1
|
Ren J, Wang Y, Zhang Y, Jin H, Cheng J, Tao F, Zhu Y. Placental Transcriptomic Signatures of Prenatal Phthalate Exposure and Identification of Placenta-Brain Genes Associated with the Effects of Phthalate Exposure on Neurodevelopment in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19141-19151. [PMID: 39392919 DOI: 10.1021/acs.est.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Prenatal exposure to phthalates may affect placental function and fetal development, but the underlying mechanisms are unclear. The aim of our study was to explore the alterations in the placental transcriptome associated with prenatal phthalate exposure and to further analyze whether the placental-brain axis (PBA) genes play a mediating role in the association between prenatal phthalate exposure and children's neurodevelopment. We included 172 participants from the Ma'anshan Birth Cohort and collected data on seven phthalate metabolites in urine during pregnancy, placental tissue RNA-seq, and neurodevelopment of offspring. Bioinformatics analysis revealed that aberrant regulation of the placental transcriptome was associated with prenatal phthalate exposure. Exposure to phthalates during pregnancy was found to be associated with neurodevelopmental delay in children aged 6, 18, and 48 months using the multiple linear regression model. Meanwhile, employing mediation analysis, nine PBA genes were identified that mediate the association between exposure to phthalates during pregnancy and the neurodevelopment of children. Our study will provide a basis for potential mechanisms by which prenatal exposure to phthalates affects placental function and children's neurodevelopment.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jingjing Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
2
|
Lu K, Chiu KY, Chen IC, Lin GC. Identification of GTF2I Polymorphisms as Potential Biomarkers for CKD in the Han Chinese Population : Multicentric Collaborative Cross-Sectional Cohort Study. KIDNEY360 2024; 5:1466-1476. [PMID: 39024039 PMCID: PMC11556913 DOI: 10.34067/kid.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Key Points Genetic factors are key players in CKD, with two linked single-nucleotide polymorphisms in the GTF2I gene, associated with CKD susceptibility in the Taiwanese population. Individuals with specific GTF2I genotypes (CT/TT for rs117026326 and CT/CC for rs73366469) show higher CKD prevalence and earlier onset. Men with the specific genotypes of rs117026326 and rs73366469 face a heightened CKD risk compared with women, particularly at lower eGFR. Background CKD poses a global health challenge, but its molecular mechanisms are poorly understood. Genetic factors play a critical role, and phenome-wide association studies and genome-wide association studies shed light on CKD's genetic architecture, shared variants, and biological pathways. Methods Using data from the multicenter collaborative precision medicine cohort, we conducted a retrospective prospectively maintained cross-sectional study. Participants with comprehensive information and genotyping data were selected, and genome-wide association study and phenome-wide association study analyses were performed using the curated Taiwan Biobank version 2 array to identify CKD-associated genetic variants and explore their phenotypic associations. Results Among 58,091 volunteers, 8420 participants were enrolled. Individuals with CKD exhibited higher prevalence of metabolic, cardiovascular, autoimmune, and nephritic disorders. Genetic analysis unveiled two closely linked single-nucleotide polymorphisms, rs117026326 and rs73366469, both associated with GTF2I and CKD (r 2 = 0.64). Further examination revealed significant associations between these single-nucleotide polymorphisms and various kidney-related diseases. The CKD group showed a higher proportion of individuals with specific genotypes (CT/TT for rs117026326 and CT/CC for rs73366469), suggesting potential associations with CKD susceptibility (P < 0.001). Furthermore, individuals with these genotypes developed CKD at an earlier age. Multiple logistic regression confirmed the independent association of these genetic variants with CKD. Subgroup analysis based on eGFR demonstrated an increased risk of CKD among carriers of the rs117026326 CT/TT genotypes (odds ratio [OR], 1.15; 95% confidence interval [CI], 1.07 to 1.24; P < 0.001; OR, 1.32, 95% CI, 1.04 to 1.66; P = 0.02, respectively) and carriers of the rs73366469 CT/CC genotypes (OR, 1.13; 95% CI, 1.05 to 1.21; P < 0.001; OR, 1.31; 95% CI, 1.08 to 1.58; P = 0.0049, respectively). In addition, men had a higher CKD risk than women at lower eGFR levels (OR, 1.35; 95% CI, 1.13 to 1.61; P < 0.001). Conclusions Our study reveals important links between genetic variants GTF2I and susceptibility to CKD, advancing our understanding of CKD development in the Taiwanese population and suggesting potential for personalized prevention and management strategies. More research is needed to validate and explore these variants in diverse populations.
Collapse
Affiliation(s)
- Kevin Lu
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Kun-Yuan Chiu
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Tandon D, Kubinyi E, Sándor S, Faughnan H, Miklósi Á, vonHoldt BM. Canine hyper-sociability structural variants associated with altered three-dimensional chromatin state. BMC Genomics 2024; 25:767. [PMID: 39112925 PMCID: PMC11305043 DOI: 10.1186/s12864-024-10614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Strong selection on complex traits can lead to skewed trait means and reduced trait variability in populations. An example of this phenomenon can be evidenced in allele frequency changes and skewed trait distributions driven by persistent human-directed selective pressures in domesticated species. Dog domestication is linked to several genomic variants; however, the functional impacts of these variants may not always be straightforward when found in non-coding regions of the genome. Four polymorphic transposable elements (TE) found within non-coding sites along a 5 Mb region on canine CFA6 have evolved due to directional selection associated with heightened human-directed hyper-sociability in domesticated dogs. We found that the polymorphic TE in intron 17 of the canine GTF2I gene, which was previously reported to be negatively correlated with canid human-directed hyper-sociability, is associated with altered chromatin looping and hence distinct cis-regulatory landscapes. We reported supporting evidence of an E2F1-DNA binding peak concordant with the altered loop and higher expression of GTF2I exon 18, indicative of alternative splicing. Globally, we discovered differences in pathways regulating the extra-cellular matrix with respect to TE copy number. Overall, we reported evidence suggesting an intriguing molecular convergence between the emergence of hypersocial behaviors in dogs and the same genes that, when hemizygous, produce human Williams Beuren Syndrome characterized by cranio-facial defects and heightened social behaviors. Our results additionally emphasize the often-overlooked potential role of chromatin architecture in social evolution.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| | - Sára Sándor
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Hannah Faughnan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Adams JW, Vinokur A, de Souza JS, Austria C, Guerra BS, Herai RH, Wahlin KJ, Muotri AR. Loss of GTF2I promotes neuronal apoptosis and synaptic reduction in human cellular models of neurodevelopment. Cell Rep 2024; 43:113867. [PMID: 38416640 PMCID: PMC11002531 DOI: 10.1016/j.celrep.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA
| | - Annabelle Vinokur
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Janaína S de Souza
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Charles Austria
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Karl J Wahlin
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Gnanadesikan GE, Tandon D, Bray EE, Kennedy BS, Tennenbaum SR, MacLean EL, vonHoldt BM. Transposons in the Williams-Beuren Syndrome Critical Region are Associated with Social Behavior in Assistance Dogs. Behav Genet 2024; 54:196-211. [PMID: 38091228 DOI: 10.1007/s10519-023-10166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 02/13/2024]
Abstract
A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (β = 0.23, CI95% = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA.
