1
|
Wang R, Li J, Bi Q, Yang B, He T, Lin K, Zhu X, Zhang K, Jin R, Huang C, Nie Y, Zhang X. Crystallographic plane-induced selective mineralization of nanohydroxyapatite on fibrous-grained titanium promotes osteointegration and biocorrosion resistance. Biomaterials 2025; 313:122800. [PMID: 39241551 DOI: 10.1016/j.biomaterials.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qunjie Bi
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaifeng Lin
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Luo H, Lin S, Lv H, Tan W, Zhong J, Xiong J, Liu Z, Wu Q, Chen M, Cao K. Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03714-3. [PMID: 39755833 DOI: 10.1007/s00210-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis. In vitro assays confirmed CHE's non-toxic profile at concentrations below 20 μM and demonstrated a dose-dependent suppression of osteoclast differentiation. Notably, CHE treatment significantly reduced TRAP activity and bone resorption capacity in a dose-dependent manner. Furthermore, CHE markedly decreased ROS production by NOX-1 expression and modulated the NRF2/KEAP1 pathway to enhance ROS clearance. The compound also showed inhibitory effects on the NF-κB and MAPK signaling pathways, which are crucial for osteoclast activation. In an ovariectomized mouse model, administration of CHE mitigated bone loss, indicating its therapeutic potential in osteoporosis. Collectively, these findings establish CHE as a promising natural therapeutic agent for treating bone disorders characterized by excessive bone resorption, underscoring the need for further clinical investigation.
Collapse
Affiliation(s)
- Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Sijian Lin
- The Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wen Tan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - ZhiMing Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qin Wu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ming Chen
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|
3
|
Adhish M, Manjubala I. Integrative in-silico and in-vitro analysis of taurine and vitamin B12 in modulating PPARγ and Wnt signaling in hyperhomocysteinemia-induced osteoporosis. Biol Direct 2024; 19:141. [PMID: 39707534 DOI: 10.1186/s13062-024-00581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12. In-vitro experiments further supported these results, demonstrating that taurine protects against oxidative damage, enhances bone mineralization, and reduces the expression levels of PPARγ, while also downregulating negative regulators of the Wnt signaling pathway, such as SOST and DKK1. Homocysteine, on the other hand, was observed to increase the expression of these regulators and impair bone formation. Vitamin B12 was included in the study due to its known role in mitigating hyperhomocysteinemia, a condition linked to impaired bone health and reduced taurine levels. While vitamin B12 alone demonstrated some beneficial effects, it did not achieve the same level of efficacy as taurine. However, a combination of taurine and vitamin B12 showed greater efficacy in ameliorating hyperhomocysteinemia-induced osteoporosis. Overall, this study highlights taurine's therapeutic potential in counteracting the adverse effects of hyperhomocysteinemia on bone health and underscores the need for further research into taurine's mechanisms in osteoporosis treatment.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Zheng J, Li X, Zhang F, Li C, Zhang X, Wang F, Qi J, Cui W, Deng L. Targeting Osteoblast-Osteoclast Cross-Talk Bone Homeostasis Repair Microcarriers Promotes Intervertebral Fusion in Osteoporotic Rats. Adv Healthc Mater 2024; 13:e2402117. [PMID: 39155412 DOI: 10.1002/adhm.202402117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Balancing osteoblast-osteoclast (OB-OC) cross-talk is crucial for restoring bone tissue structure and function. Current clinical drugs targeting either osteogenesis or osteoclastogenesis fail to effectively regulate cross-talk, impeding efficient bone repair in osteoporosis patients. Ubiquitin-specific protease 26 (USP26) is shown to coordinate OB-OC cross-talk by independently regulating β-catenin and Iκb-α. However, effective drugs for activating USP26 are still lacking. Here, they constructed bone homeostasis repair microcarriers (BHRC) that encapsulate Usp26 mRNA-loaded lipid nanoparticles (mRNA@LNP) within MMPs-responsive GelMA hydrogel microspheres. These microcarriers target the osteoporotic microenvironment and regulate OB-OC cross-talk, thereby facilitating intervertebral fusion in osteoporotic rats. Results demonstrate that mRNA@LNP exhibits uniform particle size and high transfection efficiency, while GelMA hydrogel microspheres possess excellent biocompatibility and MMP responsiveness, providing favorable cell survival space and controllable release of mRNA@LNP. The released LNP upregulates USP26 protein expression, effectively promoting osteogenesis while suppressing osteoclast formation. In vivo experiments show that injecting BHRC into the defect site of intervertebral discs in osteoporotic rats significantly promotes tail vertebrae fusion by responding to the microenvironment and regulating cell-to-cell cross-talk. Thus, the BHRC holds great potential in regulating osteoporotic homeostasis, particularly in challenging bone defects such as intervertebral fusion in osteoporotic environments.
Collapse
Affiliation(s)
- Jiancheng Zheng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoyan Li
- Department of Orthopedic, Affiliated Hospital of Jining Medical University, Jining City, Shandong Province, 272029, P. R. China
| | - Fangke Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Changwei Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xingkai Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jin Qi
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
5
|
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403907. [PMID: 39344577 DOI: 10.1002/smll.202403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Abnormal osteogenic and remodeling microenvironment due to osteoblast apoptosis are the primary causes of delayed fracture healing in osteoporotic patients. Magnesium (Mg) alloys exhibit biodegradability and appropriate elastic moduli for bone defects in osteoporosis, but the effect on the local bone remodeling disorder is still insufficient. Inspired by the "honeycomb," layered double hydroxide (LDH) with regular traps with graphene oxide quantum dots (GOQDs) inlayed is constructed by pulsed electrodeposition to generate GOQD/LDH composite nanocoatings on the surfaces of Mg alloy substrates. The honeycomb bionic multi-layer stereoscopic structure shows good regulation of the degradation of Mg alloy for the support of healing time required for osteoporotic bone defect. Within its lattice, the local microenvironment conducive to osteogenesis is provided by both the rescue effect of GOQD and LDH. The osteoblast apoptosis is rescued due to the activation of mitophagy to clear dysfunctional mitochondria, where the upregulation of BNIP3 phosphorylation played a key role. The osteoporotic rat model of femoral defects confirmed the improvement of bone regeneration and osseointegration of GOQD/LDH coating. In summary, honeycomb bionic composite nanocoatings with controllable degradation and excellent pro-osteogenic performance demonstrated a promising design strategy on Mg alloy implants in the therapy of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jianrong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
6
|
Wang C, Wang G, Song F, Zhao J, Liu Q, Xu J. Antioxidant enzyme Prdx1 inhibits osteoclastogenesis via suppressing ROS and NFATc1 signaling pathways. J Cell Physiol 2024; 239:e31431. [PMID: 39263840 DOI: 10.1002/jcp.31431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bone is a dynamic organ which continuously undergoes remodeling throughout one's lifetime. Cellular production of reactive oxygen species (ROS) is essential for regulating bone homeostasis. Osteoclasts, multinucleated giant cells differentiated from macrophage lineage, are responsible for osteolytic bone conditions which are closely linked to ROS signaling pathways. In this study, an anti-ROS enzyme, peroxiredoxin 1 (Prdx1) was found to be expressed both in bone marrow macrophages and osteoclasts. Recombinant Prdx1 protein was found to dose-dependently inhibit ROS production and osteoclast differentiation. Mechanistically, Prdx1 protein also attenuated NFATc1 activation as well as the expression of C-Fos, V-ATPase-d2, Cathepsin K, and Integrin αV. Collectively, Prdx1 is a negative regulator on osteoclast formation via inhibiting RANKL-mediated ROS activity, thus suggesting its potential application for treating osteoclast related disorders.
