1
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
2
|
Xu S, Wang Z, Guo F, Zhang Y, Peng H, Zhang H, Liu Z, Cao C, Xin G, Chen YY, Fu J. Mitophagy in ischemic heart disease: molecular mechanisms and clinical management. Cell Death Dis 2024; 15:934. [PMID: 39737905 DOI: 10.1038/s41419-024-07303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease. We conclude that mitophagy affects ischemic heart disease by promoting cardiomyocyte hypertrophy and fibrosis, the progression of oxidative stress, the development of inflammation, and cardiomyocyte death, and that the specific mechanisms of mitophagy are worthy of further investigation.
Collapse
Affiliation(s)
- Shujuan Xu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, China
| | - Fan Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yehao Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Han Peng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Huiyu Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zixin Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ce Cao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Gaojie Xin
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yuan Yuan Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianhua Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
3
|
Wang X, Ma C, Mi K, Cao X, Tan Y, Yuan H, Ren J, Liang X. Urolithin A attenuates Doxorubicin-induced cardiotoxicity by enhancing PINK1-regulated mitophagy via Ambra1. Chem Biol Interact 2024; 406:111363. [PMID: 39725191 DOI: 10.1016/j.cbi.2024.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Doxorubicin (Dox) is a widely used antineoplastics although its clinical usage is greatly limited by its cardiotoxicity. Several studies have depicted an essential role for dampened mitophagy and mitochondrial injury in Dox cardiotoxicity. However, preventative measure to alleviate Dox-evoked cardiotoxicity via targeting mitophagy and mitochondrial integrity remains elusive. Urolithin A (UA) is a newly identified mitophagy inducer with antioxidant and anti-apoptotic properties although its effect on Dox-induced cardiotoxicity is unknown. This study was designed to explore the effect of UA on Dox cardiotoxicity and mechanisms involved. Our results indicated that UA alleviated Dox-induced cardiac dysfunction exhibited by echocardiographic parameters and histological analyses, and partially relieved Dox-induced apoptosis in vitro and in vivo, and mitochondrial dysfunction including ΔΨm dissipation and ROS production in vitro. The ability of UA to facilitate restoration of mitophagy in mice and H9C2s underscored its advantageous effects, manifested as upregulation of mitophagy-related proteins, including p62, LC3, PINK1 and Parkin, as well as the co-location between LC3 and mitochondria. Incubation with 3 -MA nearly reversed the UA-evoked rise of mitophagy-related proteins, and inhibition of apoptosis. Given that knockdown of Ambra1 almost abolished UA-induced protective effect, the enhanced expression of Ambra1 owing to UA increased PINK1 levels by inhibiting its degradation via LONP1. Collectively, our results suggest that the cardioprotective properties of UA depend on the stimulation of PINK1-dependent mitophagy through promoting Ambra1 expression to inhibit PINK1 degradation by LONP1. This highlights UA's potential as a valuable treatment option and its importance in cardioprotective strategies against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Xinyue Liang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
4
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2024:10.1007/s40256-024-00711-y. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
5
|
Chen Z, Zhang M, Xu Q, Lu P, Liu M, Yin R, Liu X, Dai Y, Gao X, Gong J, Zhang S, Wang X. Huangqi-Danshen decoction improves heart failure by regulating pericardial adipose tissue derived extracellular vesicular miR-27a-3p to activate AMPKα2 mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156187. [PMID: 39488874 DOI: 10.1016/j.phymed.2024.156187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Huangqi-Danshen decoction (HDD) is a classic traditional Chinese medicine for treating heart failure. Pericardial adipose tissue (PAT) has recently gained increasing attention in cardiovascular diseases. PURPOSE This study aimed to investigate the effect of pericardial adipose tissue-derived extracellular vesicles on heart failure, the protective effect of HDD on myocardial remodel in heart failure rats, and identify the potential molecular mechanisms involved. METHODS UPLC-MS/MS identified active components of HDD. Extracellular vesicles (EVs) from pericardial adipose tissue of sham-operated and HF rats were identified through transmission electron microscopy, nanoparticle tracking analysis and western blot. EVs were co-cultured with H9c2 cardiomyocytes in order to examine their uptake and effects. MicroRNA sequencing, dual-luciferase reporter assay and PCR were conducted for exploring specific mechanisms of EVs on hypertrophic cardiomyocytes. In vivo, heart failure was modeled in rats via transverse aortic constriction (TAC). In vitro, the hypertrophic cardiomyocyte model were established using Ang II-induced H9c2 cardiomyocytes. RESULTS UPLC-MS/MS identified 11 active components in serum of HDD administrated rats. Echocardiography showed HDD improved cardiac function in TAC model rats. HE and Masson staining indicated HDD ameliorated myocardial hypertrophy and fibrosis. MicroRNA sequencing found that HDD treatment resulted in 37 differentially expressed miRNAs (DMEs) (p < 0.05 and |log2FC| ≥ 1). KEGG analysis revealed that DEMs were enriched in the AMPK signaling pathway. PCR identified miR-27a-3p with the greatest difference in AMPK-related DMEs. Dual-luciferase reporter assay and Targetscan website were utilized to identify the target relationship between miR-27a-3p and PRKAA2 (AMPKα2). The miR-27a-3p negatively regulated AMPKα2 to inhibit mitophagy mediated by PINK1/Parkin pathway. HDD inhibited miR-27a-3p secretion from failing heart pericardial adipose tissue-derived extracellular vesicles, thereby improving inflammation, cardiac function, and myocardial remodeling through above pathways. CONCLUSION HDD inhibited the PAT-derived extracellular vesicular miR-27a-3p in failing hearts to activate AMPK/PINK1/Parkin signaling-mediated mitophagy, which improved cardiomyocyte energy metabolism, myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiyao Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xuan Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China
| | - Xin Gao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Juexiao Gong
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Sujie Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
6
|