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Anthropology, Emory University, Atlanta, GA, 30332, USA.
| | - Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brenda S Kennedy
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
| | - Stavi R Tennenbaum
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
7
|
Xie Y, Peng X, Li P. MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy. BMC Bioinformatics 2024; 25:44. [PMID: 38280998 PMCID: PMC10822190 DOI: 10.1186/s12859-024-05667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Complex biological systems often undergo sudden qualitative changes during their dynamic evolution. These critical transitions are typically characterized by a catastrophic progression of the system. Identifying the critical point is critical to uncovering the underlying mechanisms of complex biological systems. However, the system may exhibit minimal changes in its state until the critical point is reached, and in the face of high throughput and strong noise data, traditional biomarkers may not be effective in distinguishing the critical state. In this study, we propose a novel approach, mutual information weighted entropy (MIWE), which uses mutual information between genes to build networks and identifies critical states by quantifying molecular dynamic differences at each stage through weighted differential entropy. The method is applied to one numerical simulation dataset and four real datasets, including bulk and single-cell expression datasets. The critical states of the system can be recognized and the robustness of MIWE method is verified by numerical simulation under the influence of different noises. Moreover, we identify two key transcription factors (TFs), CREB1 and CREB3, that regulate downstream signaling genes to coordinate cell fate commitment. The dark genes in the single-cell expression datasets are mined to reveal the potential pathway regulation mechanism.
Collapse
Affiliation(s)
- Yuke Xie
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xueqing Peng
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
8
|
López-Tobón A, Shyti R, Villa CE, Cheroni C, Fuentes-Bravo P, Trattaro S, Caporale N, Troglio F, Tenderini E, Mihailovich M, Skaros A, Gibson WT, Cuomo A, Bonaldi T, Mercurio C, Varasi M, Osborne L, Testa G. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. SCIENCE ADVANCES 2023; 9:eadh2726. [PMID: 38019906 PMCID: PMC10686562 DOI: 10.1126/sciadv.adh2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Patricio Fuentes-Bravo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Flavia Troglio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Adrianos Skaros
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Lucy Osborne
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Campolungo D, Salomé M, Biferali B, Tascini AS, Gabellini D. DUX4-r exerts a neomorphic activity that depends on GTF2I in acute lymphoblastic leukemia. SCIENCE ADVANCES 2023; 9:eadi3771. [PMID: 37713484 PMCID: PMC10881058 DOI: 10.1126/sciadv.adi3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Translocations producing rearranged versions of the transcription factor double homeobox 4 (DUX4-r) are one of the most frequent causes of B cell acute lymphoblastic leukemia (B-ALL). DUX4-r retains the DNA binding domain of wild-type DUX4 but is truncated on the C-terminal transcription activation domain. The precise mechanism through which DUX4-r causes leukemia is unknown, and no targeted therapy is currently available. We found that the rearrangement leads to both a loss and a gain of function in DUX4-r. Loss of CBP/EP300 transcriptional coactivator interaction leads to an inability to bind and activate repressed chromatin. Concurrently, a gain of interaction with the general transcription factor 2 I (GTF2I) redirects DUX4-r toward leukemogenic targets. This neomorphic activity exposes an Achilles' heel whereby DUX4-r-positive leukemia cells are exquisitely sensitive to GTF2I targeting, which inhibits DUX4-r leukemogenic activity. Our work elucidates the molecular mechanism through which DUX4-r causes leukemia and suggests a possible therapeutic avenue tailored to this B-ALL subtype.
Collapse
Affiliation(s)
- Daniele Campolungo
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Mara Salomé
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Beatrice Biferali
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Anna Sofia Tascini
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
10
|
Song S, Feng L, Xi K, Sun Z, Kong D, Luo Z, Pei W, Zhang H. Single-cell profiling of the copy-number heterogeneity in colorectal cancer. Chin Med J (Engl) 2023; 136:707-718. [PMID: 36914941 PMCID: PMC10129169 DOI: 10.1097/cm9.0000000000002469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND With functionally heterogeneous cells, tumors comprise a complex ecosystem to promote tumor adaptability and evolution under strong selective pressure from the given microenvironment. Diversifying tumor cells or intra-tumor heterogeneity is essential for tumor growth, invasion, and immune evasion. However, no reliable method to classify tumor cell subtypes is yet available. In this study, we introduced the single-cell sequencing combined with copy number characteristics to identify the types of tumor cells in microsatellite stable (MSS) colorectal cancer (CRC). METHODS To characterize the somatic copy number alteration (SCNA) of MSS CRC in a single cell profile, we analyzed 26 tissue samples from 19 Korean patients (GSE132465, the Samsung Medical Center [SMC] dataset) and then verified our findings with 15 tissue samples from five Belgian patients (GSE144735, the Katholieke Universiteit Leuven 3 [KUL3] dataset). The Cancer Genome Atlas (TCGA) cohort, GSE39582 cohort, and National Cancer Center (NCC) cohort (24 MSS CRC patients were enrolled in this study between March 2017 and October 2017) were used to validate the clinical features of prognostic signatures. RESULTS We employed single cell RNA-sequencing data to identify three types of tumor cells in MSS CRC by their SCNA characteristics. Among these three types of tumor cells, C1 and C3 had a higher SCNA burden; C1 had significant chromosome 13 and 20 amplification, whereas C3 was the polar opposite of C1, which exhibited deletion in chromosome 13 and 20. The three types of tumor cells exhibited various functions in the tumor microenvironment and harbored different mutations. C1 and C2 were linked to the immune response and hypoxia, respectively, while C3 was critical for cell adhesion activity and tumor angiogenesis. Additionally, one gene ( OLFM4 ) was identified as epithelium-specific biomarker of better prognosis of CRC (TCGA cohort: P = 0.0110; GSE39582 cohort: P = 0.0098; NCC cohort: P = 0.0360). CONCLUSIONS On the basis of copy number characteristics, we illustrated tumor heterogeneity in MSS CRC and identified three types of tumor cells with distinct roles in tumor microenvironment. By understanding heterogeneity in the intricate tumor microenvironment, we gained an insight into the mechanisms of tumor evolution, which may support the development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiyu Song
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kexing Xi
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhigang Sun
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Deyang Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenkai Luo
