1
|
Knott MV, Berke CN, Shah KH, Gurses ME, Bashti M, Lu VM, Ivan ME, Castro JG, Komotar RJ, Shah AH. Neurosurgical Approach to Neurocysticercosis in Adults: A Comprehensive Systematic Review of Clinical and Imaging Insights. Neurosurgery 2025:00006123-990000000-01519. [PMID: 39982074 DOI: 10.1227/neu.0000000000003371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/28/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Neurocysticercosis (NCC), caused by larval cysts of Taenia solium, presents a significant health challenge worldwide with diverse clinical presentations and varying management approaches. Untreated NCC can lead to increased intracranial pressure and/or hydrocephalus, with possible death. This review provides comprehensive neurosurgical insight into the heterogeneity of NCC. As there is currently no treatment algorithm for NCC, we propose a framework based on the management strategies most prevalent in the literature. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted searching PubMed, Scopus, and Embase from November 1993 to August 2023. Included articles had individual patient data on the treatments and outcomes of adult patients treated for confirmed symptomatic NCC. Relevant patient data on patient presentations, management, and outcomes and disease characteristics were collected. RESULTS Our analysis included 90 studies with 205 patients. Neuroimaging was diagnostic for all, with MRI being predominant (74%). Cysts were intraparenchymal (n = 69), extraparenchymal (n = 68), spinal (n = 24), and mixed distribution (n = 16). Common symptoms included seizures (39%), headache (39%), and motor weakness/paresis (28%). 67 patients presented with hydrocephalus, 30 (45%) of which received a ventriculoperitoneal shunt. NCC was most commonly treated medically with corticosteroids (56%) and albendazole (55%). Neurosurgical intervention was most commonly performed for surgical extraction of cysts (33%). Combination of medical and surgical treatment (98%, 44/45) or surgical intervention alone (98%, 40/41) was the most successful at resolving symptoms after first treatment. Resolution of symptoms with added radiographic resolution of the cyst was common with maximal treatment (n = 137, 70%). CONCLUSION NCC's diverse presentations and outcomes emphasize the importance of tailored therapeutic strategies. Limitations of this study include its retrospective nature and low sample sizes of individual studies. The prominence of corticosteroids, albendazole, and surgical procedures highlights their central role in NCC management, as well as the indispensable role of neurosurgeons.
Collapse
Affiliation(s)
- Maxon V Knott
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Chandler N Berke
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Khushi Hemendra Shah
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Malek Bashti
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Victor M Lu
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jose G Castro
- Division of Infection Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
2
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
4
|
Poole EI, Rust VA, Crosby KM. Nitric Oxide Acts in the Rat Dorsomedial Hypothalamus to Increase High Fat Food Intake and Glutamate Transmission. Neuroscience 2020; 440:277-289. [DOI: 10.1016/j.neuroscience.2020.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
|
5
|
Skowron K, Jasiński K, Kurnik-Łucka M, Stach P, Kalita K, Węglarz WP, Gil K. Hypothalamic and brain stem neurochemical profile in anorectic rats after peripheral administration of kisspeptin-10 using 1 H-nmr spectroscopy in vivo. NMR IN BIOMEDICINE 2020; 33:e4306. [PMID: 32253803 DOI: 10.1002/nbm.4306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Although anorexia nervosa is classified as a psychiatric disorder associated with socio-environmental and psychological factors, a deeper insight into the dominant neurobiological basis is needed to develop a more effective approach of treatment. Given the high contribution of genetic predisposition and the underlying pathophysiology of neurohormonal circuits, it seems that pharmacological targeting of these mechanisms may provide us with better therapeutic outcomes. METHODS 1 H-NMR spectroscopy was used to measure concentrations of the hypothalamus and brain stem metabolites in an activity-based rodent model (ABA) after subcutaneous administration of kisspeptin-10. Because anorexia mainly affects young women and often leads to hypogonadotropic-hypogonadism, we investigated the influence of this neuropeptide, which is involved in reproductive function by regulating the hypothalamic-pituitary-gonadal axis, on the ABA model development. RESULTS Kisspeptin reinforced food consumption in an activity-based rodent model of anorexia changing a pattern of weight loss. 1 H-NMR spectroscopy of the hypothalamus and brain stem of ABA rats revealed a statistically significant change in the concentration of creatine (Cr; decreased, P = 0.030), phosphocreatine (PCr; increased, P = 0.030), γ-aminobutyric acid (GABA; decreased, P = 0.011), glutathione (GSH; increased, P = 0.011) and inositol (INS; increased, P = 0.047) compared to the control group. Subcutaneous administration of kisspeptin reversed the decrease in GABA (P = 0.018) and Cr (P = 0.030) levels in the hypothalamus as well as restored glutamate (GLU; P = 0.040) level in the brain stem. CONCLUSIONS We suspect that kisspeptin through modulation of hypothalamic GABAergic signaling increases food intake, and thus positively alters brain metabolism.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Jasiński
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | - Paulina Stach
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Kalita
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Władysław P Węglarz
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Vapor Cannabis Exposure Promotes Genetic Plasticity in the Rat Hypothalamus. Sci Rep 2019; 9:16866. [PMID: 31728018 PMCID: PMC6856070 DOI: 10.1038/s41598-019-53516-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
It is well established that cannabis use promotes appetite. However, how cannabis interacts with the brain’s appetite center, the hypothalamus, to stimulate feeding behavior is unknown. A growing body of evidence indicates that the hypothalamic transcriptome programs energy balance. Here, we tested the hypothesis that cannabis targets alternative polyadenylation (APA) sites within hypothalamic transcripts to regulate transcriptomic function. To do this, we used a novel cannabis vapor exposure model to characterize feeding in adult male Long Evans rats and aligned this behavioral response with APA events using a Whole Transcriptome Termini Sequencing (WTTS-Seq) approach as well as functional RNA abundance measurements with real-time quantitative polymerase chain reactions. We found that vapor cannabis exposure promoted food intake in free-feeding and behaviorally sated rats, validating the appetite stimulating properties of cannabis. Our WTTS-Seq analysis mapped 59 unique cannabis-induced hypothalamic APAs that occurred primarily within exons on transcripts that regulate synaptic function, excitatory synaptic transmission, and dopamine signaling. Importantly, APA insertions regulated RNA abundance of Slc6a3, the dopamine transporter, suggesting a novel genetic link for cannabis regulation of brain monoamine function. Collectively, these novel data indicate that a single cannabis exposure rapidly targets a key RNA processing mechanism linked to brain transcriptome function.