Tu W, Li L, Yi M, Chen J, Wang X, Sun Y. Dapagliflozin attenuates high glucose-and hypoxia/reoxygenation-induced injury via activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy in H9c2 cardiomyocytes. Arch Physiol Biochem 2024; 130:649-659. [PMID: 37655809 DOI: 10.1080/13813455.2023.2252200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the protective effect of dapagliflozin on H9c2 cardiomyocyte function under high glucose and hypoxia/reoxygenation (HG-H/R) conditions and identified the underlying molecular mechanisms. Dapagliflozin reduced the level of lactate dehydrogenase and reactive oxygen species in cardiomyocytes under HG-H/R conditions and was accompanied by a decrease in caspase-3/9 activity. In addition, Dapagliflozin significantly reduced mitochondrial permeability transition pore opening and increased ATP content, accompanied by upregulation of OPA1 with autophagy-related protein molecules and activation of the AMPK/mTOR signalling pathway in HG-H/R treated cardiomyocytes. OPA1 knockdown or compound C treatment attenuated the protective effects of dapagliflozin on the cardiomyocytes under HG-H/R conditions. Downregulation of OPA1 expression increased mitochondrial intolerance in cardiomyocytes during HG-H/R injury and the AMPK-mTOR-autophagy signalling is a key mechanism for protecting mitochondrial function and reducing cardiomyocyte apoptosis. Collectively, dapagliflozin exerted protective effects on the cardiomyocytes under HG-H/R conditions. Dapagliflozin attenuated myocardial HG-H/R injury by activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Weiling Tu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Liang Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Ming Yi
- Department of Cardiology, The Second Affiliated Integrated Chinese and Western Medicine Hospital of Hunan University of Chinese Medicine, Liuyang Hospital of Traditional Chinese Medicine, Liuyang, P.R. China
| | - Junyu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, P.R. China
| | - Xiaoqing Wang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, P.R. China
| | - Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, P.R. China
| |
Collapse
|
7
|
Zi-Chang N, Ran A, Hui-Hui S, Qi J, Jun-Li S, Yan-Xu C, Yu-Hong L, Shu-Fei F, Hao-Ping M. Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells. Phytother Res 2024. [PMID: 39568432 DOI: 10.1002/ptr.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality among cardiovascular diseases, yet effective therapies for AMI are limited. Previous studies have suggested cardioprotective effects of columbianadin (CBN), but its specific role in AMI and the underlying mechanisms remain unclear. This study aims to investigate whether CBN influences AMI and to elucidate the underlying mechanisms. We conducted a network pharmacology analysis to investigate the relationship between CBN and AMI. The AMI model was established by ligating the left anterior descending (LAD) artery in C57BL/6J mice, which were subsequently administered CBN. Hypoxic H9c2 cells were utilized to evaluate the effects of CBN in vitro. Our study revealed that CBN treatment significantly reduced myocardial infarction in AMI mice. It enhanced mitochondrial function and suppressed autophagy flux in hypoxic H9c2 cells. Furthermore, CBN downregulated the expression of LC3, Beclin1, and Atg 5 genes and proteins. In response to CBN treatment, the phosphorylation levels of PI3K, Akt, and mTOR increased. Notably, RAPA attenuated the protective effect of CBN in enhancing the survival of hypoxic H9c2 cells and abolished its regulation of autophagy-related proteins via the PI3K/Akt/mTOR signaling pathway. In conclusion, CBN reduces myocardial damage by suppressing autophagy via the PI3K/Akt/mTOR signaling pathway in AMI mice and hypoxic H9c2 cells.
Collapse
Affiliation(s)
- Niu Zi-Chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - An Ran
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shi Hui-Hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Song Jun-Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chang Yan-Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Yu-Hong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu Shu-Fei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Shcool of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Mao Hao-Ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Li FJ, Hu H, Wu L, Luo B, Zhou Y, Ren J, Lin J, Reiter RJ, Wang S, Dong M, Guo J, Peng H. Ablation of mitophagy receptor FUNDC1 accentuates septic cardiomyopathy through ACSL4-dependent regulation of ferroptosis and mitochondrial integrity. Free Radic Biol Med 2024; 225:75-86. [PMID: 39326685 DOI: 10.1016/j.freeradbiomed.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Sepsis evokes compromised myocardial function prompting heart failure albeit target therapy remains dismal. Our study examined the possible role of mitophagy receptor FUNDC1 in septic cardiomyopathy. A sepsis model was established using cecal ligation and puncture (CLP) in FUNDC1 knockout (FUNDC1-/-) and WT mice prior to the evaluation of cardiac morphology, echocardiographic and cardiomyocyte contractile, oxidative stress, apoptosis, necroptosis, and ferroptosis. RNAseq analysis depicted discrepant patterns in mitophagy, oxidative stress and ferroptosis between CLP-challenged and control murine hearts. Septic patients displayed cardiac injury alongside low plasma FUNDC1 and iron levels. CLP evoked interstitial fibrosis, cardiac dysfunction (lowered ejection fraction, fractional shortening, shortening/relengthening velocity, peak shortening and electrically-stimulated intracellular Ca2+ rise, alongside increased LV end systolic diameter and relengthening duration), O2- buildup, apoptosis, necroptosis, and ferroptosis (downregulated GPX4 and SLC7A11), the responses of which were accentuated by FUNDC1 ablation. In particular, levels of lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) were upregulated following CLP procedure, with a more pronounced response in FUNDC1-/- mice. Co-immunoprecipitation and interaction interface revealed an evident interaction between FUNDC1 and ACSL4. In vitro studies revealed that the endotoxin lipopolysaccharide provoked cardiomyocyte contractile and lipid peroxidation anomalies, the responses were reversed by the mitophagy inducer oleanolic acid, inhibition of ACSL4 and ferroptosis. These findings favor a role for FUNDC1-ACSL4-ferroptosis cascade in septic cardiomyopathy.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China
| | - Huantao Hu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou,510630,China
| | - Bijun Luo
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Shuyi Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510660, China.