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Pei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haizeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
11
|
Voulgaridou GP, Theologidis V, Xanthis V, Papagiannaki E, Tsochantaridis I, Fadouloglou VE, Pappa A. Identification of a peptide ligand for human ALDH3A1 through peptide phage display: Prediction and characterization of protein interaction sites and inhibition of ALDH3A1 enzymatic activity. Front Mol Biosci 2023; 10:1161111. [PMID: 37021113 PMCID: PMC10067601 DOI: 10.3389/fmolb.2023.1161111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) by oxidizing medium chain aldehydes to their corresponding carboxylic acids, is involved in the detoxification of toxic byproducts and is considered to play an important role in antioxidant cellular defense. ALDH3A1 has been implicated in various other functions such as cell proliferation, cell cycle regulation, and DNA damage response. Recently, it has been identified as a putative biomarker of prostate, gastric, and lung cancer stem cell phenotype. Although ALDH3A1 has multifaceted functions in both normal and cancer homeostasis, its modes of action are currently unknown. To this end, we utilized a random 12-mer peptide phage display library to identify efficiently human ALDH3A1-interacting peptides. One prevailing peptide (P1) was systematically demonstrated to interact with the protein of interest, which was further validated in vitro by peptide ELISA. Bioinformatic analysis indicated two putative P1 binding sites on the protein surface implying biomedical potential and potent inhibitory activity of the P1 peptide on hALDH3A1 activity was demonstrated by enzymatic studies. Furthermore, in search of potential hALDH3A1 interacting players, a BLASTp search demonstrated that no protein in the database includes the full-length amino acid sequence of P1, but identified a list of proteins containing parts of the P1 sequence, which may prove potential hALDH3A1 interacting partners. Among them, Protein Kinase C Binding Protein 1 and General Transcription Factor II-I are candidates of high interest due to their cellular localization and function. To conclude, this study identifies a novel peptide with potential biomedical applications and further suggests a list of protein candidates be explored as possible hALDH3A1-interacting partners in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aglaia Pappa
- *Correspondence: Vasiliki E. Fadouloglou, ; Aglaia Pappa,
| |
Collapse
|
12
|
Singh A, Kaileh M, De S, Mazan-Mamczarz K, Bayarsaihan D, Sen R, Roy AL. Transcription factor TFII-I fine tunes innate properties of B lymphocytes. Front Immunol 2023; 14:1067459. [PMID: 36756127 PMCID: PMC9900109 DOI: 10.3389/fimmu.2023.1067459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The ubiquitously expressed transcription factor TFII-I is a multifunctional protein with pleiotropic roles in gene regulation. TFII-I associated polymorphisms are implicated in Sjögren's syndrome and Lupus in humans and, germline deletion of the Gtf2i gene in mice leads to embryonic lethality. Here we report a unique role for TFII-I in homeostasis of innate properties of B lymphocytes. Loss of Gtf2i in murine B lineage cells leads to an alteration in transcriptome, chromatin landscape and associated transcription factor binding sites, which exhibits myeloid-like features and coincides with enhanced sensitivity to LPS induced gene expression. TFII-I deficient B cells also show increased switching to IgG3, a phenotype associated with inflammation. These results demonstrate a role for TFII-I in maintaining immune homeostasis and provide clues for GTF2I polymorphisms associated with B cell dominated autoimmune diseases in humans.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics & Genomics, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics & Genomics, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, United States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Ananda L Roy
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
13
|
Liang S, Zhou Z, Yu C, Zhou Z, Liu J, Huang W, Dong H, Zou F, Zhao H, Cai S. CBX4 Regulates Long-Form Thymic Stromal Lymphopoietin-Mediated Airway Inflammation Through SUMOylation in HDM-Induced Asthma. Am J Respir Cell Mol Biol 2022; 66:648-660. [PMID: 35358396 DOI: 10.1165/rcmb.2021-0301oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) presents in two distinct isoforms: short-form (sfTSLP) and long-form (lfTSLP). lfTSLP promotes inflammation while sfTSLP inhibits inflammation in allergic asthma. However, little is known about the regulation of lfTSLP and sfTSLP during allergic attack in asthma airway epithelium. Here, we report that SUMOylation was enhanced in HDM-induced allergic asthma airway epithelium. Inhibition of SUMOylation significantly alleviated airway Th2 inflammation and lfTSLP expression. Mechanistically, CBX4, a SUMOylation E3 ligase, enhanced lfTSLP mRNA translation, but not sfTSLP, through the RNA binding protein, MEX-3B. MEX-3B promoted lfTSLP translation by binding the lfTSLP mRNA through its KH domains. Furthermore, CBX4 regulated MEX-3B transcription in human bronchial epithelial cell (HBE) through enhancing SUMOylation levels of the transcription factor, TFII-I. In conclusion, we demonstrate an important mechanism whereby CBX4 promotes MEX-3B transcription through enhancing TFII-I SUMOylation, and MEX-3B enhances the expression of lfTSLP through binding to the lfTSLP mRNA and promoting its translation. Our findings uncover a novel target of CBX4 for therapeutic agents to lfTSLP-mediated asthma.
Collapse
Affiliation(s)
- Shixiu Liang
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Guangzhou, China
| | - Zicong Zhou
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Guangzhou, China
| | | | - Zili Zhou
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Guangzhou, China
| | - Jieyi Liu
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Guangzhou, China
| | - Wufeng Huang
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Guangzhou, China
| | - Hangming Dong
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Department of Occupational Health and Occupational Medicine, Guangzhou, China
| | - Haijin Zhao
- Southern Medical University, Respiration, Guangzhou, China
| | - Shaoxi Cai
- Southern Medical University Nanfang Hospital, 198153, Department of Respiratory and Critical Care Medicine, Guangzhou, China;
| |
Collapse
|
14
|
Manti PG, Trattaro S, Castaldi D, Pezzali M, Spaggiari L, Testa G. Thymic stroma and TFII-I: towards new targeted therapies. Trends Mol Med 2021; 28:67-78. [PMID: 34865984 DOI: 10.1016/j.molmed.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Thymic epithelial tumors (TETs) have been characterized at the molecular level through bioptic sections and cell lines. Despite these advances, there is a need for a more thorough characterization of the thymic stroma in thymoma, particularly because of the diversity of cell types that populate the tumor and the absence of a healthy thymic counterpart. Recent work on healthy pediatric thymi - both in vitro and at the single-cell level - now sets the stage for new studies on their neoplastic counterparts. Furthermore, general transcription factor IIi (GTF2I), a thymoma-specific oncogene, as well as some of its SNPs, are increasingly associated with autoimmune disease, a significant feature of thymomas. We summarize recent discoveries in the field and discuss the development of new targeted therapies.