Collapse
Affiliation(s)
- Chao Wang
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gang Wang
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- The Discipline of Pathology and Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Menger MM, Speicher R, Hans S, Histing T, El Kayali MKD, Ehnert S, Menger MD, Ampofo E, Wrublewsky S, Laschke MW. Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. Int J Mol Sci 2024; 25:11788. [PMID: 39519338 PMCID: PMC11546854 DOI: 10.3390/ijms252111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammation has been recognized as major factor for successful bone regeneration. On the other hand, a prolonged or overshooting inflammatory response can also cause fracture healing failure. The nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLRP)3 inflammasome plays a crucial role in inflammatory cytokine production. However, its role during fracture repair remains elusive. We investigated the effects of Nlrp3 deficiency on the healing of closed femoral fractures in Nlrp3-/- and wildtype mice. The callus tissue was analyzed by means of X-ray, biomechanics, µCT and histology, as well as immunohistochemistry and Western blotting at 2 and 5 weeks after surgery. We found a significantly reduced trabecular thickness at 2 weeks after fracture in the Nlrp3-/- mice when compared to the wildtype animals. However, the amount of bone tissue did not differ between the two groups. Additional immunohistochemical analyses showed a reduced number of CD68-positive macrophages within the callus tissue of the Nlrp3-/- mice at 2 weeks after fracture, whereas the number of myeloperoxidase (MPO)-positive granulocytes was increased. Moreover, we detected a significantly lower expression of vascular endothelial growth factor (VEGF) and a reduced number of microvessels in the Nlrp3-/- mice. The expression of the absent in melanoma (AIM)2 inflammasome was increased more than 2-fold in the Nlrp3-/- mice, whereas the expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 was not affected. Our results demonstrate that Nlrp3 deficiency does not markedly affect femoral fracture healing in mice. This is most likely due to the unaltered expression of pro-inflammatory cytokines and pro-osteogenic growth factors.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Rouven Speicher
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
| | - Moses K. D. El Kayali
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| |
Collapse
|
9
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
10
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
11
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Avijgan F, Abbasian F, Dehnavi M, Sarchahi Z. Malignant osteopetrosis of infancy: A case report. Int J Surg Case Rep 2024; 123:110206. [PMID: 39191157 PMCID: PMC11389531 DOI: 10.1016/j.ijscr.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Osteopetrosis is a genetic bone disease whose main feature is the function of osteoclasts. This rare disorder affects one in every 250,000 live births. In terms of pathophysiology, osteopetrosis is divided into four types from mild to severe forms of the disease. We report of a case report of malignant osteopetrosis of infancy. CASE PRESENTATION A 3-month-old infant weighing 5 kg was hospitalized with complaints of fever, anaemia, and thrombocytopenia. He was the fourth child of the family, three other children of the family have died due to osteoporosis. According to the history of the disease in the family and the symptoms, tests and radiographic results, the diagnosis of osteopetrosis has been made for the child. DISCUSSION It involves an autosomal recessive mode of inheritance and manifests as diffuse osteosclerosis. Benign autosomal dominant osteopetrosis is a common form of the disease that is without symptoms and is diagnosed by random radiography. About half of the cases are characterised by fracture or osteomyelitis of the lower jaw Congenital osteopetrosis is a severe and malignant form of the disease that occurs in infancy. CONCLUSION Considering the high mortality in osteopetrosis patients and the psychological burden and significant economic concern that comes with it. There is a need for timely diagnosis and treatment as soon as possible.
Collapse
Affiliation(s)
- Fatemeh Avijgan
- Department of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzaneh Abbasian
- Department of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahdie Dehnavi
- Department of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zohreh Sarchahi
- Department of Nursing and Midwifery, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
14
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
15
|
Liu Y, Chen H, Chen T, Qiu G, Han Y. The emerging role of osteoclasts in the treatment of bone metastases: rationale and recent clinical evidence. Front Oncol 2024; 14:1445025. [PMID: 39148909 PMCID: PMC11324560 DOI: 10.3389/fonc.2024.1445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The occurrence of bone metastasis is a grave medical concern that substantially impacts the quality of life in patients with cancer. The precise mechanisms underlying bone metastasis remain unclear despite extensive research efforts, and efficacious therapeutic interventions are currently lacking. The ability of osteoclasts to degrade the bone matrix makes them a crucial factor in the development of bone metastasis. Osteoclasts are implicated in several aspects of bone metastasis, encompassing the formation of premetastatic microenvironment, suppression of the immune system, and reactivation of quiescent tumor cells. Contemporary clinical interventions targeting osteoclasts have proven effective in mitigating bone-related symptoms in patients with cancer. This review comprehensively analyzes the mechanistic involvement of osteoclasts in bone metastasis, delineates potential therapeutic targets associated with osteoclasts, and explores clinical evidence regarding interventions targeting osteoclasts.
Collapse
Affiliation(s)
- Youjun Liu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Huanshi Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Tong Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Guowen Qiu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Cheng K, Gao S, Mei Y, Zhou D, Song C, Guo D, Hou Y, Liu Z. The bone nonunion microenvironment: A place where osteogenesis struggles with osteoclastic capacity. Heliyon 2024; 10:e31314. [PMID: 38813209 PMCID: PMC11133820 DOI: 10.1016/j.heliyon.2024.e31314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Bone nonunion is a common and serious orthopedic disorder, the occurrence of which is associated with a disruption of the dynamic balance between osteoblasts and osteoclasts during bone repair. However, the critical molecular mechanisms affecting this homeostasis are not well understood, and it is essential to investigate the specific components of this mechanism and to restore the balance between osteoblasts and osteoclasts to promote bone repair. First, we defined this complex local environmental factor as the "bone nonunion microenvironment" and identified the importance of the "struggle" between osteoblasts and osteoclasts, which is the most essential element in determining the process of repair. On this basis, we also explored the cellular factors that influence osteogenesis and the molecular signals that influence the balance between osteoclast and osteoblasts, which are important for restoring homeostasis. Further, we explored other factors involved in osteogenesis, such as the biomechanical environment, the nutritional environment, the acid-base environment, and the temperature environment, which are important players in osteogenesis. In conclusion, we found that the balance between osteoblasts and osteoclasts is the essence of bone healing, which is based on the "bone nonunion microenvironment". Therefore, investigating the role of the bone nonunion microenvironment in the system of osteoblast-osteoclast "struggle" provides an important basis for further understanding of the mechanism of nonunion and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kang Cheng
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Silong Gao
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Daru Guo
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Medical Imaging, Luzhou Longmatan District People's Hospital, Luzhou, China
| |
Collapse
|
17
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
18
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Menger MM, Emmerich M, Scheuer C, Hans S, Braun BJ, Herath SC, Rollmann MF, Menger MD, Laschke MW, Histing T. Sildenafil delays bone remodeling of fractured femora in aged mice by reducing the number and activity of osteoclasts within the callus tissue. Biomed Pharmacother 2024; 173:116291. [PMID: 38442669 DOI: 10.1016/j.biopha.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
The elderly exhibit a reduced healing capacity after fracture, which is often associated with delayed or failed bone healing. This is due to a plethora of factors, such as an impaired bone vascular system and delayed angiogenesis. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil exerts pro-angiogenic and pro-osteogenic effects. Hence, we herein investigated in aged mice whether sildenafil can improve fracture healing. For this purpose, 40 aged CD-1 mice (16-18 months) were daily treated with 5 mg/kg body weight sildenafil (n = 20) or vehicle (control, n = 20) by oral gavage. The callus tissue of their femora was analyzed at 2 and 5 weeks after fracture by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry as well as Western blotting. These analyses revealed a significantly increased bone volume and higher ratio of callus to femoral bone diameter in sildenafil-treated mice at 5 weeks after fracture when compared to controls. This was associated with a reduced number and activity of osteoclasts at 2 weeks after fracture, most likely caused by an increased expression of osteoprotegerin (OPG). Taken together, these findings indicate that sildenafil does not improve fracture healing in the elderly but delays the process of bone remodeling most likely by reducing the number and activity of osteoclasts within the callus tissue.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany; Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany.