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
9
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
10
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
11
|
Zhao H, Zhang Y, Ren Y, Wang W. PINK1/Parkin-Mediated Mitophagy Ameliorates Mitochondrial Dysfunction in Lacrimal Gland Acinar Cells During Aging. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 39504053 PMCID: PMC11549928 DOI: 10.1167/iovs.65.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Purpose Aging alters the function of the lacrimal gland and disrupts the balance of the microenvironment on the ocular surface, eventually leading to aqueous-tear-deficient dry eye. Mitophagy has been reported to play an important role in aging, but the underlying mechanism remains unclear. Methods The young (6 weeks) and middle-aged (12 months) male C57BL/6J mice were used in this study, and mitophagy agonist rapamycin and inhibitor Mdivi-1 were used in in vivo experiments. Hematoxylin and eosin, Masson, Oil Red O, and reactive oxygen species (ROS) staining were used to detect histological changes and lipids in lacrimal gland. Changes in the expression of proteins were identified by Western blotting of lacrimal gland lysates. Transmission electron microscopy and immunofluorescence staining were used to assess mitophagy. The single-cell RNA sequencing (scRNA-seq) and bioinformatics analyses were used to detect transcription signature changes during aging. Results In this study, we discovered that aging increased oxidative stress, which increased apoptosis, and generated ROS in acinar epithelial cells. Furthermore, activation of PINK1/Parkin-mediated mitophagy by rapamycin reduced lacrimal gland ROS concentrations and prevented aging-induced apoptosis of acinar cells, thereby causing histological alterations, microstructural degradation, and increasing tear secretion associated with ROS accumulation. By contrast, Mdivi-1 aggregates mitochondrial function and thereafter leads to lacrimal gland function impairment by inhibiting mitochondrial fission and giving rise to mitophagy. Conclusions Overall, our findings suggested that aging could impair mitochondrial function of acinar cells, and age-related alterations may be treated with therapeutic approaches that enhance mitophagy while maintaining mitochondrial function.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- National Key Clinical Specialty of Ophthalmology, Xiangya Hospital, Changsha, China
| | - Yujie Ren
- Department of Ophthalmology, Xi'an No. 1 Hospital, Xi'an, China
| | - Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- National Key Clinical Specialty of Ophthalmology, Xiangya Hospital, Changsha, China
| |
Collapse
|
12
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
13
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
14
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
16
|
Huang Y, Huang Y, Cai Z, Ferrari MW, Li C, Zhang T, Lyu G, Wang Z. MiR-21-3p inhibitor exerts myocardial protective effects by altering macrophage polarization state and reducing excessive mitophagy. Commun Biol 2024; 7:1371. [PMID: 39438580 PMCID: PMC11496525 DOI: 10.1038/s42003-024-07050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic heart failure (CHF) is closely associated with inflammation and mitochondrial dysfunction in cardiomyocytes. This study attempts to investigate the effects of microRNA-21-3p (miR-21-3p) on macrophage polarization and mitophagy in CHF. Here we found miR-21-3p was upregulated in CHF and negatively correlated with carnitine palmitoyl transferase 1A (CPT1A). L-palmitoyl carnitine (L-PC) exacerbated isoproterenol (ISO)-induced myocardial structural disruption and fibrosis in rats, which was exacerbated by miR-21-3p. Mechanistically, miR-21-3p accelerated M1 macrophage polarization. Both miR-21-3p inhibitor and CPT1A overexpression suppressed mitophagy. The inhibition of CPT1A on mitophagy was reversed by miR-21-3p. MiR-21-3p targeted CPT1A mRNA and co-localized with CPT1A protein in cardiomyocytes. In the co-culture system of M1 macrophages and H9c2 cells, miR-21-3p mimics in H9c2 cells promoted M1 polarization, whereas miR-21-3p inhibitor reduced M1 phenotype. M1 macrophages exacerbated H9c2 cell damage. These findings support the potential therapeutic targeting of miR-21-3p to regulate inflammation and mitophagy by inducing CPT1A in CHF.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yalin Huang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhaoling Cai
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Markus W Ferrari
- Department of Internal Medicine 1, Helios-HSK Clinics, Wiesbaden, Germany
| | - Chengyi Li
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianzhang Zhang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Collaborative Innovation Center for Maternal and Infant Health Service Application Technology of Education Ministry, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Zhenhua Wang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
17
|
Shen M, Chen M, Chen Y, Yu Y. Mitophagy related diagnostic biomarkers for coronary in-stent restenosis identified using machine learning and bioinformatics. Sci Rep 2024; 14:24137. [PMID: 39406802 PMCID: PMC11480419 DOI: 10.1038/s41598-024-74862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Percutaneous coronary intervention (PCI) combined with stent implantation is currently one of the most effective treatments for coronary artery disease (CAD). However, in-stent restenosis (ISR) significantly compromises its long-term efficacy. Mitophagy plays a crucial role in vascular homeostasis, yet its role in ISR remains unclear. This study aims to identify mitophagy-related biomarkers for ISR and explore their underlying molecular mechanisms. Through differential gene expression analysis between ISR and Control samples in the combined dataset, 169 differentially expressed genes (DEGs) were identified. Twenty-three differentially expressed mitophagy-related genes (DEMRGs) were identified by intersecting with mitophagy-related genes (MRGs) from the GeneCards, and functional enrichment analysis indicated their significant involvement in mitophagy-related biological processes. Using Weighted Gene Co-expression Network Analysis (WGCNA) and three machine learning algorithms (Logistic-LASSO, RF, and SVM-RFE), LRRK2, and ANKRD13A were identified as mitophagy-related biomarkers for ISR. The nomogram based on these two genes also exhibited promising diagnostic performance for ISR. Gene Set Enrichment Analysis (GSEA) as well as immune infiltration analyses showed that these two genes were closely associated with immune and inflammatory responses in ISR. Furthermore, potential small molecule compounds with therapeutic implications for ISR were predicted using the connectivity Map (cMAP) database. This study systematically investigated mitophagy-related biomarkers for ISR and their potential biological functions, providing new insights into early diagnosis and precision treatment strategies for ISR.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiology, the 926th Hospital of the Joint Logistic Support Force of PLA, Affiliated Hospital of Kunming University of Science and Technology, Kaiyuan, 661600, Yunnan, China.
- Department of Cardiology, the 920th Hospital of the Joint Logistic Support Force of PLA, Kunming, 650032, Yunnan, China.
| | - Meixian Chen
- Department of Cardiology, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of the Joint Logistic Support Force of PLA), Fuzhou, 350025, Fujian, China
| | - Yu Chen
- Department of Cardiology, the 920th Hospital of the Joint Logistic Support Force of PLA, Kunming, 650032, Yunnan, China
| | - Yunhua Yu
- Department of Geriatric, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital of the Joint Logistic Support Force of PLA), Fuzhou, 350025, Fujian, China.
| |
Collapse
|
18
|
Gencpınar T, Bilen C, Kemahli B, Sayarer C, Akokay P, Bayrak S, Erdal C. The effect of edoxaban on apoptosis in an abdominal aortic aneurysm model in rats. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2024; 32:378-386. [PMID: 39651055 PMCID: PMC11620520 DOI: 10.5606/tgkdc.dergisi.2024.25890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/03/2024] [Indexed: 12/11/2024]
Abstract
Background This study aimed to evaluate the effects of edoxaban, which is used in venous thrombosis, systemic embolism, and stroke, on an aortic aneurysm model and to demonstrate the pharmacokinetic and molecular effects of edoxaban through the induction of apoptosis. Methods In this double-blind experimental study, 21 Wistar albino male rats (mean weight: 290 g; range, 280 to 300 g) were divided into three groups: the sham group (n=7), the abdominal aortic aneurysm (AAA) group (n=7), and the AAA-edoxaban group (n=7). Edoxaban 10 mg/kg was given to the AAA-edoxaban group by oral gavage daily for 30 days. At the end of 30 days, the aneurysmal aorta was surgically removed and histologically examined. The abdominal aorta was surgically exposed and wrapped with a calcium chloride (0.5 mol/L) sponge for 10 min. Results Immunohistochemically, aortic sections were marked with caspase-3 and caspase-9 antibodies. It was observed that the pathways that trigger apoptosis (caspase-3 and caspase-9; p <0.004 and p <0.005, respectively) were significantly reduced in the AAA-edoxaban group compared to the AAA group. In the AAA-edoxaban group, it was observed that the expansion in aortic diameter and the deterioration in the elastic fibril structure in the aortic aneurysm were decreased as a result of edoxaban treatment. Edoxaban treatment was observed to reduce cell death in both the tunica intima and tunica media. Conclusion This study provided strong evidence of the protective effect of edoxaban on aortic aneurysm-related vascular damage by reducing apoptosis and mitophagy.