Collapse
Affiliation(s)
- Pierluigi Giuseppe Manti
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Davide Castaldi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Martina Pezzali
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Division of Thoracic Surgery, European Institute of Oncology-IRCSS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Adamello 16, 20139, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy.
| |
Collapse
|
15
|
Poli E, Cattelan M, Zanetti I, Scagnellato A, Giordano G, Zin A, Bisogno G, Bonvini P. Autoantibody profiling of alveolar rhabdomyosarcoma patients unveils tumor-associated antigens with diagnostic and prognostic significance. Oncoimmunology 2021; 10:1954765. [PMID: 34367733 PMCID: PMC8312597 DOI: 10.1080/2162402x.2021.1954765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is a highly aggressive subtype of childhood cancer for which efficacious treatments are needed. Immunotherapy represents a new therapeutic opportunity to pursue, but it requires the identification of worthwhile tumor antigens. Herein, we exploited the capacity of ARMS autoantibodies to recognize tumor self-antigens, probing human protein microarrays with plasma from ARMS patients and healthy subjects. We assessed the autoantibody response in ARMS, validated data with independent techniques, and estimated autoantibodies diagnostic and prognostic significance by receiver-operator characteristic curves (ROC), uni- and multivariate analysis. Of the 48 tumor antigens identified, General Transcription Factor II-I (GTF2i) and Protocadherin Gamma Subfamily C5 (PCDHGC5) were selected as candidate targets to validate tumor-restricted antigen expression and autoantibody reactivity through an independent technique and wider cohort of cases. GTF2i and PCDHGC5 overexpression was observed in tumor tissues compared to normal counterparts, and anti-GTF2i and -PCDHGC5 autoantibodies were found able to distinguish ARMS patients from healthy subjects as well as cases with different histology. Moreover, low levels of PCDHGC5 autoantibodies characterized patients with worse event-free survival and proved to be an independent negative prognostic factor. This approach provided the first comprehensive autoantibody profile of ARMS, gave novel insights into the immune response of this malignancy and paved the way toward novel potential antibody-based therapeutic applications suitable to improve the survival of ARMS patients.
Collapse
Affiliation(s)
- Elena Poli
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Ilaria Zanetti
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Angela Scagnellato
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Giuseppe Giordano
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy.,Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| | - Angelica Zin
- Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| | - Gianni Bisogno
- Department of Woman's and Children's Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Paolo Bonvini
- Institute of Pediatric Research (IRP), Fondazione Città Della Speranza, Padua, Italy
| |
Collapse
|
16
|
Roy AL. Role of the multifunctional transcription factor TFII-I in DNA damage repair. DNA Repair (Amst) 2021; 106:103175. [PMID: 34280590 DOI: 10.1016/j.dnarep.2021.103175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
The multifunctional transcription factor TFII-I, encoded by the GTF2I gene, is implicated in various biological pathways, and associated with multiple human disorders. Evidence is also mounting to suggest that TFII-I is involved in DNA damage repair pathways. Here I bring together these recent observations and suggest a connection between transcriptional and DNA repair functions of TFII-I.
Collapse
Affiliation(s)
- Ananda L Roy
- National Institutes of Health, Laboratory of Molecular Biology and Immunology, Biomedical Research Center, National Institute on Aging, Baltimore, MD, United States.
| |
Collapse
|
17
|
Prays J, Ortiz-Villalón C. Molecular landscape of thymic epithelial tumors. Semin Diagn Pathol 2021; 39:131-136. [PMID: 34272124 DOI: 10.1053/j.semdp.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Thymic epithelial tumors (TETs) are extremely rare and represent the most frequent tumors of the anterior mediastinum originating from epithelial cells in the thymus. Thymic epithelial tumors include thymomas (TM), thymic carcinomas (TC) and thymic neuroendocrine neoplasms (TNEN). Thymomas are the most predominant and are associated with autoimmune diseases. The available data suggests that the different histological subtypes have specific molecular alterations. Thymic carcinoma shows recurrent gene mutations, but further investigations are needed to understand the role of those mutations in the pathogenetic of the TETs. Some of the new emerging identified molecular alterations have the potential to offer new targeted therapies opening new possibilities for the treatment of thymic epithelial tumors.
Collapse
Affiliation(s)
- Julia Prays
- Department of Pathology, Karolinska University Hospital, Sweden
| | - Cristian Ortiz-Villalón
- Department of Pathology, Karolinska University Hospital, Sweden; Department of Oncology and pathology (ONKPAT), Karolinska Institute, Sweden.
| |
Collapse
|
18
|
Liu C, Yan S, Chen H, Wu Z, Li L, Cheng L, Li H, Li Y. Association of GTF2I, NFKB1, and TYK2 Regional Polymorphisms With Systemic Sclerosis in a Chinese Han Population. Front Immunol 2021; 12:640083. [PMID: 34248934 PMCID: PMC8261294 DOI: 10.3389/fimmu.2021.640083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
Objectives Systemic sclerosis (SSc) is an uncommon autoimmune disease that varies with ethnicity. Single nucleotide polymorphisms (SNPs) in the GTFSI, NFKB1, and TYK2 genes have been reported to be associated with SSc in other populations and in individuals with various autoimmune diseases. This study aimed to investigate the association between these SNPs and susceptibility to SSc in a Chinese Han population. Method A case-control study was performed in 343 patients with SSc and 694 ethnically matched healthy controls. SNPs in GTF2I, NFKB1, and TYK2 were genotyped using a Sequenom MassArray iPLEX system. Association analyses were performed using PLINK v1.90 software. Result Our study demonstrated that the GTF2I rs117026326 T allele and the GTF2I rs73366469 C allele were strongly associated with patients with SSc (P = 6.97E-10 and P = 1.33E-08, respectively). Patients carrying the GTF2I rs117026326 TT genotype and the GTF2I rs73366469 CC genotype had a strongly increased risk of SSc (P = 6.25E-09 and P = 1.67E-08, respectively), and those carrying the NFKB1 rs1599961 AA genotype had a suggestively significantly increased risk of SSc (P = 0.014). Moreover, rs117026326 and rs73366469 were associated with SSc in different genetic models (additive model, dominant model, and recessive model) (P < 0.05) whereas rs1599961 was associated with SSc in the dominant genetic model but not in the addictive and recessive models (P = 0.0026). TYK2 rs2304256 was not significantly associated with SSc in this study. Conclusion GTF2I rs117026326 and rs73366469 SNPs were strongly associated with SSc in this Chinese Han population. NFKB1 rs1599961 showed a suggestive association with SSc, and no significant association was found between TYK2 rs2304256 and SSc in this Chinese Han population.