| | - Maximilian Emmerich
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
20
|
He Y, Jiang H, Dong S. Bioactives and Biomaterial Construction for Modulating Osteoclast Activities. Adv Healthc Mater 2024; 13:e2302807. [PMID: 38009952 DOI: 10.1002/adhm.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Bone tissue constitutes 15-20% of human body weight and plays a crucial role in supporting the body, coordinating movement, regulating mineral homeostasis, and hematopoiesis. The maintenance of bone homeostasis relies on a delicate balance between osteoblasts and osteoclasts. Osteoclasts, as the exclusive "bone resorbers" in the human skeletal system, are of paramount significance yet often receive inadequate attention. When osteoclast activity becomes excessive, it frequently leads to various bone metabolic disorders, subsequently resulting in secondary bone injuries, such as fractures. This not only reduces life quality of patients, but also imposes a significant economic burden on society. In response to the pressing need for biomaterials in the treatment of osteoclast dysregulation, there is a surge of research and investigations aimed at osteoclast regulation. Promising progress is achieved in this domain. This review seeks to provide a comprehensive understanding of how to modulate osteoclast activities. It summarizes bioactive substances that influence osteoclasts and elucidates strategies for constructing related biomaterial systems. It offers practical insights and ideas for the development and application of biomaterials and tissue engineering, with the hope of guiding the clinical treatment of osteoclast-related bone diseases using biomaterials in the future.
Collapse
Affiliation(s)
- Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
21
|
Tang L, Yuan L, Yan J, Ge J, Lian Z, Li Z. circ_0029463 promotes osteoclast differentiation by mediating miR-134-5p/Rab27a axis. J Orthop Surg Res 2024; 19:128. [PMID: 38326867 PMCID: PMC10851473 DOI: 10.1186/s13018-024-04610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE Osteoporosis is the imbalance in bone homeostasis between osteoblasts and osteoclasts. In this study, we investigated the effects of the circ_0029463/miR-134-5p/Rab27a axis on RANKL-induced osteoclast differentiation. METHODS RT-qPCR and western blotting were used to detect the expression of circ_0029463, miR-134-5p, and Rab27a in tissues from patients with osteoporosis and in RANKL-induced osteoclasts. Osteoclast differentiation was verified by TRAP staining. Osteoclast biomarkers, including NFATc1, TRAP, and CTSK, were measured. The target and regulatory relationships between circ_0029463, miR-134-5p, and the Rab27a axis were verified using RIP, dual-luciferase reporter gene, and RNA pull-down assays. RESULTS Elevated expression of circ_0029463 and Rab27a and decreased miR-134-5p expression were observed in the tissues of patients with osteoporosis, and a similar expression pattern was observed in RANKL-induced osteoclasts. Suppression of circ_0029463 expression or miR-134-5p overexpression curbed RANKL-induced osteoclast differentiation, whereas such an effect was abolished by Rab27 overexpression. circ_0029463 sponges miR-134-5p to induce Rab27a expression. CONCLUSION circ_0029463 sponges miR-134-5p to abolish its suppressive effect of miR-134-5p on Rab27a expression, thereby promoting osteoclast differentiation.
Collapse
Affiliation(s)
- Lian Tang
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lin Yuan
- Department of Clinical Skills Center, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yan
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianhua Ge
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhi Lian
- Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Jeong C, Lee CH, Lee Y, Seo J, Wang W, Park KH, Oh E, Cho Y, Park C, Son YJ, Yoon Park JH, Kang H, Lee KW. Ulmus macrocarpa Hance trunk bark extracts inhibit RANKL-induced osteoclast differentiation and prevent ovariectomy-induced osteoporosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117285. [PMID: 37839769 DOI: 10.1016/j.jep.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.
Collapse
Affiliation(s)
- Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Jiwon Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Youbin Cho
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chanyoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Heonjoong Kang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea; Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea; Department of Agricultural Biotechnology and Center for Food and Bio Convergence, Seoul National. University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
24
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
25
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Menger MM, Bleimehl M, Bauer D, Scheuer C, Hans S, Saul D, Ehnert S, Menger MD, Histing T, Laschke MW. Cilostazol promotes blood vessel formation and bone regeneration in a murine non-union model. Biomed Pharmacother 2023; 168:115697. [PMID: 37864892 DOI: 10.1016/j.biopha.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Non-unions represent a major complication in trauma and orthopedic surgery. Many factors contribute to bone regeneration, out of which an adequate vascularization has been recognized as crucial. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in a variety of preclinical studies. Hence, we herein investigated the effects of cilostazol on bone regeneration in an atrophic non-union model in mice. For this purpose, a 1.8 mm femoral segmental defect was stabilized by pin-clip fixation and the animals were treated daily with 30 mg/kg body weight cilostazol or saline (control) per os. At 2, 5 and 10 weeks after surgery the healing of femora was analyzed by X-ray, biomechanics, photoacoustic imaging, and micro-computed tomography (µCT). To investigate the cellular composition and the growth factor expression of the callus tissue additional histological, immunohistochemical and Western blot analyses were performed. Cilostazol-treated animals showed increased bone formation within the callus, resulting in an enhanced bending stiffness when compared to controls. This was associated with a more pronounced expression of vascular endothelial growth factor (VEGF), a higher number of CD31-positive microvessels and an increased oxygen saturation within the callus tissue. Furthermore, cilostazol induced higher numbers of tartrate-resistant acidic phosphate (TRAP)-positive osteoclasts and CD68-positive macrophages. Taken together, these findings demonstrate that cilostazol is a promising drug candidate for the adjuvant treatment of atrophic non-unions in clinical practice.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany; Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany.
| | - Michelle Bleimehl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - David Bauer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Dominik Saul
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| |
Collapse
|
27
|
Faqeer A, Wang M, Alam G, Padhiar AA, Zheng D, Luo Z, Zhao IS, Zhou G, van den Beucken JJJP, Wang H, Zhang Y. Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials 2023; 303:122367. [PMID: 38465579 DOI: 10.1016/j.biomaterials.2023.122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Bone remodeling is a tightly coupled process between bone forming osteoblasts (OBs) and bone resorbing osteoclasts (OCs) to maintain bone architecture and systemic mineral homeostasis throughout life. However, the mechanisms responsible for the coupling between OCs and OBs have not been fully elucidated. Herein, we first validate that secreted extracellular vesicles by osteoclasts (OC-EVs) promote osteogenic differentiation of mesenchymal stem cells (MSCs) and further demonstrate the efficacy of osteoclasts and their secreted EVs in treating tibial bone defects. Furthermore, we show that OC-EVs contain several osteogenesis-promoting proteins as cargo. By employing proteomic and functional analysis, we reveal that mature osteoclasts secrete thrombin cleaved phosphoprotein 1 (SPP1) through extracellular vesicles which triggers MSCs osteogenic differentiation into OBs by activating Transforming Growth Factor β1 (TGFβ1) and Smad family member 3 (SMAD3) signaling. In conclusion, our findings prove an important role of SPP1, present as cargo in OC-derived EVs, in signaling to MSCs and driving their differentiation into OBs. This biological mechanism implies a paradigm shift regarding the role of osteoclasts and their signaling toward the treatment of skeletal disorders which require bone formation.