Collapse
Affiliation(s)
- Tugra Gencpınar
- Department of Cardiovascular Surgery, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Cagatay Bilen
- Department of Cardiovascular Surgery, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Baris Kemahli
- Department of Cardiovascular Surgery, Kent Hospital, İzmir, Türkiye
| | - Ceren Sayarer
- Department of Cardiovascular Surgery, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Pinar Akokay
- İzmir Kavram Vocational School, Medical Laboratory Technigues Programme, İzmir, Türkiye
| | - Serdar Bayrak
- Department of Cardiovascular Surgery, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Cenk Erdal
- Department of Cardiovascular Surgery, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| |
Collapse
|
19
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
20
|
Yang Y, Li C, Hong Y, Sun J, Chen G, Ji K. Association between functional dependence and cardiovascular disease among middle-aged and older adults: Findings from the China health and retirement longitudinal study. Heliyon 2024; 10:e37821. [PMID: 39315220 PMCID: PMC11417238 DOI: 10.1016/j.heliyon.2024.e37821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background The effect of different functional dependency types on cardiovascular disease (CVD) is largely unknown. Here, we aimed to investigate the association between functional dependence and CVD among middle-aged and older adults by conducting a cross-sectional and longitudinal study. Methods The study sample comprised 16,459 individuals of ≥40 years (including 10,438 without CVD) who had participated in the 2011 China Health and Retirement Longitudinal Study (CHARLS). Functional dependence was categorized based on the "interval-of-need" method, while CVD was defined as physician-diagnosed heart disease or stroke. Cox proportional hazard regression was employed to assess the effects of functional dependence on CVD. Moreover, patients were grouped according to the functional status changes, and the impact of these changes on CVD was observed. Heterogeneity, subgroup, and interaction analyses were used to evaluate the consistency of the study findings. Finally, a mediation analysis was performed to estimate the potential mediation effects on the relationship between functional dependence and CVD risk. Results CVD prevalence in the overall study population was 13.73 % (2260/16,459), while its prevalence among individuals with functional independence, low dependency, medium dependency, and high dependency was 9.60 % (1085/11,302), 14.25 % (119/835), 17.72 % (115/649), and 25.01 % (941/3763), respectively. Additionally, medium (odds ratio: 1.33, 95 % confidence interval: 1.06-1.68) and high functional dependency (1.55, 95 % CI: 1.38-1.75) were associated with CVD. A total of 2987 (28.62 %) participants with CVD were identified during the 9-year follow-up, with 4.85 % (145/2987) of the CVD cases being attributed to functional dependence. The individuals with medium (HR: 1.20, 95 % CI: 1.01-1.44) and high functional dependency (1.25, 95 % CI: 1.14-1.37) were more likely to develop CVD than their peers with functional independence. Furthermore, persistent functional dependence (HR: 1.72, 95 % CI: 1.52-1.94) and transition from functional independence to dependence (1.79, 95 % CI: 1.61-1.98) were associated with a higher CVD risk than continuous functional independence. Hypertension and diabetes may partially mediate CVD caused by functional dependence. Conclusion Functional dependence is associated with high CVD risk. Therefore, appropriate healthcare attention must be directed towards functionally dependent populations to protect their cardiovascular health.
Collapse
Affiliation(s)
- Yaxi Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chaonian Li
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, 224500, China
| | - Ye Hong
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, 224500, China
| | - Jinqi Sun
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, 224500, China
| | - Guoping Chen
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, 224500, China
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Kangkang Ji
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Department of Clinical Medical Research, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, 224500, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
21
|
Guo Z, Tian Y, Liu N, Chen Y, Chen X, Yuan G, Chang A, Chang X, Wu J, Zhou H. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci 2024; 21:2502-2509. [PMID: 39439461 PMCID: PMC11492880 DOI: 10.7150/ijms.99359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Hypoxic injury is a critical pathological factor in the development of various cardiovascular diseases, such as congenital heart disease, myocardial infarction, and heart failure. Mitochondrial quality control is essential for protecting cardiomyocytes from hypoxic damage. Under hypoxic conditions, disruptions in mitochondrial homeostasis result in excessive reactive oxygen species (ROS) production, imbalances in mitochondrial dynamics, and initiate pathological processes including oxidative stress, inflammatory responses, and apoptosis. Targeted interventions to enhance mitochondrial quality control, such as coenzyme Q10 and statins, have shown promise in mitigating hypoxia-induced mitochondrial dysfunction. These treatments offer potential therapeutic strategies for hypoxia-related cardiovascular diseases by regulating mitochondrial fission and fusion, restoring mitochondrial biogenesis, reducing ROS production, and promoting mitophagy.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guoxing Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - An Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
22
|
Hu F, Yan S, Lin L, Qiu X, Lin X, Wang W. Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05117-7. [PMID: 39304614 DOI: 10.1007/s11010-024-05117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Senbo Yan
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Li Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Xiaoxia Qiu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Xinghe Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China.