Collapse
Affiliation(s)
- Chenxi Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haizhen Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin, China
| | - Ziyan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liubing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Wang HL, Yeh TH, Huang YZ, Weng YH, Chen RS, Lu CS, Wei KC, Liu YC, Chen YL, Chen CL, Chen YJ, Lin YW, Hsu CC, Chiu CH, Chiu CC. Functional variant rs17525453 within RAB35 gene promoter is possibly associated with increased risk of Parkinson's disease in Taiwanese population. Neurobiol Aging 2021; 107:189-196. [PMID: 34275689 DOI: 10.1016/j.neurobiolaging.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Our previous study suggests that upregulated RAB35 is implicated in etiology of Parkinson's disease (PD). We hypothesized that upregulated RAB35 results from single nucleotide polymorphisms (SNPs) in RAB35 gene promoter. We identified SNPs within RAB35 gene promoter by analyzing DNA samples of discovery cohort and validation cohort. SNP rs17525453 within RAB35 gene promoter (T>C at position of -66) was significantly associated with idiopathic PD patients. Compared to normal controls, sporadic PD patients had higher C allele frequency. CC and CT genotype significantly increased risk of PD compared with TT genotype. SNP rs17525453 within RAB35 gene promoter leads to formation of transcription factor TFII-I binding site. Results of EMSA and supershift assay indicated that TFII-I binds to rs17525453 sequence of RAB35 gene promoter. Luciferase reporter assays showed that rs17525453 variant of RAB35 gene promoter possesses an augmented transcriptional activity. Our results suggest that functional variant rs17525453 within RAB35 gene promoter is likely to enhance transcriptional activity and upregulate RAB35 protein, which could lead to increased risk of PD in Taiwanese population.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taiwan
| | - Ying-Zu Huang
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Landseed Sports Medicine Center, Landseed International Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Han Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Clinical management of patients with thymic epithelial tumors: the recommendations endorsed by the Italian Association of Medical Oncology (AIOM). ESMO Open 2021; 6:100188. [PMID: 34116501 PMCID: PMC8193108 DOI: 10.1016/j.esmoop.2021.100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
The Italian Association of Medical Oncology recommendations on thymic epithelial tumors, which have been drawn up for the first time in 2020 through an evidence-based approach, report indications on all the main aspects of clinical management of this group of rare diseases, from diagnosis and staging, to new available systemic treatments, such as targeted therapies and immunotherapies. A summary of key recommendations is presented here and complete recommendations are reported as Supplementary Materials, available at https://doi.org/10.1016/j.esmoop.2021.100188. Thymic epithelial tumors (TETs). Multidisciplinary management of patients with TETs. Rare cancers. Updated recommendations.
Collapse
|
21
|
Lee J, Rho JH, Roehrl MH, Wang JY. Dermatan Sulfate Is a Potential Regulator of IgH via Interactions With Pre-BCR, GTF2I, and BiP ER Complex in Pre-B Lymphoblasts. Front Immunol 2021; 12:680212. [PMID: 34113352 PMCID: PMC8185350 DOI: 10.3389/fimmu.2021.680212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dermatan sulfate (DS) and autoantigen (autoAg) complexes are capable of stimulating autoreactive CD5+ B1 cells. We examined the activity of DS on CD5+ pre-B lymphoblast NFS-25 cells. CD19, CD5, CD72, PI3K, and Fas possess varying degrees of DS affinity. The three pre-BCR components, Ig heavy chain mu (IgH), VpreB, and lambda 5, display differential DS affinities, with IgH having the strongest affinity. DS attaches to NFS-25 cells, gradually accumulates in the ER, and eventually localizes to the nucleus. DS and IgH co-localize on the cell surface and in the ER. DS associates strongly with 17 ER proteins (e.g., BiP/Grp78, Grp94, Hsp90ab1, Ganab, Vcp, Canx, Kpnb1, Prkcsh, Pdia3), which points to an IgH-associated multiprotein complex in the ER. In addition, DS interacts with nuclear proteins (Ncl, Xrcc6, Prmt5, Eftud2, Supt16h) and Lck. We also discovered that DS binds GTF2I, a required gene transcription factor at the IgH locus. These findings support DS as a potential regulator of IgH in pre-B cells at protein and gene levels. We propose a (DS•autoAg)-autoBCR dual signal model in which an autoBCR is engaged by both autoAg and DS, and, once internalized, DS recruits a cascade of molecules that may help avert apoptosis and steer autoreactive B cell fate. Through its affinity with autoAgs and its control of IgH, DS emerges as a potential key player in the development of autoreactive B cells and autoimmunity.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, United States
| | - Jung-hyun Rho
- MP Biomedicals New Zealand Limited, Auckland, New Zealand
| | - Michael H. Roehrl
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | |
Collapse
|
22
|
Baijal K, Downey M. The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges. Bioessays 2021; 43:e2100058. [PMID: 33998006 DOI: 10.1002/bies.202100058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Polyphosphate (polyP) is a ubiquitous biomolecule thought to be present in all cells on Earth. PolyP is deceivingly simple, consisting of repeated units of inorganic phosphates polymerized in long energy-rich chains. PolyP is involved in diverse functions in mammalian systems-from cell signaling to blood clotting. One exciting avenue of research is a new nonenzymatic post-translational modification, termed lysine polyphosphorylation, wherein polyP chains are covalently attached to lysine residues of target proteins. While the modification was first characterized in budding yeast, recent work has now identified the first human targets. There is significant promise in this area of biomedical research, but a number of technical issues and knowledge gaps present challenges to rapid progress. In this review, the current state of the field is summarized and existing roadblocks related to the study of lysine polyphosphorylation in higher eukaryotes are introduced. It is discussed how limited methods to identify targets of polyphosphorylation are further impacted by low concentration, unknown regulatory enzymes, and sequestration of polyP into compartments in mammalian systems. Furthermore, suggestions on how these obstacles could be addressed or what their physiological relevance may be within mammalian cells are presented.
Collapse
Affiliation(s)
- Kanchi Baijal
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Linzer N, Trumbull A, Nar R, Gibbons MD, Yu DT, Strouboulis J, Bungert J. Regulation of RNA Polymerase II Transcription Initiation and Elongation by Transcription Factor TFII-I. Front Mol Biosci 2021; 8:681550. [PMID: 34055891 PMCID: PMC8155576 DOI: 10.3389/fmolb.2021.681550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription by RNA polymerase II (Pol II) is regulated by different processes, including alterations in chromatin structure, interactions between distal regulatory elements and promoters, formation of transcription domains enriched for Pol II and co-regulators, and mechanisms involved in the initiation, elongation, and termination steps of transcription. Transcription factor TFII-I, originally identified as an initiator (INR)-binding protein, contains multiple protein–protein interaction domains and plays diverse roles in the regulation of transcription. Genome-wide analysis revealed that TFII-I associates with expressed as well as repressed genes. Consistently, TFII-I interacts with co-regulators that either positively or negatively regulate the transcription. Furthermore, TFII-I has been shown to regulate transcription pausing by interacting with proteins that promote or inhibit the elongation step of transcription. Changes in TFII-I expression in humans are associated with neurological and immunological diseases as well as cancer. Furthermore, TFII-I is essential for the development of mice and represents a barrier for the induction of pluripotency. Here, we review the known functions of TFII-I related to the regulation of Pol II transcription at the stages of initiation and elongation.