Collapse
Affiliation(s)
- Abdullah Faqeer
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Mengzhen Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Gulzar Alam
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Arshad Ahmed Padhiar
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China; Department of Ecology and Evoluitonary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Dexiu Zheng
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Zhiming Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Irene Shuping Zhao
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Guangqian Zhou
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Jeroen J J P van den Beucken
- Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, 6525EX, the Netherlands; Research Institute for Medical Innovation, Radboudumc, 6500HB, Nijmegen, the Netherlands.
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China.
| |
Collapse
|
28
|
Ding L, Gao Z, Wu S, Chen C, Liu Y, Wang M, Zhang Y, Li L, Zou H, Zhao G, Qin S, Xu L. Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:49. [PMID: 37940733 PMCID: PMC10632357 DOI: 10.1007/s13659-023-00405-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023]
Abstract
Osteoporosis (OP), a systemic and chronic bone disease, is distinguished by low bone mass and destruction of bone microarchitecture. Ginsenoside Compound-K (CK), one of the metabolites of ginsenoside Rb1, has anti-aging, anti-inflammatory, anti-cancer, and hypolipidemic activities. We have demonstrated CK could promote osteogenesis and fracture healing in our previous study. However, the contribution of CK to osteoporosis has not been examined. In the present study, we investigated the effect of CK on osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. The results showed that CK inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation and reactive oxygen species (ROS) activity by inhibiting the phosphorylation of NF-κB p65 and oxidative stress in RAW264.7 cells. In addition, we also demonstrated that CK could inhibit bone resorption using bone marrow-derived macrophages. Furthermore, we demonstrated that CK attenuated bone loss by suppressing the activity of osteoclast and alleviating oxidative stress in vivo. Taken together, these results showed CK could inhibit osteoclastogenesis and prevent OVX-induced bone loss by inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Li
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shengnan Qin
- Department of Orthopaedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
29
|
He J, Zheng L, Li X, Huang F, Hu S, Chen L, Jiang M, Lin X, Jiang H, Zeng Y, Ye T, Lin D, Liu Q, Xu J, Chen K. Obacunone targets macrophage migration inhibitory factor (MIF) to impede osteoclastogenesis and alleviate ovariectomy-induced bone loss. J Adv Res 2023; 53:235-248. [PMID: 36657717 PMCID: PMC10658311 DOI: 10.1016/j.jare.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Osteoporosis is the most common bone disorder where the hyperactive osteoclasts represent the leading role during the pathogenesis. Targeting hyperactive osteoclasts is currently the primary therapeutic strategy. However, concerns about the long-term efficacy and side effects of current frontline treatments persist. Alternative therapeutic agents are still needed. OBJECTIVES Obacunone (OB) is a small molecule with a broad spectrum of biological activities, particularly antioxidant and anti-inflammatory effects. This study aims to examine OB's therapeutic potential on osteoporosis and explore the rudimentary mechanisms. METHODS Osteoclast formation and osteoclastic resorption assays were carried out to examine OB's inhibitory effects in vitro, followed by the in-vivo studies of OB's therapeutic effects on ovariectomy-induced osteoporotic preclinical model. To further study the underlying mechanisms, mRNA sequencing and analysis were used to investigate the changes of downstream pathways. The molecular targets of OB were predicted, and in-silico docking analysis was performed. Ligand-target binding was verified by surface plasmon resonance (SPR) assay and Western Blotting assay. RESULTS The results indicated that OB suppressed the formation of osteoclast and its resorptive function in vitro. Mechanistically, OB interacts with macrophage migration inhibitory factor (MIF) which attenuates receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced signaling pathways, including reactive oxygen species (ROS), NF-κB pathway, and mitogen-activated protein kinases (MAPKs). These effects eventually caused the diminished expression level of the master transcriptional factor of osteoclastogenesis, nuclear factor of activated T cells 1 (NFATc1), and its downstream osteoclast-specific proteins. Furthermore, our data revealed that OB alleviated estrogen deficiency-induced osteoporosis by targeting MIF and thus inhibiting hyperactive osteoclasts in vivo. CONCLUSION These results together implicated that OB may represent as a therapeutic candidate for bone disorders caused by osteoclasts, such as osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; School of Biomedical Sciences, The University of Western Australia, Perth 6009, Australia
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310000, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Furong Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sitao Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Manya Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xianfeng Lin
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310000, China
| | - Haibo Jiang
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yifan Zeng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tianshen Ye
- Department of Acupuncture, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dingkun Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth 6009, Australia.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
30
|
Chen Y, Liu Y, Xia H, Xia G, Xu J, Lin S, Guo L, Liu Y. The effect of the Litcubanine A on the treatment of murine experimental periodontitis by inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation. J Periodontal Res 2023; 58:948-958. [PMID: 37409514 DOI: 10.1111/jre.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Periodontal disease is an inflammatory disease of periodontal tissues that is closely connected with systemic diseases. During periodontitis, the inappropriate recruitment and activation of monocytes-macrophages causes an increase in osteoclast activity and disrupts bone homeostasis. Therefore, it is a promising therapeutic strategy to treat periodontitis by regulating the functions of monocytes-macrophages. Litcubanine A (LA) is an isoquinoline alkaloid extracted from the traditional Chinese medicine Litsea cubeba, which was proven to have reproducible anti-inflammatory effects, but its regulatory role on bone homeostasis in periodontitis is still not clear. METHODS In this study, zebrafish experiments and a mouse ligature-induced periodontitis model were performed, and histological analysis was used to investigate the effect of LA on macrophage chemotaxis under the inflammatory environment. Real-time PCR was used to detect the regulatory effect of LA (100 nM ~ 100 μM) on the chemotaxis function of macrophages induced by LPS. Apoptosis assay and flow cytometry were used to elucidate the influence of LA on macrophage apoptosis and proliferation. To further clarify the regulatory role of LA on macrophage osteoclast differentiation, real-time PCR, histological analysis, western blot, and micro-computed tomography (micro-CT) were performed in vivo and in vitro to verify the impact of LA on bone homeostasis. RESULTS Compared with the control group, the chemotaxis function of macrophage was significantly attenuated by LA in vivo. LA could significantly inhibit the expression of genes encoding the chemokine receptors Ccr1 and Cxcr4, and its ligand chemokine Cxcl12 in macrophages, and suppresses the differentiation of osteoclastic precursors to osteoclasts through the MAPK signaling pathway. There were significantly lower osteoclast differentiation and bone loss in the LA group compared with the control in the ligature-induced periodontitis model. CONCLUSION LA is a promising candidate for the treatment of periodontitis through its reproducible functions of inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
32
|