| | - Weiwei Wang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
23
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
24
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
25
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Hayes AW, Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med 2024; 28:e70074. [PMID: 39333694 PMCID: PMC11436317 DOI: 10.1111/jcmm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Lin X, Liu W, Hu X, Liu Z, Wang F, Wang J. The role of polyphenols in modulating mitophagy: Implications for therapeutic interventions. Pharmacol Res 2024; 207:107324. [PMID: 39059613 DOI: 10.1016/j.phrs.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Collapse
Affiliation(s)
- Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenkai Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Fang Wang
- Chengdu First People's Hospital, Sichuan, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
27
|
Shen J, Shentu J, Zhong C, Huang Q, Duan S. RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy. Clin Transl Med 2024; 14:e1788. [PMID: 39243148 PMCID: PMC11380049 DOI: 10.1002/ctm2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Chenming Zhong
- Medical Genetics Center, School of MedicineNingbo UniversityNingboChina
| | - Qiankai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
28
|
Cui Y, Wang Q, Shi Y, Dai Y, Liu Y. mtROS-mediated mitophagy is involved in aflatoxin-B 1 induced liver injury in ducks. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109942. [PMID: 38810896 DOI: 10.1016/j.cbpc.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Aflatoxin B1 (AFB1) is highly toxic to the liver and can cause excessive production of mitochondrial reactive oxygen species (mtROS) in hepatocytes, leading to oxidative stress, inflammation, fibrosis, cirrhosis, and even liver cancer. The overproduction of mtROS can induce mitophagy, but whether mtROS and mitophagy are involved in the liver injury induced by AFB1 in ducks remains unclear. In this study, we first demonstrated that overproduction of mtROS and mitophagy occurred during liver injury induced by AFB1 exposure in ducks. Then, by inhibiting mtROS and mitophagy, we found that the damage caused by AFB1 in ducks was significantly alleviated, and the overproduction of mtROS induced by AFB1 exposure could mediate the occurrence of mitophagy. These results suggested that mtROS-mediated mitophagy is involved in AFB1-induced duck liver injury, and they may be the prevention and treatment targets of AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Shi
- Tongliao City Animal Quarantine Technical Service Center, Tongliao 028000, China
| | - Yang Dai
- Tongliao Agriculture and Animal Husbandry Bureau, Tongliao 028000, China
| | - Yanfen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China.
| |
Collapse
|
29
|
Yu W, Deng D, Li Y, Ding K, Qian Q, Shi H, Luo Q, Cai J, Liu J. Cardiomyocyte-specific Tbk1 deletion aggravated chronic doxorubicin cardiotoxicity via inhibition of mitophagy. Free Radic Biol Med 2024; 222:244-258. [PMID: 38901499 DOI: 10.1016/j.freeradbiomed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Doxorubicin (Dox) use is limited by Dox-induced cardiotoxicity. TANK-blinding kinase 1 (TBK1) is an important kinase involved in the regulation of mitophagy, but the role of TBK1 in cardiomyocytes in chronic Dox-induced cardiomyopathy remains unclear. Cardiomyocyte-specific Tbk1 knockout (Tbk1CKO) mice received Dox (6 mg/kg, injected intraperitoneally) once a week for 4 times, and cardiac assessment was performed 4 weeks after the final Dox injection. Adenoviruses encoding Tbk1 or containing shRNA targeting Tbk1, or a TBK1 phosphorylation inhibitor were used for overexpression or knockdown of Tbk1, or inhibit phosphorylation of TBK1 in isolated primary cardiomyocytes. Our results revealed that moderate Dox challenge decreased TBK1 phosphorylation (with no effect on TBK1 protein levels), resulting in compromised myocardial function, obvious mortality and overt interstitial fibrosis, and the effects were accentuated by Tbk1 deletion. Dox provoked mitochondrial membrane potential collapse and oxidative stress, the effects of which were exacerbated and mitigated by Tbk1 knockdown, specific inhibition of phosphorylation and overexpression, respectively. However, Tbk1 (Ser172A) overexpression did not alleviate these effects. Further scrutiny revealed that TBK1 exerted protective effects on mitochondria via SQSTM1/P62-mediated mitophagy. Tbk1 overexpression mediated cardioprotective effects on Dox-induced cardiotoxicity were cancelled off by Sqstm1/P62 knockdown. Moreover, TBK1-mitophagy-mitochondria cascade was confirmed in heart tissues from dilated cardiomyopathy patients. Taken together, our findings denoted a pivotal role of TBK1 in Dox-induced mitochondrial injury and cardiotoxicity possibly through its phosphorylation and SQSTM1/P62-mediated mitophagy.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| | - Dawei Deng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Kehan Ding
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Qiaofeng Qian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Hongjie Shi
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Qiujie Luo
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China
| | - Jie Cai
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, 430071, PR China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, 430071, PR China.
| |
Collapse
|
30
|
Qiu Y, Xu J, Chen Y, Wu Y, Lin YN, Liu W, Wang Z, Wu Y, Qian X, Li YC. Parkin plays a crucial role in acute viral myocarditis by regulating mitophagy activity. Theranostics 2024; 14:5303-5315. [PMID: 39267792 PMCID: PMC11388078 DOI: 10.7150/thno.97675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Parkin (an E3 ubiquitin protein ligase) is an important regulator of mitophagy. However, the role of Parkin in viral myocarditis (VMC) remains unclear. Methods: Coxsackievirus B3 (CVB3) infection was induced in mice to create VMC. Cardiac function and inflammatory response were evaluated by echocardiography, histological assessment, and molecular analyses. AAV9 (adeno-associated virus 9), transmission electron microscopy (TEM) and western blotting were used to investigate the mechanisms by which Parkin regulates mitophagy and cardiac inflammation. Results: Our data indicated that Parkin- and BNIP3 (BCL2 interacting protein 3 like)-mediated mitophagy was activated in VMC mice and neonatal rat cardiac myocytes (NRCMs) infected with CVB3, which blocked autophagic flux by inhibiting autophagosome-lysosome fusion. Parkin silencing aggravated mortality and accelerated the development of cardiac dysfunction in CVB3-treated mice. While silencing of Parkin did not significantly increase inflammatory response through activating NF-κB pathway and production of inflammatory cytokines post-VMC, the mitophagy activity were reduced, which stimulated the accumulation of damaged mitochondria. Moreover, Parkin silencing exacerbated VMC-induced apoptosis. We consistently found that Parkin knockdown disrupted mitophagy activity and inflammatory response in NRCMs. Conclusion: This study elucidated the important role of Parkin in maintaining cardiac function and inflammatory response by regulating mitophagy activity and the NF-κB pathway during acute VMC. Although the functional impact of mitophagy remains unclear, our findings suggest that Parkin silencing may accelerate VMC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yue-Chun Li
- From the Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Zdanowicz A, Grosicka-Maciąg E. The Interplay between Autophagy and Mitochondria in Cancer. Int J Mol Sci 2024; 25:9143. [PMID: 39273093 PMCID: PMC11395105 DOI: 10.3390/ijms25179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Besides producing cellular energy, mitochondria are crucial in controlling oxidative stress and modulating cellular metabolism, particularly under stressful conditions. A key aspect of this regulatory role involves the recycling process of autophagy, which helps to sustain energy homeostasis. Autophagy, a lysosome-dependent degradation pathway, plays a fundamental role in maintaining cellular homeostasis by degrading damaged organelles and misfolded proteins. In the context of tumor formation, autophagy significantly influences cancer metabolism and chemotherapy resistance, contributing to both tumor suppression and surveillance. This review focuses on the relationship between mitochondria and autophagy, specifically in the context of cancer progression. Investigating the interaction between autophagy and mitochondria reveals new possibilities for cancer treatments and may result in the development of more effective therapies targeting mitochondria, which could have significant implications for cancer treatment. Additionally, this review highlights the increasing understanding of autophagy's role in tumor development, with a focus on modulating mitochondrial function and autophagy in both pre-clinical and clinical cancer research. It also explores the potential for developing more-targeted and personalized therapies by investigating autophagy-related biomarkers.
