples of gastric adenocarcinoma, the LIPF and DGKA levels were both decreased in cancer tissues [LIPF, 59.1% (53/90); DGKA, 77.8% (70/90)] compared to normal tissues [LIPF, 94.4% (85/90); DGKA, 90% (81/90)]. The expression level of these two proteins in GC was associated with local invasion and disease stage. Cox regression identified high DGKA expression (HR, 0.49; 95% CI, 0.26–0.94; P=0.03) as a predictor of good prognosis and LNM status (HR, 4.63; 95% CI, 1.39–15.51; P=0.01) as a predictor of poor prognosis. Thus we speculated that LIPF-DGKA might serve as a potential possible biomarkers for diagnosis of GC, and their downregulation may bring new perspective into the investigation of GC prognosis.
Collapse
Affiliation(s)
- Yi Kong
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yan Zheng
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ping Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|