Liu X, Xu X, Li J, Shi L, Zeng Y, Tang S, Liu W, Jia L, Li Y, Zhang J. Isobavachalcone inhibits RANKL-induced osteoclastogenesis via miR-193-3p/NF-κB/NFATc1 signaling pathway in BMMs cells. Biosci Biotechnol Biochem 2023; 87:960-971. [PMID: 37291698 DOI: 10.1093/bbb/zbad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Inhibition of extensive osteoclastogenesis and bone resorption is considered a potential therapeutic target for the treatment of osteoporosis. Isobavachalcone (IBC) is derived from the traditional Chinese herb Psoralea corylifolia Linn. We showed that IBC dose-dependently suppressed receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis in bone marrow monocyte/macrophage (BMMs) and osteoclastic bone-resorption function without cytotoxicity at a dose of no more than 8 µmin vitro. Mechanistically, the results of western blot and quantitative real-time polymerase chain reaction (qRT-PCR) indicated that IBC inhibited the RANKL-induced degradation of IκBα and phosphorylation of nuclear factor kappa B (NF-κB) in BMMs, and subsequently downregulated the expression of osteoclastic-specific genes and osteoclastogenesis-related proteins. TRAP staining and qRT-PCR showed that IBC can inhibit osteoclast differentiation by down-regulating the expression of miR-193-3p on osteoclast differentiation. Overall, our findings suggest that IBC may serve as a promising compound for the treatment of osteoporosis and other metabolic bone diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Xiaosa Xu
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Jinping Li
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Chang Sha, Hunan, China
| | - Liying Shi
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Ying Zeng
- Department of Cardiovascular Medicine, The First Hospital of Hunan University of Traditional Chinese Medicine, Chang Sha, Hunan, China
| | - Siyuan Tang
- Department of Community Nursing, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Community Nursing, Central South University, Changsha, Hunan, China
| | - Lujuan Jia
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Yuhong Li
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Jie Zhang
- Pharmacy Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Guo DY, Chen ZH, Fu YF, Li YY, Chen MN, Wu JJ, Yuan ZD, Ye JX, Li X, Yuan FL. Cilengitide inhibits osteoclast adhesion through blocking the α vβ 3-mediated FAK/Src signaling pathway. Heliyon 2023; 9:e17841. [PMID: 37539209 PMCID: PMC10395300 DOI: 10.1016/j.heliyon.2023.e17841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
The remodeling of actin cytoskeleton of osteoclasts on the bone matrix is essential for osteoclastic resorption activity. A specific regulator of the osteoclast cytoskeleton, integrin αvβ3, is known to provide a key role in the degradation of mineralized bone matrixes. Cilengitide is a potent inhibitor of integrins and is capable of affecting αvβ3 receptors, and has anti-tumor and anti-angiogenic and apoptosis-inducing effects. However, its function on osteoclasts is not fully understood. Here, the cilengitide role on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts was explored. Cells were cultured with varying concentrations of cilengitide (0,0.002,0.2 and 20 μM) for 7 days, followed by detected via Cell Counting Kit-8, staining for tartrate resistant acid phosphatase (TRAP), F-actin ring formation, bone resorption assays, adhesion assays, immunoblotting assays, and real-time fluorescent quantitative PCR. Results demonstrated that cilengitide effectively restrained the functionality and formation of osteoclasts in a concentration-dependent manner, without causing any cytotoxic effects. Mechanistically, cilengitide inhibited osteoclast-relevant genes expression; meanwhile, cilengitide downregulated the expression of key signaling molecules associated with the osteoclast cytoskeleton, including focal adhesion kinase (FAK), integrin αvβ3 and c-Src. Therefore, this results have confirmed that cilengitide regulates osteoclast activity by blocking the integrin αvβ3 signal pathway resulting in diminished adhesion and bone resorption of osteoclasts.
Collapse
Affiliation(s)
- Dan-yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhong-hua Chen
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, 236000, China
| | - Yi-fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yue-yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Meng-nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Jun-jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zheng-dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Feng-lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214041, China
| |
Collapse
|
34
|
Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F. Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo. Eur J Dent 2023; 17:881-888. [PMID: 35728613 PMCID: PMC10569879 DOI: 10.1055/s-0042-1748529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats. MATERIALS AND METHODS Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 μg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 μg LPS + 100 μg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 μg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification. STATISTICAL ANALYSIS One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05). RESULTS The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05). CONCLUSION GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fianza Rezkita
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Andari Sarasati
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bilqis Inayatillah
- Department of Basic Medical of Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
35
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
36
|
Xie X, Zhang W, Xiao M, Wei T, Qiu Y, Qiu J, Wang H, Qiu Z, Zhang S, Pan Y, Mao L, Li Y, Guo B, Yang W, Hu Y, Hu S, Gong Y, Yang J, Xiao G, Zhang Y, Bai X. TREM2 acts as a receptor for IL-34 to suppress acute myeloid leukemia in mice. Blood 2023; 141:3184-3198. [PMID: 37001042 PMCID: PMC10646818 DOI: 10.1182/blood.2022018619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
The bone marrow microenvironment supports leukocyte mobilization and differentiation and controls the development of leukemias, including acute myeloid leukemia (AML). Here, we found that the development of AML xenotransplants was suppressed in mice with osteoclasts tuberous sclerosis 1 (Tsc1) deletion. Tsc1-deficient osteoclasts released a high level of interleukin-34 (IL-34), which efficiently induced AML cell differentiation and prevented AML progression in various preclinical models. Conversely, AML development was accelerated in mice deficient in IL-34. Interestingly, IL-34 inhibited AML independent of its known receptors but bound directly to triggering receptor expressed on myeloid cells 2 (TREM2), a key hub of immune signals. TREM2-deficient AML cells and normal myeloid cells were resistant to IL-34 treatment. Mechanistically, IL-34-TREM2 binding rapidly phosphorylated Ras protein activator like 3 and inactivated extracellular signal-regulated protein kinase 1/2 signaling to prevent AML cell proliferation and stimulate differentiation. Furthermore, TREM2 was downregulated in patients with AML and associated with a poor prognosis. This study identified TREM2 as a novel receptor for IL-34, indicating a promising strategy for overcoming AML differentiation blockade in patients with AML.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Min Xiao
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tiantian Wei
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyang Qiu
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zeyou Qiu
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yating Pan
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Mao
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Guo
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanwen Yang
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shujie Hu
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Gong
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Yang
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yue Zhang
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Kuang H, Ma J, Chi X, Fu Q, Zhu Q, Cao W, Zhang P, Xie X. Integrated Osteoinductive Factors─Exosome@MicroRNA-26a Hydrogel Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22805-22816. [PMID: 37145861 DOI: 10.1021/acsami.2c21933] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are a new therapeutic tool that can target multiple genes by inducing translation repression and target mRNA degradation. Although miRNAs have gained significant attention in oncology and in work on genetic disorders and autoimmune diseases, their application in tissue regeneration remains hindered by several challenges, such as miRNA degradation. Here, we reported Exosome@MicroRNA-26a (Exo@miR-26a), an osteoinductive factor that can be substituted for routinely used growth factors, which was constructed using bone marrow stem cell (BMSC)-derived exosomes and microRNA-26a (miR-26a). Exo@miR-26a-integrated hydrogels significantly promoted bone regeneration when implanted into defect sites; as the exosome stimulated angiogenesis, miR-26a promoted osteogenesis while the hydrogel enabled a site-directed release. Moreover, BMSC-derived exosomes further facilitated healthy bone regeneration by repressing osteoclast differentiation-related genes rather than damaging osteoclasts. Taken together, our findings demonstrate the promising potential of Exo@miR-26a for bone regeneration and provide a new strategy for the application of miRNA therapy in tissue engineering.