Collapse
Affiliation(s)
- Aleksandra Zdanowicz
- Department of Biochemistry, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81 Str., 02-091 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland
| |
Collapse
|
32
|
Wang YR, Zhang XX, Chen XX, Yin XH, Yang M, Jiang K, Liu SC. Enhancement of Bone Repair in Diabetic Rats with Metformin-Modified Silicified Collagen Scaffolds. Adv Healthc Mater 2024:e2401430. [PMID: 39177124 DOI: 10.1002/adhm.202401430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.
Collapse
Affiliation(s)
- Yi-Rong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiao-Xia Zhang
- Xi'an International University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xu-Xu Chen
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin-Hua Yin
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Ming Yang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Jiang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Chang Liu
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
33
|
Liu WS, Li RM, Le YH, Zhu ZL. Construction of a mitophagy-related prognostic signature for predicting prognosis and tumor microenvironment in lung adenocarcinoma. Heliyon 2024; 10:e35305. [PMID: 39170577 PMCID: PMC11336613 DOI: 10.1016/j.heliyon.2024.e35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mitophagy is the selective degradation of mitochondria by autophagy. It becomes increasingly clear that mitophagy pathways are important for cancer cells to adapt to their high-energy needs. However, which genes associated with mitophagy could be used to prognosis cancer is unknown. Methods We created a clinical prognostic model using mitophagy-related genes (MRGs) in lung adenocarcinoma (LUAD) patients for the first time, and we employed bioinformatics methods to search for biomarkers that affect the progression and prognosis of LUAD. Transcriptome data for LUAD were obtained from The Cancer Genome Atlas (TCGA) database, and additional expression data from LUAD patients were sourced from the Gene Expression Omnibus (GEO) database. Furthermore, 25 complete MRGs were identified based on annotations from the MSigDB database. Results A comparison of the mitophagy scores between the groups with high and low scores was done using receiver operating characteristic (ROC) curves, which also revealed the differential gene expression patterns between the two groups. Using Kaplan-Meier analysis, two prognostic MRGs from the groups with high and low mitophagy scores were identified: TOMM40 and VDAC1. Using univariate and multivariate Cox regression, the relationship between the expression levels of these two genes and prognostic clinical features of LUAD was examined further.The prognosis of LUAD patients was shown to be significantly correlated (P < 0.05) with the expression levels of these two genes. Conclusions Our prognostic model would improve the prognosis of LUAD and guide clinical treatments.
Collapse
Affiliation(s)
- Wu-Sheng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Ru-Mei Li
- Department of Endocrinology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Yong-Hong Le
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Zan-Lei Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| |
Collapse
|
34
|
Zi-chang N, Xiao-ling H, Qi J, Ting L, Ming-hui O, Hao-ping M. Ginseng Radix et Rhizoma enhanced the effect of metoprolol in chronic heart failure by inhibiting autophagy in male C57BL/6J mice. PLoS One 2024; 19:e0301875. [PMID: 39141645 PMCID: PMC11324128 DOI: 10.1371/journal.pone.0301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Ginseng Radix et Rhizoma (GS) is frequently used as an adjuvant therapy for patients with heart failure (HF). Metoprolol is widely used in patients with HF. However, there is no report on the combined effects of GS and metoprolol in patients with HF. OBJECTIVE This study investigated the combined effects of GS and metoprolol in male C57BL/6J mice with HF and the underlying mechanisms. MATERIALS AND METHODS We utilized a mouse myocardial HF model to measure the serum levels of creatine kinase (CK) and creatine kinase-MB form (CK-MB) using an automated biochemical analyzer. Lactate dehydrogenase (LDH) and cardiac troponin (cTnT) levels were determined using enzyme-linked immunosorbent assays. Autophagy of myocardial cells was evaluated using transmission electron microscopy, and changes in signal pathway proteins related to autophagy were analyzed by Western blotting. RESULTS GS combined with metoprolol improved heart function, reduced heart damage, and decreased serum levels of CK, CK-MB, LDH, and cTnT. The combination of GS and metoprolol decreased autophagy in myocardial cells by reducing the levels of autophagy-related proteins (LC3, p62, Beclin1, and Atg5) and increasing the ratios of p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. CONCLUSION GS enhanced the anti-heart failure effect of metoprolol. Its mechanism of action might be related to the inhibition of autophagy mediated by the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Niu Zi-chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Han Xiao-ling
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liu Ting
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Ouyang Ming-hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Mao Hao-ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
35
|
Bai G, Yang J, Liao W, Zhou X, He Y, Li N, Zhang L, Wang Y, Dong X, Zhang H, Pan J, Lai L, Yuan X, Wang X. MiR-106a targets ATG7 to inhibit autophagy and angiogenesis after myocardial infarction. Animal Model Exp Med 2024; 7:408-418. [PMID: 38807299 PMCID: PMC11369033 DOI: 10.1002/ame2.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.