Collapse
Affiliation(s)
- Niko Linzer
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Alexis Trumbull
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - David T Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Arasappan D, Eickhoff SB, Nemeroff CB, Hofmann HA, Jabbi M. Transcription Factor Motifs Associated with Anterior Insula Gene Expression Underlying Mood Disorder Phenotypes. Mol Neurobiol 2021; 58:1978-1989. [PMID: 33411239 DOI: 10.1007/s12035-020-02195-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
Mood disorders represent a major cause of morbidity and mortality worldwide but the brain-related molecular pathophysiology in mood disorders remains largely undefined. Because the anterior insula is reduced in volume in patients with mood disorders, RNA was extracted from the anterior insula postmortem anterior insula of mood disorder samples and compared with unaffected controls for RNA-sequencing identification of differentially expressed genes (DEGs) in (a) bipolar disorder (BD; n = 37) versus (vs.) controls (n = 33), and (b) major depressive disorder (MDD n = 30) vs. controls, and (c) low vs. high axis I comorbidity (a measure of cumulative psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database to identify TF-motifs. We found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low axis I comorbidity were associated with TF-motifs that are known to regulate expression of toll-like receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, cellular/organ, and brain development. Robust imaging-guided transcriptomics by using meta-analytic imaging results to guide independent postmortem dissection for RNA-sequencing was applied by targeting the gray matter volume reduction in the anterior insula in mood disorders, to guide independent postmortem identification of TF motifs regulating DEG. Our findings of TF-motifs that regulate the expression of immune, cellular homeostatic-control, and developmental genes provide novel information about the hierarchical relationship between gene regulatory networks, the TFs that control them, and proximate underlying neuroanatomical phenotypes in mood disorders.
Collapse
Affiliation(s)
- Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Charles B Nemeroff
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute of Early Life Adversity Research, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Mbemba Jabbi
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
25
|
Tateo V, Manuzzi L, Parisi C, De Giglio A, Campana D, Pantaleo MA, Lamberti G. An Overview on Molecular Characterization of Thymic Tumors: Old and New Targets for Clinical Advances. Pharmaceuticals (Basel) 2021; 14:316. [PMID: 33915954 PMCID: PMC8066729 DOI: 10.3390/ph14040316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Thymic tumors are a group of rare mediastinal malignancies that include three different histological subtypes with completely different clinical behavior: the thymic carcinomas, the thymomas, and the rarest thymic neuroendocrine tumors. Nowadays, few therapeutic options are available for relapsed and refractory thymic tumors after a first-line platinum-based chemotherapy. In the last years, the deepening of knowledge on thymus' biological characterization has opened possibilities for new treatment options. Several clinical trials have been conducted, the majority with disappointing results mainly due to inaccurate patient selection, but recently some encouraging results have been presented. In this review, we summarize the molecular alterations observed in thymic tumors, underlying the great biological differences among the different histology, and the promising targeted therapies for the future.
Collapse
Affiliation(s)
- Valentina Tateo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Claudia Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (C.P.); (D.C.); (M.A.P.); (G.L.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
26
|
Dai L, Weiss RB, Dunn DM, Ramirez A, Paul S, Korenberg JR. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Hum Mol Genet 2021; 30:411-429. [PMID: 33564861 DOI: 10.1093/hmg/ddab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.
Collapse
Affiliation(s)
- Li Dai
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Ramirez
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie R Korenberg
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.,Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Pan Y, Iejima D, Nakayama M, Suga A, Noda T, Kaur I, Das T, Chakrabarti S, Guymer RH, DeAngelis MM, Yamamoto M, Baird PN, Iwata T. Binding of Gtf2i-β/δ transcription factors to the ARMS2 gene leads to increased circulating HTRA1 in AMD patients and in vitro. J Biol Chem 2021; 296:100456. [PMID: 33636181 PMCID: PMC8039566 DOI: 10.1016/j.jbc.2021.100456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The disease-initiating molecular events for age-related macular degeneration (AMD), a multifactorial retinal disease affecting many millions of elderly individuals worldwide, are still unknown. Of the over 30 risk and protective loci so far associated with AMD through whole genome-wide association studies (GWAS), the Age-Related Maculopathy Susceptibility 2 (ARMS2) gene locus represents one of the most highly associated risk regions for AMD. A unique insertion/deletion (in/del) sequence located immediately upstream of the High Temperature Requirement A1 (HTRA1) gene in this region confers high risk for AMD. Using electrophoretic mobility shift assay (EMSA), we identified that two Gtf2i-β/δ transcription factor isoforms bind to the cis-element 5'- ATTAATAACC-3' contained in this in/del sequence. The binding of these transcription factors leads to enhanced upregulation of transcription of the secretory serine protease HTRA1 in transfected cells and AMD patient-derived induced pluripotent stem cells (iPSCs). Overexpression of Htra1 in mice using a CAG-promoter demonstrated increased blood concentration of Htra1 protein, caused upregulation of vascular endothelial growth factor (VEGF), and produced a choroidal neovascularization (CNV)-like phenotype. Finally, a comparison of 478 AMD patients to 481 healthy, age-matched controls from Japan, India, Australia, and the USA showed a statistically increased level of secreted HTRA1 blood concentration in AMD patients compared with age-matched controls. Taken together, these results suggest a common mechanism across ethnicities whereby increased systemic blood circulation of secreted serine protease HTRA1 leads to subsequent degradation of Bruch's membrane and eventual CNV in AMD.
Collapse
Affiliation(s)
- Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Daisuke Iejima
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Mao Nakayama
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Toru Noda
- Division of Ophthalmology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics lab, Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Robyn H Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia; Department of Surgery, Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, East Melbourne, Victoria, Australia
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; JAC Ltd, Tokyo, Japan
| | - Paul N Baird
- Department of Surgery, Ophthalmology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, East Melbourne, Victoria, Australia
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
28
|
Abstract
Thymomas and thymic carcinomas (TCs) are neoplasms of thymic epithelial cells. Thymomas exhibit a low mutational burden and a few recurrently mutated genes. The most frequent missense mutation p.(Leu404His) affects the general transcription factor IIi (GTF2I) and is specific for thymic epithelial tumors (TETs). The clinically indolent types A and AB thymomas express the miRNA cluster C19MC. This miRNA cluster known to be the largest in the human genome, is-with expression otherwise restricted mostly to embryonal tissue-silenced in the more aggressive type B thymomas and TCs. Thymomas associated with the autoimmune disease myasthenia gravis (MG) exhibit more frequent gene copy number changes and an increased expression of proteins homologous to molecules that are targets for autoantibodies. TCs, however, display a higher mutational burden, with frequent mutations of TP53 and epigenetic regulatory genes and loss of CDKN2A. The knowledge of molecular alterations in TETs fosters the understanding of their pathogenesis and provides guidance for further studies that may lead to the development of targeted therapies.
Collapse
Affiliation(s)
| | - Leonhard Müllauer
- Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
McCleary-Wheeler AL, Paradise BD, Almada LL, Carlson AJ, Marks DL, Vrabel A, Vera RE, Sigafoos AN, Olson RL, Fernandez-Zapico ME. TFII-I-mediated polymerase pausing antagonizes GLI2 induction by TGFβ. Nucleic Acids Res 2020; 48:7169-7181. [PMID: 32544250 PMCID: PMC7367210 DOI: 10.1093/nar/gkaa476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter–proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFβ, a known activator of GLI2 in cancer cells. TGFβ reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFβ-induced genes CCR7, TGFβ1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFβ treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFβ-responsive genes through the regulation of RNAPII pausing.