Collapse
Affiliation(s)
- Haizhu Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Xinyu Chi
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qichen Fu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qianzhe Zhu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xin Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Bao J, Yan Y, Zuo D, Zhuo Z, Sun T, Lin H, Han Z, Zhao Z, Yu H. Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy. Front Nutr 2023; 10:1178573. [PMID: 37215218 PMCID: PMC10196368 DOI: 10.3389/fnut.2023.1178573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis, one of the most serious and common complications of diabetes, has affected the quality of life of a large number of people in recent years. Although there are many studies on the mechanism of diabetic osteoporosis, the information is still limited and there is no consensus. Recently, researchers have proven that osteoporosis induced by diabetes mellitus may be connected to an abnormal iron metabolism and ferroptosis inside cells under high glucose situations. However, there are no comprehensive reviews reported. Understanding these mechanisms has important implications for the development and treatment of diabetic osteoporosis. Therefore, this review elaborates on the changes in bones under high glucose conditions, the consequences of an elevated glucose microenvironment on the associated cells, the impact of high glucose conditions on the iron metabolism of the associated cells, and the signaling pathways of the cells that may contribute to diabetic bone loss in the presence of an abnormal iron metabolism. Lastly, we also elucidate and discuss the therapeutic targets of diabetic bone loss with relevant medications which provides some inspiration for its cure.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yixuan Yan
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Daihui Zuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyong Zhuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianhao Sun
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hongli Lin
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhiyang Zhao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongbo Yu
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
39
|
Qin Y, Song D, Liao S, Chen J, Xu M, Su Y, Lian H, Peng H, Wei L, Chen K, Xu J, Zhao J, Liu Q. Isosinensetin alleviates estrogen deficiency-induced osteoporosis via suppressing ROS-mediated NF-κB/MAPK signaling pathways. Biomed Pharmacother 2023; 160:114347. [PMID: 36746095 DOI: 10.1016/j.biopha.2023.114347] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023] Open
Abstract
The formation of osteoclasts and their hyperactive bone resorption are related to the aggregation of intracellular reactive oxygen species (ROS). Flavonoids, derived from plant active ingredients, can alleviate the symptoms of osteoporosis (OP). Isosinensetin (Iss) is a flavonoid with antioxidant effects obtained mainly from citrus fruits, and its effect on osteoclastogenesis has not been reported. In this study, we investigated the antioxidant activity of Iss on osteoclast differentiation and function, as well as the therapeutic impact of Iss on OP. We found that Iss inhibited osteoclastogenesis and suppressed the bone resorption function of osteoclasts. Additionally, Iss reduced receptor activator of nuclear factor-κB ligand (RANKL)-induced intracellular ROS. Using quantitative real-time polymerase chain reaction and western blot, we further found that Iss inhibited osteoclast-specific genes and related proteins, while promoting the expression of antioxidant enzyme-related genes and proteins. Mechanistically, Iss reduces intracellular ROS by activating nuclear factor-erythroid 2-related factor 2 (Nrf2) and its related antioxidant enzymes and inhibits the downstream nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways of ROS, which in turn inhibits nuclear factor of activated T cells 1 (NFATc1), and ultimately inhibits osteoclastogenesis. In vivo, by micro-computed tomography (Micro-CT) assay and histological analyses, we found that Iss could reduce bone loss in ovariectomized (OVX) mice. Therefore, Iss has the potential as an OP preventative and therapeutic drug option.
Collapse
Affiliation(s)
- Yiwu Qin
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijie Liao
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Minglian Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuangang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hui Peng
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linhua Wei
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kai Chen
- School of Molecular Sciences, the University of Western Australia, Perth 6009, Australia
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth 6009, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China.
| |
Collapse
|
40
|
Liang H, Chen K, Xie J, Yao L, Liu Y, Hu F, Li H, Lei Y, Wang Y, Lv L, Chen Z, Liu S, Liu Q, Wang Z, Li J, Chang YN, Li J, Yuan H, Xing G, Xing G. A Bone-Penetrating Precise Controllable Drug Release System Enables Localized Treatment of Osteoporotic Fracture Prevention via Modulating Osteoblast-Osteoclast Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207195. [PMID: 36971278 DOI: 10.1002/smll.202207195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Improving local bone mineral density (BMD) at fracture-prone sites of bone is a clinical concern for osteoporotic fracture prevention. In this study, a featured radial extracorporeal shock wave (rESW) responsive nano-drug delivery system (NDDS) is developed for local treatment. Based on a mechanic simulation, a sequence of hollow zoledronic acid (ZOL)-contained nanoparticles (HZNs) with controllable shell thickness that predicts various mechanical responsive properties is constructed by controlling the deposition time of ZOL and Ca2+ on liposome templates. Attributed to the controllable shell thickness, the fragmentation of HZNs and the release of ZOL and Ca2+ can be precisely controlled with the intervention of rESW. Furthermore, the distinct effect of HZNs with different shell thicknesses on bone metabolism after fragmentation is verified. In vitro co-culture experiments demonstrate that although HZN2 does not have the strongest osteoclasts inhibitory effect, the best pro-osteoblasts mineralization results are achieved via maintaining osteoblast-osteoclast (OB-OC) communication. In vivo, the HZN2 group also shows the strongest local BMD enhancement after rESW intervention and significantly improves bone-related parameters and mechanical properties in the ovariectomy (OVX)-induced osteoporosis (OP) rats. These findings suggest that an adjustable and precise rESW-responsive NDDS can effectively improve local BMD in OP therapy.
Collapse
Affiliation(s)
- Haojun Liang
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Jing Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Yao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Yunpeng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Fan Hu
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Hao Li
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| | - Yinze Lei
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yujiao Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Linwen Lv
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Ziteng Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Sen Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Qiuyang Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Zhijie Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Jiacheng Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Ya-Nan Chang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Hui Yuan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Gengyan Xing
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043, P. R. China
| | - Gengmei Xing
- Department of Orthopedic, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, P. R. China
| |
Collapse
|
41
|
Uehara Y, Tanaka Y, Zhao S, Nikolaidis NM, Pitstick LB, Wu H, Yu JJ, Zhang E, Hasegawa Y, Noel JG, Gardner JC, Kopras EJ, Haffey WD, Greis KD, Guo J, Woods JC, Wikenheiser-Brokamp KA, Kyle JE, Ansong C, Teitelbaum SL, Inoue Y, Altinişik G, Xu Y, McCormack FX. Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis. Nat Commun 2023; 14:1205. [PMID: 36864068 PMCID: PMC9981730 DOI: 10.1038/s41467-023-36810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Pulmonary alveolar microlithiasis is an autosomal recessive lung disease caused by a deficiency in the pulmonary epithelial Npt2b sodium-phosphate co-transporter that results in accumulation of phosphate and formation of hydroxyapatite microliths in the alveolar space. The single cell transcriptomic analysis of a pulmonary alveolar microlithiasis lung explant showing a robust osteoclast gene signature in alveolar monocytes and the finding that calcium phosphate microliths contain a rich protein and lipid matrix that includes bone resorbing osteoclast enzymes and other proteins suggested a role for osteoclast-like cells in the host response to microliths. While investigating the mechanisms of microlith clearance, we found that Npt2b modulates pulmonary phosphate homeostasis through effects on alternative phosphate transporter activity and alveolar osteoprotegerin, and that microliths induce osteoclast formation and activation in a receptor activator of nuclear factor-κB ligand and dietary phosphate dependent manner. This work reveals that Npt2b and pulmonary osteoclast-like cells play key roles in pulmonary homeostasis and suggest potential new therapeutic targets for the treatment of lung disease.