Collapse
Affiliation(s)
- Guofeng Bai
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Huidong County Animal Quarantine and Inspection InstituteHuizhouGuangdongChina
| | - Jinghao Yang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Weili Liao
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Liuhong Zhang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Xiaoli Dong
- Department of CardiologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Clinical Medicine Research InstitutionHaikouPeople's Republic of China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
| | - Jinchun Pan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| | - Liangxue Lai
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro‐Animal Genomics and Molecular BreedingCollege of Animal Science, South China Agricultural UniversityGuangzhouGuangdongChina
- Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouGuangdongChina
| | - Xilong Wang
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring InstituteGuangzhouChina
| |
Collapse
|
36
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
37
|
Ping Z, Shuxia Z, Xinyu D, Kehe H, Xingxiang C, Chunfeng W. Mitophagy-regulated Necroptosis plays a vital role in the nephrotoxicity of Fumonisin B1 in vivo and in vitro. Food Chem Toxicol 2024; 189:114714. [PMID: 38705344 DOI: 10.1016/j.fct.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Fumonisin B1 (FB1), one of the most widely distributed mycotoxins found in grains and feeds as contaminants, affects many organs including the kidney once ingested. However, the nephrotoxicity of FB1 remains to be further uncovered. The connection between necroptosis and nephrotoxicity of FB1 has been investigated in this study. The results showed that mice exposed to high doses of FB1 (2.25 mg/kg b.w.) developed kidney damage, with significant increases in proinflammatory cytokines (Il-6, Il-1β), kidney injury-related markers (Ngal, Ntn-1), and gene expressions linked to necroptosis (Ripk1, Ripk3, Mlkl). The concentration-dependent damage effects of FB1 on PK-15 cells contain cytotoxicity, cellular inflammatory response, and necroptosis. These FB1-induced effects can be neutralized by pretreatment with the necroptosis inhibitor Nec-1. Additionally, FB1 caused mitochondrial damage and mitophagy in vivo and in vitro, whereas Mdivi-1, a mitophagy inhibitor, prevented these effects on PK-15 cells as well as, more crucially, necroptosis. In conclusion, the RIPK1/RIPK3/MLKL signal route of necroptosis, which may be controlled by mitophagy, mediated nephrotoxicity of FB1. Our findings clarify the underlying molecular pathways of FB1-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhang Ping
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhang Shuxia
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Du Xinyu
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Huang Kehe
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chen Xingxiang
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Wang Chunfeng
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
38
|
Zhang R, Zhu Z, Ma Y, Tang T, Wu J, Huang F, Xu L, Wang Y, Zhou J. Rhizoma Alismatis Decoction improved mitochondrial dysfunction to alleviate SASP by enhancing autophagy flux and apoptosis in hyperlipidemia acute pancreatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155629. [PMID: 38677271 DOI: 10.1016/j.phymed.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas, especially hyperlipidemia acute pancreatitis (HLAP) is the third leading cause of acute pancreatitis which is more severe with a greater incidence of persistent multiorgan failure. HLAP inflicts injury upon the organelles within the acinar cell, particularly mitochondria, the endolysosomal-autophagy system, and is accompanied by senescence-associated secretory phenotype (SASP). RAD, only two consists of Rhizoma Alismatis and Atractylodes macrocephala Rhizoma, which is best known for its ability to anti-inflammatory and lipid-lowering. Nevertheless, the mechanism by which RAD alleviates HLAP remains obscure, necessitating further investigation. PURPOSE The study aimed to assess the effects of the RAD on HLAP and to elucidate the underlying mechanism in vivo and in vitro, offering a potential medicine for clinical treatment for HLAP. STUDY DESIGN AND METHODS C57BL/6 mice with hyperlipidemia acute pancreatitis were induced by HFD and CER, then administrated with RAD. AR42J were stimulated by cerulein or conditioned medium and then cultured with RAD. Serums were analyzed to evaluate potential pancreas and liver damage. Furthermore, tissue samples were obtained for histological, and protein investigations by H&E, Oil red staining, and Western blot. In addition, western blot and immunofluorescent staining were utilized to estimate the effect of RAD on mitochondrial function, autophagy flux, and SASP. RESULTS In vivo, RAD considerably alleviated systemic inflammation while attenuating TC, TG, AMY, LPS, inflammatory cytokines, histopathology changes, oxidative damage, mitochondrial fission, and autophagy markers in HLAP mice. Impaired autophagy flux and mitochondrial dysfunction resulted in a significant enhancement of NLRP3 and IL-1β in the pancreas. RAD could reverse these changes. In vitro, RAD significantly restored mitochondrial membrane potential and oxidative phosphorylation levels. RAD decreased Beclin-1 and LC3-II expression and increased LAMP-1 and Parkin-Pink expression, which showed that RAD significantly ameliorated HLAP-induced damage to the mitochondria function by suppressing mitochondrial oxidative damage and enhancing autophagy flux and mitophagy to remove the damaged mitochondria. In addition, we found that RAD could up-regulate the expression of BAX, and Bad and down-regulate the expression of p16, and p21, indicating that RAD could promote damaged cell apoptosis and alleviate SASP. CONCLUSIONS This study revealed that RAD ameliorates mitochondrial function to alleviate SASP through enhancing autophagy flux, mitophagy, and apoptosis which provided a molecular basis for the advancement and development of protection strategies against HLAP.
Collapse
Affiliation(s)
- Rongzhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiyong Zhu
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China
| | - Yumei Ma
- Digestive Department of Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Tiantian Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, China
| | - Yaping Wang
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
39
|
Yang C, Xiao C, Ding Z, Zhai X, Liu J, Yu M. Canagliflozin Mitigates Diabetic Cardiomyopathy through Enhanced PINK1-Parkin Mitophagy. Int J Mol Sci 2024; 25:7008. [PMID: 39000117 PMCID: PMC11241502 DOI: 10.3390/ijms25137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.
Collapse
Affiliation(s)
- Chunru Yang
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Cheng Xiao
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Zerui Ding
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Xiaojun Zhai
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| | - Jieying Liu
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (C.Y.)
| |
Collapse
|
40
|
Wang Y, Ren T, Li C, Wu Q, Liu J, Guan X, Chang X, Liu Z, Liu R. Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure. Cell Stress Chaperones 2024; 29:510-518. [PMID: 38821173 PMCID: PMC11214171 DOI: 10.1016/j.cstres.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.
Collapse
Affiliation(s)
- Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuizhi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
41
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
42
|
Wu W, Jia H, Chen S, Ma X, Zhou S, Qiu L, Wu X, Li P, Chu H, Zhang G. Inhibition of OGG1 ameliorates pulmonary fibrosis via preventing M2 macrophage polarization and activating PINK1-mediated mitophagy. Mol Med 2024; 30:72. [PMID: 38822247 PMCID: PMC11143656 DOI: 10.1186/s10020-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hongxia Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinran Ma
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lingxiao Qiu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xinhui Wu
- Department of Traditional Chinese Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, 450064, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Heying Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
43
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
44
|
Ji M, Sun L, Zhang M, Liu Y, Zhang Z, Wang P. RN0D, a galactoglucan from Panax notoginseng flower induces cancer cell death via PINK1/Parkin mitophagy. Carbohydr Polym 2024; 332:121889. [PMID: 38431406 DOI: 10.1016/j.carbpol.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of β-1,4-galactan and β-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.