Collapse
Affiliation(s)
- Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Annika J Carlson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Anne Vrabel
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ashley N Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel L Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
30
|
Chandrashekar P, Ahmadinejad N, Wang J, Sekulic A, Egan JB, Asmann YW, Kumar S, Maley C, Liu L. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics 2020; 36:1712-1717. [PMID: 32176769 PMCID: PMC7703750 DOI: 10.1093/bioinformatics/btz851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Motivation Functions of cancer driver genes vary substantially across tissues and organs. Distinguishing passenger genes, oncogenes (OGs) and tumor-suppressor genes (TSGs) for each cancer type is critical for understanding tumor biology and identifying clinically actionable targets. Although many computational tools are available to predict putative cancer driver genes, resources for context-aware classifications of OGs and TSGs are limited. Results We show that the direction and magnitude of somatic selection of protein-coding mutations are significantly different for passenger genes, OGs and TSGs. Based on these patterns, we develop a new method (genes under selection in tumors) to discover OGs and TSGs in a cancer-type specific manner. Genes under selection in tumors shows a high accuracy (92%) when evaluated via strict cross-validations. Its application to 10 172 tumor exomes found known and novel cancer drivers with high tissue-specificities. In 11 out of 13 OGs shared among multiple cancer types, we found functional domains selectively engaged in different cancers, suggesting differences in disease mechanisms. Availability and implementation An R implementation of the GUST algorithm is available at https://github.com/liliulab/gust. A database with pre-computed results is available at https://liliulab.shinyapps.io/gust. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pramod Chandrashekar
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.,Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.,Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Junwen Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.,Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Aleksandar Sekulic
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Jan B Egan
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, AZ, 32224, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA.,Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Carlo Maley
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.,Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.,Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| |
Collapse
|
31
|
Abstract
The GTF2I is a general transcription factor and its mutations have been reported to be recurrent in thymic epithelial tumours and are rare in other malignancies. Apart from thymic epithelial tumours, these mutations have also been reported in a subgroup of T cell lymphomas, angioimmunoblastic T cell lymphomas. Soft tissue angiofibroma has been reported to harbour GTF2I-NCOA2 fusion, whereas GTF2I partners with Retinoic acid receptor alpha (RARA) in acute promyelocytic leukaemia as GTF2I-RARA GTF2I has also been implicated in immune disorders and two neuropsychiatric genetic disorders, namely autism and Williams-Beuren syndrome. The various structural, biochemical and functional properties of GTF2I suggest towards the oncogenic nature of this gene. Studies involving patients are presently few and the availability of biospecimens amenable to molecular diagnostic studies is limited. Future studies involving biospecimens and transformed cell lines shall provide a clear understanding of the GTF2I mechanistic to eventually lead to targeted treatment.
Collapse
Affiliation(s)
- Shrinidhi Nathany
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Rupal Tripathi
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Anurag Mehta
- Department of Laboratory Services, Molecular Diagnostics and Transfusion Medicine, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| |
Collapse
|
32
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
33
|
Conforti F, Pala L, Giaccone G, De Pas T. Thymic epithelial tumors: From biology to treatment. Cancer Treat Rev 2020; 86:102014. [PMID: 32272379 DOI: 10.1016/j.ctrv.2020.102014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/29/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022]
Abstract
In the last few years, meaningful advances have been made in the knowledge of the biology of Thymic Epithelial Tumors (TETs). Data available suggest that in most cases, the different histological subtypes could be distinct biological entities, characterized by specific molecular aberrations, rather than representing a histological continuum of diseases. Recurrent gene mutations in Thymomas and Thymic Carcinoma have been identified, but we still do not know the exact role played by these mutations in TETs pathogenesis. Relevant new data are now available on the pathogenetic mechanisms underlying the association between TETs and autoimmune diseases that warrant further investigations for the potential therapeutic implications. The progress in knowledge of the molecular pathways involved in TETs pathogenesis, allowed to identify and to test target therapies potentially active in such diseases. Platinum-based chemotherapy remains the standard first line treatment for patients with advanced or metastatic TETs. However, some promising data have been reported on the activity of new target therapies, including anti-angiogenic drugs, Cycline Dependent Kinases and PI3K/mTOR inhibitors, as well as of Immune-checkpoint inhibitors. A number of new drugs and combinations are currently under evaluation. The efficacy of new drugs should be balanced with their toxicity profiles, in such complex patients that seem to be more susceptible to develop drug-related toxicities, in particular with immunotherapies.
Collapse
Affiliation(s)
- Fabio Conforti
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Laura Pala
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Tommaso De Pas
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
34
|
Kim IK, Rao G, Zhao X, Fan R, Avantaggiati ML, Wang Y, Zhang YW, Giaccone G. Mutant GTF2I induces cell transformation and metabolic alterations in thymic epithelial cells. Cell Death Differ 2020; 27:2263-2279. [PMID: 32034314 DOI: 10.1038/s41418-020-0502-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of thymic epithelial tumors (TETs) is poorly understood. Recently we reported the frequent occurrence of a missense mutation in the GTF2I gene in TETs and hypothesized that GTF2I mutation might contribute to thymic tumorigenesis. Expression of mutant TFII-I altered the transcriptome of normal thymic epithelial cells and upregulated several oncogenic genes. Gtf2i L424H knockin cells exhibited cell transformation, aneuploidy, and increase tumor growth and survival under glucose deprivation or DNA damage. Gtf2i mutation also increased the expression of several glycolytic enzymes, cyclooxygenase-2, and caused modifications of lipid metabolism. Elevated cyclooxygenase-2 expression by Gtf2i mutation was required for survival under metabolic stress and cellular transformation of thymic epithelial cells. Our findings identify GTF2I mutation as a new oncogenic driver that is responsible for transformation of thymic epithelial cells.