Collapse
Affiliation(s)
- Yasuaki Uehara
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yusuke Tanaka
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shuyang Zhao
- Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nikolaos M Nikolaidis
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lori B Pitstick
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Huixing Wu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jane J Yu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erik Zhang
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yoshihiro Hasegawa
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John G Noel
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason C Gardner
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth J Kopras
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Steven L Teitelbaum
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yoshikazu Inoue
- Department of Diffuse Lung Diseases and Respiratory Failure, Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Göksel Altinişik
- Department of Chest Diseases, Faculty of Medicine, Pamukkale University, Pamukkale, Turkey
| | - Yan Xu
- Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Departments of Pediatrics and Biomedical Informatics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| | - Francis X McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Probucol suppresses osteoclastogenesis via activating Nrf2 signaling and ameliorates ovariectomy-induced bone loss. Int Immunopharmacol 2023; 116:109820. [PMID: 36758295 DOI: 10.1016/j.intimp.2023.109820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
Osteoporosis is a systemic and endocrine bone disorder distinguished by declined bone mineral density, compromised bone strength, and destruction of trabecular structure. The abnormally excessive osteoclastogenesis and bone erosion play imperative roles in the progression of osteoporosis. However, treatment of osteoporosis is far from satisfactory due to poor adherence to existing medications and adverse reactions, there is an urgent to develop novel therapies for osteoporosis. Probucol, a synthetic compound with two characteristic phenolic rings, owns anti-inflammatory and antioxidant properties. Accumulating evidence have indicated that intracellular reactive oxygen species (ROS) is closely related to osteoclastogenesis. Hence, we investigated the potential effects of probucol on osteoclastogenesis in vivo and in vitro. In this study, TRAP staining and bone slice resorption assay showed that probucol suppressed RANKL-induced osteoclast formation and function. The mRNA and protein levels of osteoclastogenesis marker genes were reduced by probucol in a concentration-dependent manner. Besides, probucol suppressed osteoclast differentiation by inhibiting ROS production, MAPKs and NF-κB signaling pathways, while Nrf2 silencing reversed the inhibitory effect of probucol on osteoclast formation and function. Consistent with the above findings, in vivo experiments demonstrated that probucol visibly alleviated bone loss caused by estrogen deficiency. In brief, these results showed the potential of anti-oxidant compound probucol in the treatment of osteoporosis, highlighting Nrf2 as a promising target in osteoclast-related disease.
Collapse
|
43
|
Maciel GBM, Maciel RM, Danesi CC. Bone cells and their role in physiological remodeling. Mol Biol Rep 2023; 50:2857-2863. [PMID: 36609750 DOI: 10.1007/s11033-022-08190-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This work compiles the characteristics of bone cells involved in the physiological bone remodeling. METHODS A narrative review of the literature was performed. RESULTS Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors. CONCLUSIONS Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.
Collapse
Affiliation(s)
- Gabriel Bassan Marinho Maciel
- Postgraduate Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil. .,Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, 97015-900, RS, Brazil.
| | | | | |
Collapse
|
44
|
Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, Shao Z, Xiao G. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B 2023; 13:998-1013. [PMID: 36970189 PMCID: PMC10031257 DOI: 10.1016/j.apsb.2022.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
45
|
Fernández Vallone V, Borzone FR, Martinez LM, Giorello MB, Choi H, Dimase F, Feldman L, Bordenave RH, Chudzinski-Tavassi AM, Batagelj E, Chasseing NA. Spontaneous Osteoclastogenesis, a risk factor for bone metastasis in advanced luminal A-type breast cancer patients. Front Oncol 2023; 13:1073793. [PMID: 36890825 PMCID: PMC9986318 DOI: 10.3389/fonc.2023.1073793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Osteolytic bone metastasis in advanced breast cancer stages are a major complication for patient´s quality life and a sign of low survival prognosis. Permissive microenvironments which allow cancer cell secondary homing and later proliferation are fundamental for metastatic processes. The causes and mechanisms behind bone metastasis in breast cancer patients are still an unsolved puzzle. Therefore, in this work we contribute to describe bone marrow pre-metastatic niche in advanced breast cancer patients. Results We show an increase in osteoclasts precursors with a concomitant imbalance towards spontaneous osteoclastogenesis which can be evidenced at bone marrow and peripheral levels. Pro-osteoclastogenic factors RANKL and CCL-2 may contribute to bone resorption signature observed in bone marrow. Meanwhile, expression levels of specific microRNAs in primary breast tumors may already indicate a pro-osteoclastogenic scenario prior to bone metastasis. Discussion The discovery of prognostic biomarkers and novel therapeutic targets linked to bone metastasis initiation and development are a promising perspective for preventive treatments and metastasis management in advanced breast cancer patients.