Collapse
Affiliation(s)
- Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
45
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
46
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
47
|
Hu Y, Dai S, Zhao L, Zhao L. Research progress on the improvement of cardiovascular diseases through the autonomic nervous system regulation of the NLRP3 inflammasome pathway. Front Cardiovasc Med 2024; 11:1369343. [PMID: 38650918 PMCID: PMC11034522 DOI: 10.3389/fcvm.2024.1369343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Cardiovascular disease stands as a leading global cause of mortality. Nucleotide-binding Oligomerization Domain-like Receptor Protein 3 (NLRP3) inflammasome is widely acknowledged as pivotal factor in specific cardiovascular disease progression, such as myocardial infarction, heart failure. Recent investigations underscore a close interconnection between autonomic nervous system (ANS) dysfunction and cardiac inflammation. It has been substantiated that sympathetic nervous system activation and vagus nerve stimulation (VNS) assumes critical roles withinNLRP3 inflammasome pathway regulation, thereby contributing to the amelioration of cardiac injury and enhancement of prognosis in heart diseases. This article reviews the nexus between NLRP3 inflammasome and cardiovascular disorders, elucidating the modulatory functions of the sympathetic and vagus nerves within the ANS with regard to NLRP3 inflammasome. Furthermore, it delves into the potential therapeutic utility of NLRP3 inflammasome to be targeted by VNS. This review serves as a valuable reference for further exploration into the potential mechanisms underlying VNS in the modulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Lulu Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
48
|
Zhang G, Wang Q, Jiang B, Yao L, Wu W, Zhang X, Wan D, Gu Y. Progress of medicinal plants and their active metabolites in ischemia-reperfusion injury of stroke: a novel therapeutic strategy based on regulation of crosstalk between mitophagy and ferroptosis. Front Pharmacol 2024; 15:1374445. [PMID: 38650626 PMCID: PMC11033413 DOI: 10.3389/fphar.2024.1374445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.
Collapse
Affiliation(s)
- Guozhen Zhang
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Qiang Wang
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lihe Yao
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjuan Wu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyan Zhang
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Dongjun Wan
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Youquan Gu
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
49
|
Zhang Y, Zou R, Abudureyimu M, Liu Q, Ma J, Xu H, Yu W, Yang J, Jia J, Qian S, Wang H, Yang Y, Wang X, Fan X, Ren J. Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy. J Mol Cell Biol 2024; 15:mjad056. [PMID: 37771085 PMCID: PMC11193060 DOI: 10.1093/jmcb/mjad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) offers proven cardiovascular benefit, although its impact on diabetes remains elusive. This study examined the effects of ALDH2 overexpression and knockout on diabetic cardiomyopathy and the mechanism involved with a focus on mitochondrial integrity. Mice challenged with streptozotocin (STZ, 200 mg/kg, via intraperitoneal injection) exhibited pathological alterations, including reduced respiratory exchange ratio, dampened fractional shortening and ejection fraction, increased left ventricular end-systolic and diastolic diameters, cardiac remodeling, cardiomyocyte contractile anomalies, intracellular Ca2+ defects, myocardial ultrastructural injury, oxidative stress, apoptosis, and mitochondrial damage, which were overtly attenuated or accentuated by ALDH2 overexpression or knockout, respectively. Diabetic patients also exhibited reduced plasma ALDH2 activity, cardiac remodeling, and diastolic dysfunction. In addition, STZ challenge altered expression levels of mitochondrial proteins (PGC-1α and UCP2) and Ca2+ regulatory proteins (SERCA, Na+-Ca2+ exchanger, and phospholamban), dampened autophagy and mitophagy (LC3B ratio, TOM20, Parkin, FUNDC1, and BNIP3), disrupted phosphorylation of Akt, GSK3β, and Foxo3a, and elevated PTEN phosphorylation, most of which were reversed or worsened by ALDH2 overexpression or knockout, respectively. Furthermore, the novel ALDH2 activator torezolid, as well as the classical ALDH2 activator Alda-1, protected against STZ- or high glucose-induced in vivo or in vitro cardiac anomalies, which was nullified by inhibition of Akt, GSK3β, Parkin, or mitochondrial coupling. Our data discerned a vital role for ALDH2 in diabetic cardiomyopathy possibly through regulation of Akt and GSK3β activation, Parkin mitophagy, and mitochondrial function.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 710032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Miyesaier Abudureyimu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Haixia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 710032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 710032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Sanli Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 710032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haichang Wang
- Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710077, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9GB, UK
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 710032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
50
|
Abudureyimu M, Luo X, Jiang L, Jin X, Pan C, Yu W, Ge J, Zhang Y, Ren J. FBXL4 protects against HFpEF through Drp1-Mediated regulation of mitochondrial dynamics and the downstream SERCA2a. Redox Biol 2024; 70:103081. [PMID: 38359748 PMCID: PMC10878117 DOI: 10.1016/j.redox.2024.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a devastating health issue although limited knowledge is available for its pathogenesis and therapeutics. Given the perceived involvement of mitochondrial dysfunction in HFpEF, this study was designed to examine the role of mitochondrial dynamics in the etiology of HFpEF. METHOD AND RESULTS Adult mice were placed on a high fat diet plus l-NAME in drinking water ('two-hit' challenge to mimic obesity and hypertension) for 15 consecutive weeks. Mass spectrometry revealed pronounced changes in mitochondrial fission protein Drp1 and E3 ligase FBXL4 in 'two-hit' mouse hearts. Transfection of FBXL4 rescued against HFpEF-compromised diastolic function, cardiac geometry, and mitochondrial integrity without affecting systolic performance, in conjunction with altered mitochondrial dynamics and integrity (hyperactivation of Drp1 and unchecked fission). Mass spectrometry and co-IP analyses unveiled an interaction between FBXL4 and Drp1 to foster ubiquitination and degradation of Drp1. Truncated mutants of FBXL4 (Delta-Fbox) disengaged interaction between FBXL4 and Drp1. Metabolomic and proteomics findings identified deranged fatty acid and glucose metabolism in HFpEF patients and mice. A cellular model was established with concurrent exposure of high glucose and palmitic acid as a 'double-damage' insult to mimic diastolic anomalies in HFpEF. Transfection of FBXL4 mitigated 'double-damage'-induced cardiomyocyte diastolic dysfunction and mitochondrial injury, the effects were abolished and mimicked by Drp1 knock-in and knock-out, respectively. HFpEF downregulated sarco(endo)plasmic reticulum (SR) Ca2+ uptake protein SERCA2a while upregulating phospholamban, RYR1, IP3R1, IP3R3 and Na+-Ca2+ exchanger with unaltered SR Ca2+ load. FBXL4 ablated 'two-hit' or 'double-damage'-induced changes in SERCA2a, phospholamban and mitochondrial injury. CONCLUSION FBXL4 rescued against HFpEF-induced cardiac remodeling, diastolic dysfunction, and mitochondrial injury through reverting hyperactivation of Drp1-mediated mitochondrial fission, underscoring the therapeutic promises of FBXL4 in HFpEF.
Collapse
Affiliation(s)
- Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xuanming Luo
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China
| | - Lingling Jiang
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xuejuan Jin
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Cuizhen Pan
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Junbo Ge
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Yingmei Zhang
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| |
Collapse
|