Collapse
Affiliation(s)
- In-Kyu Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| | - Guanhua Rao
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Xiaoliang Zhao
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Ruzong Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Yisong Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Basic and Mechanistic Research Branch, Division of Extramural Research, National Center for Complementary and Integrative Health (NCCAIH), NIH, Bethesda, MD, 20892, USA
| | - Yu-Wen Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
35
|
Association of NCF1 polymorphism with systemic lupus erythematosus and systemic sclerosis but not with ANCA-associated vasculitis in a Japanese population. Sci Rep 2019; 9:16366. [PMID: 31705128 PMCID: PMC6842004 DOI: 10.1038/s41598-019-52920-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies of systemic lupus erythematosus (SLE) in Chinese and Korean populations demonstrated strong association of single nucleotide polymorphisms (SNPs) located in the GTF2I-NCF1 region, rs73366469 (GTF2I), rs117026326 (GTF2I), rs80346167(GTF2IRD1) and rs201802880 (NCF1). This region has also been associated with susceptibility to Sjögren syndrome and rheumatoid arthritis; however, association studies with systemic sclerosis (SSc) and ANCA-associated vasculitis (AAV) have not been reported. Here we made an attempt to confirm their associations with SLE in the Japanese population, to find the primarily associated SNP, and to investigate whether these SNPs are also associated with susceptibility to SSc and AAV. By genotyping these four SNPs on 842 SLE, 467 SSc, 477 AAV patients and 934 healthy controls, striking association was confirmed in Japanese SLE. In addition, these SNPs were significantly associated with susceptibility to SSc, but not with AAV. Conditional logistic regression analysis revealed that the association of NCF1 rs201802880, a missense SNP encoding p.Arg90His, can account for the association of other SNPs by linkage disequilibrium. These results suggested that GTF2I-NCF1 region is associated with susceptibility to multiple autoimmune rheumatic diseases but not with AAV, and the primarily associated variant may be the missense SNP in NCF1.
Collapse
|
36
|
Liang H, Gao W, Liu X, Liu J, Mao X, Yang M, Long X, Zhou Y, Zhang Q, Zhu J, Wang S, Jin T. The GTF2I rs117026326 polymorphism is associated with neuromyelitis optica spectrum disorder but not with multiple sclerosis in a Northern Han Chinese population. J Neuroimmunol 2019; 337:577045. [PMID: 31520790 DOI: 10.1016/j.jneuroim.2019.577045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are common demyelinating disorders of the central nervous system. The etiology and pathogenesis of MS and NMOSD remain unclear. The pathogenesis of these two diseases involves a genetic predisposition as well as environmental factors. NMOSD sometimes co-exists with Sjögren's syndrome, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and these diseases are frequently associated with central nervous system disorder involvement, as manifest in MS- and NMOSD-like clinical features. Genetic variant rs117026326 upstream of the general transcription factor II-I (GTF2I) has been associated with primary Sjögren's syndrome, SLE and RA in East Asian populations. In this study, we genotyped single nucleotide rs117026326 polymorphisms of the GTF2I gene in 168 patients with MS, 144 patients with NMOSD, and 1403 healthy controls. We observed a significant genetic association between the variant rs117026326 and NMOSD (P = 1.09 × 10-11, OR = 2.535), however, the association with MS was not significant (P = .4289, OR = 1.129). Gene expression analyses showed that there was no significant association between the messenger RNA expression of GTF2I and genotypes at the variant. We conclude that the risk T allele of rs117026326 increases the risk of NMOSD, suggesting that NMOSD and MS may have different genetic risk factors.
Collapse
Affiliation(s)
- Hudong Liang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Wenjing Gao
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Xianjun Liu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xijing Mao
- Department of Neurology, The Second Hospital of Jilin University, China
| | - Mengge Yang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Xixi Long
- Department of Neurology, The First Hospital of Jilin University, China
| | - Yang Zhou
- Department of Neurology, The First Hospital of Jilin University, China
| | - Qingxiang Zhang
- Department of Neurology, The First Hospital of Jilin University, China
| | - Jie Zhu
- Department of Neurology, The First Hospital of Jilin University, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Shaofeng Wang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, China.
| | - Tao Jin
- Department of Neurology, The First Hospital of Jilin University, China.
| |
Collapse
|
37
|
Jabbi M, Nemeroff CB. Convergent neurobiological predictors of mood and anxiety symptoms and treatment response. Expert Rev Neurother 2019; 19:587-597. [PMID: 31096806 DOI: 10.1080/14737175.2019.1620604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Mood and anxiety disorders are leading contributors to the global burden of diseases. Comorbid mood and anxiety disorders have a lifetime prevalence of ~20% globally and increases the risk for suicide, a leading cause of death. Areas covered: In this review, authors highlight recent advances in the understanding of multilevel-neurobiological mechanisms for normal/pathological human affective-functioning. The authors then address the complex interplay between environmental-adversity and molecular-genetic mediators of brain correlates of affective-symptoms. The molecular focus is strategically limited to GTF2i, BDNF, and FKBP5 genes that are, respectively, involved in transcriptional-, neurodevelopmental- and neuroendocrine-pathway mediation of affective-functions. The importance of these genes is illustrated with studies of copy-number-variants, genome-wide association (GWAS), and candidate gene-sequence variant associations with disease etiology. Authors concluded by highlighting the predictive values of integrative neurobiological processing of gene-environment interactions for affective disorder symptom management. Expert opinion: Given the transcriptional, neurodevelopmental and neuroimmune relevance of GTF2i, BDNF, and FKBP5 genes, respectively, authors reviewed the putative roles of these genes in neurobiological mediation of adaptive affective-responses. Authors discussed the importance of studying gene-dosage effects in understanding affective disorder risk biology, and how such targeted neurogenetic studies could guide precision identification of novel pharmacotherapeutic targets and aid in prediction of treatment response.
Collapse
Affiliation(s)
- Mbemba Jabbi
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,c Institute of Neuroscience , University of Texas at Austin , Austin , TX , USA.,d Department of Psychology , University of Texas at Austin , Austin , TX , USA
| | - Charles B Nemeroff
- a Department of Psychiatry , Dell Medical School, University of Texas at Austin , Austin , TX , USA.,b Mulva Neuroscience Institute, Dell Medical School , University of Texas at Austin , Austin , TX , USA.,e Institute for Early Life Adversity , Dell Medical School, University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
38
|
Fachim HA, Loureiro CM, Corsi-Zuelli F, Shuhama R, Louzada-Junior P, Menezes PR, Dalton CF, Del-Ben CM, Reynolds GP. GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. Epigenomics 2019; 11:401-410. [DOI: 10.2217/epi-2018-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: We investigated GRIN1 and GRIN2B promoter methylation in first-episode schizophrenia patients compared with siblings and controls, testing for correlations between DNA methylation, cognitive performance and clinical variables. Materials & methods: Blood-derived DNA from all groups underwent bisulfite conversion and pyrosequencing to determine methylation at CpG sites within the GRIN1 and GRIN2B promoters and results were compared with the measure of global methylation LINE-1.Results: We found hypomethylation among all CpGs analyzed within GRIN2B promoter in patients and greater LINE-1 methylation in patients and siblings. CpG4 was correlated to a measure of intellectual function. Conclusion: Changes in GRIN2B promoter methylation may represent an environmental influence contributing to glutamatergic dysfunction in psychosis and relate to lower cognitive performance in subjects with first-episode schizophrenia.
Collapse
Affiliation(s)
- Helene A Fachim
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Camila M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Population Mental Health Center, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Population Mental Health Center, University of São Paulo, Brazil
| | | | - Paulo Rossi Menezes
- Population Mental Health Center, University of São Paulo, Brazil
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Population Mental Health Center, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| |
Collapse
|