Collapse
Affiliation(s)
- Valeria Fernández Vallone
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Pluripotent Stem Cells and Organoids, Berlin, Germany
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hosoon Choi
- Research Service, Central Texas Veterans Health Care System, Temple, Texas, TX, United States
| | - Federico Dimase
- Servicio de Hematología, Hospital Militar Central, Buenos Aires, Argentina
| | - Leonardo Feldman
- Facultad de Ciencias de la Salud, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPB), Tandil, Buenos Aires, Argentina
| | | | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Development and Innovation/Center of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Emilio Batagelj
- Servicio de Oncología, Hospital Militar Central, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
46
|
Xue JY, Ikegawa S, Guo L. SLC4A2, another gene involved in acid-base balancing machinery of osteoclasts, causes osteopetrosis. Bone 2023; 167:116603. [PMID: 36343920 DOI: 10.1016/j.bone.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
SLC4A2 belongs to the Na+-independent solute carrier family 4 (SLC4) of anion exchangers, which regulate electroneutral exchange of Cl- for HCO3- and mediate intra- and extra-cellular pH, chloride concentration and cell volume. Slc4a2 also participates in gastric acid secretion, spermatogenesis and osteoclastogenesis. During osteoclast differentiation, Slc4a2 is exclusively expressed at the contra-lacunar membrane and is up-regulated with osteoclast maturation. Bi-allelic Slc4a2 loss-of-function mutations have been known to cause osteopetrosis in mice and cattle, but not in human. Recently, we have identified bi-allelic pathogenic variants in SLC4A2 in a patient affected by osteopetrosis with severe renal insufficiency, suggesting SLC4A2 deficiency causes a new type of autosomal recessive osteopetrosis (osteopetrosis, Ikegawa type). In this article, we review the advances in exploring the multiple functions of SLC4A2 with emphasis on its roles in osteoclast. Our review would contribute to understanding of the phenotypic spectrum and the pathomechanism of SLC4A2-associated osteopetrosis.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Long Guo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
47
|
Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B, Du M. STAT3/Mitophagy Axis Coordinates Macrophage NLRP3 Inflammasome Activation and Inflammatory Bone Loss. J Bone Miner Res 2023; 38:335-353. [PMID: 36502520 DOI: 10.1002/jbmr.4756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a cytokine-responsive transcription factor, is known to play a role in immunity and bone remodeling. However, whether and how STAT3 impacts macrophage NLR family pyrin domain containing 3 (NLRP3) inflammasome activation associated with inflammatory bone loss remains unknown. Here, STAT3 signaling is hyperactivated in macrophages in the context of both non-sterile and sterile inflammatory osteolysis, and this was highly correlated with the cleaved interleukin-1β (IL-1β) expression pattern. Strikingly, pharmacological inhibition of STAT3 markedly blocks macrophage NLRP3 inflammasome activation in vitro, thereby relieving inflammatory macrophage-amplified osteoclast formation and bone-resorptive activity. Mechanistically, STAT3 inhibition in macrophages triggers PTEN-induced kinase 1 (PINK1)-dependent mitophagy that eliminates dysfunctional mitochondria, reverses mitochondrial membrane potential collapse, and inhibits mitochondrial reactive oxygen species release, thus inactivating the NLRP3 inflammasome. In vivo, STAT3 inhibition effectively protects mice from both infection-induced periapical lesions and aseptic titanium particle-mediated calvarial bone erosion with potent induction of PINK1 and downregulation of inflammasome activation, macrophage infiltration, and osteoclast formation. This study reveals the regulatory role of the STAT3/mitophagy axis at the osteo-immune interface and highlights a potential therapeutic intervention to prevent inflammatory bone loss. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Wang X, Shao L, Richardson KK, Ling W, Warren A, Krager K, Aykin-Burns N, Hromas R, Zhou D, Almeida M, Kim HN. Hematopoietic cytoplasmic adaptor protein Hem1 promotes osteoclast fusion and bone resorption in mice. J Biol Chem 2023; 299:102841. [PMID: 36574841 PMCID: PMC9867982 DOI: 10.1016/j.jbc.2022.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Hem1 (hematopoietic protein 1), a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins, is essential for lymphopoiesis and innate immunity as well as for the transition of hematopoiesis from the fetal liver to the bone marrow. However, the role of Hem1 in bone cell differentiation and bone remodeling is unknown. Here, we show that deletion of Hem1 resulted in a markedly increase in bone mass because of defective bone resorption in mice of both sexes. Hem1-deficient osteoclast progenitors were able to differentiate into osteoclasts, but the osteoclasts exhibited impaired osteoclast fusion and decreased bone-resorption activity, potentially because of decreased mitogen-activated protein kinase and tyrosine kinase c-Abl activity. Transplantation of bone marrow hematopoietic stem and progenitor cells from wildtype into Hem1 knockout mice increased bone resorption and normalized bone mass. These findings indicate that Hem1 plays a pivotal role in the maintenance of normal bone mass.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lijian Shao
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wen Ling
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aaron Warren
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert Hromas
- Department of Medicine, The Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Maria Almeida
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Ha-Neui Kim
- Division of Endocrinology, Department of Internal Medicine, Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
49
|
Eugen G, Claus M, Anna-Maria S, Niklas D, Philipp S, Andrea E, Andrea ML, Elke V. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioact Mater 2023; 19:376-391. [PMID: 35574054 PMCID: PMC9062425 DOI: 10.1016/j.bioactmat.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative bone implants promote new bone formation and ideally degrade simultaneously to osteogenesis. Although clinically established calcium phosphate bone grafts provide excellent osseointegration and osteoconductive efficacy, they are limited in terms of bioresorption. Magnesium phosphate (MP) based ceramics are a promising alternative, because they are biocompatible, mechanically extremely stable, and degrade much faster than calcium phosphates under physiological conditions. Bioresorption of an implant material can include both chemical dissolution as well as cellular resorption. We investigated the bioresorption of 3D powder printed struvite and newberyite based MP ceramics in vitro by a direct human osteoclast culture approach. The osteoclast response and cellular resorption was evaluated by means of fluorescence and TRAP staining, determination of osteoclast activities (CA II and TRAP), SEM imaging as well as by quantification of the ion release during cell culture. Furthermore, the bioactivity of the materials was investigated via SBF immersion, whereas hydroxyapatite precipitates were analyzed by SEM and EDX measurements. This bioactive coating was resorbed by osteoclasts. In contrast, only chemical dissolution contributed to bioresorption of MP, while no cellular resorption of the materials was observed. Based on our results, we expect an increased bone regeneration effect of MP compared to calcium phosphate based bone grafts and complete chemical degradation within a maximum of 1.5-3.1 years.
Collapse
Affiliation(s)
- Gefel Eugen
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Moseke Claus
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Wiesenstraße 14, Gießen, Germany
| | - Schmitt Anna-Maria
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Dümmler Niklas
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Stahlhut Philipp
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Ewald Andrea
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| | - Meyer-Lindenberg Andrea
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Vorndran Elke
- Institute and Department for Functional Materials in Medicine and Dentistry, University Clinic Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
50
|
Imangali N, Sokolova V, Kostka K, Epple M, Winkler C. Functionalized calcium phosphate nanoparticles to direct osteoprotegerin to bone lesion sites in a medaka ( Oryzias latipes) osteoporosis model. Front Endocrinol (Lausanne) 2023; 14:1101758. [PMID: 36909307 PMCID: PMC9992893 DOI: 10.3389/fendo.2023.1101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Calcium phosphate (CaP) is the inorganic part of hard tissues, such as bone, teeth and tendons, and has a high biocompatibility and good biodegradability. Therefore, CaP nanoparticles functionalized with DNA encoding bone anabolic factors are promising carrier-systems for future therapeutic development. Here, we analysed CaP nanoparticles in a genetically modified medaka fish model, where osteoporosis-like lesions can be induced by transgenic expression of receptor activator of nuclear factor kappa-B ligand (Rankl). Rankl-transgenic medaka were used to visualize and understand effects of microinjected functionalized CaP nanoparticles during modulation of osteoclast activity in vivo. For this, we synthetized multi-shell CaP nanoparticles by rapid precipitation of calcium lactate and ammonium hydrogen phosphate followed by the addition of plasmid DNA encoding the osteoclastogenesis inhibitory factor osteoprotegerin-b (Opgb). An additional layer of poly(ethyleneimine) was added to enhance cellular uptake. Integrity of the synthesized nanoparticles was confirmed by dynamic light scattering, scanning electron microscopy and energy dispersive X-ray spectroscopy. Fluorescently labelled CaP nanoparticles were microinjected into the heart, trunk muscle or caudal fins of Rankl-transgenic medaka embryos that expressed fluorescent reporters in various bone cell types. Confocal time-lapse imaging revealed a uniform distribution of CaP nanoparticles in injected tissues and showed that nanoparticles were efficiently taken up by macrophages that subsequently differentiated into bone-resorbing osteoclasts. After Rankl induction, fish injected with Opg-functionalized nanoparticles showed delayed or absent degradation of mineralized matrix, i.e. a lower incidence of osteoporosis-like phenotypes. This is proof of principle that CaP nanoparticles can be used as carriers to efficiently deliver modulatory compounds to osteoclasts and block their activity.
Collapse
Affiliation(s)
- Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- *Correspondence: Christoph Winkler,
| |
Collapse
|