Collapse
|
7
|
Yu Y, Patch C, Weston-Green K, Zhou Y, Zheng K, Huang XF. Dietary Galacto-Oligosaccharides and Resistant Starch Protect Against Altered CB1 and 5-HT1A and 2A Receptor Densities in Rat Brain: Implications for Preventing Cognitive and Appetite Dysfunction During a High-Fat Diet. Mol Nutr Food Res 2018; 62:e1800422. [PMID: 30152105 DOI: 10.1002/mnfr.201800422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/26/2018] [Indexed: 11/07/2022]
Abstract
SCOPE A high-fat, but low-fiber, diet is associated with obesity and cognitive dysfunction, while dietary fiber supplementation can improve cognition. METHODS AND RESULTS This study examines whether dietary fibers, galacto-oligosaccharides (GOS) and resistant starch (RS), could prevent high-fat (HF)-diet-induced alterations in neurotransmitter receptor densities in brain regions associated with cognition and appetite. Rats are fed a HF diet, HF diet with GOS, HF diet with RS, or a low-fat (LF, control) diet for 4 weeks. Cannabinoid CB1 (CB1R) and 5HT1A (5HT1A R) and 5-HT2A (5HT2A R) receptor binding densities are examined. In the hippocampus and hypothalamus, a HF diet significantly increases CB1R binding, while HF + GOS and HF + RS diets prevented this increase. HF diet also increases hippocampal and hypothalamic 5-HT1A R binding, while HF + GOS and HF + RS prevented the alterations. Increased 5-HT2A binding is prevented by HF + GOS and HF + RS in the medial mammillary nucleus. CONCLUSIONS These results demonstrate that increased CB1R, 5-HT1A R and 5-HT2A R induced by a HF diet can be prevented by GOS and RS supplementation in brain regions involved in cognition and appetite. Therefore, increased fiber intake may have beneficial effects on improving learning and memory, as well as reducing excessive appetite, during the chronic consumption of a HF (standard Western) diet.
Collapse
Affiliation(s)
- Yinghua Yu
- Illawarra Health and Medical Research Institute and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, 221004, China
| | - Craig Patch
- Illawarra Health and Medical Research Institute and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
| | - Katrina Weston-Green
- Illawarra Health and Medical Research Institute and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
| | - Yuan Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, 221004, China
| |
Collapse
|
8
|
Güemes A, Georgiou P. Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med 2018; 4:9. [PMID: 32232085 PMCID: PMC7098234 DOI: 10.1186/s42234-018-0009-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/10/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a disease caused by a breakdown in the glucose metabolic process resulting in abnormal blood glucose fluctuations. Traditionally, control has involved external insulin injection in response to elevated blood glucose to substitute the role of the beta cells in the pancreas which would otherwise perform this function in a healthy individual. The central nervous system (CNS), however, also plays a vital role in glucose homoeostasis through the control of pancreatic secretion and insulin sensitivity which could potentially be used as a pathway for enhancing glucose control. In this review, we present an overview of the brain regions, peripheral nerves and molecular mechanisms by which the CNS regulates glucose metabolism and the potential benefits of modulating them for diabetes management. Development of technologies to interface to the nervous system will soon become a reality through bioelectronic medicine and we present the emerging opportunities for the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Amparo Güemes
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
9
|
Chowdhury GMI, Wang P, Ciardi A, Mamillapalli R, Johnson J, Zhu W, Eid T, Behar K, Chan O. Impaired Glutamatergic Neurotransmission in the Ventromedial Hypothalamus May Contribute to Defective Counterregulation in Recurrently Hypoglycemic Rats. Diabetes 2017; 66:1979-1989. [PMID: 28416628 PMCID: PMC5482086 DOI: 10.2337/db16-1589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
The objectives of this study were to understand the role of glutamatergic neurotransmission in the ventromedial hypothalamus (VMH) in response to hypoglycemia and to elucidate the effects of recurrent hypoglycemia (RH) on this neurotransmitter. We 1) measured changes in interstitial VMH glutamate levels by using microdialysis and biosensors, 2) identified the receptors that mediate glutamate's stimulatory effects on the counterregulatory responses, 3) quantified glutamate metabolic enzyme levels in the VMH, 4) examined astrocytic glutamate reuptake mechanisms, and 5) used 1H-[13C]-nuclear magnetic resonance (NMR) spectroscopy to evaluate the effects of RH on neuronal glutamate metabolism. We demonstrated that glutamate acts through kainic acid receptors in the VMH to augment counterregulatory responses. Biosensors showed that the normal transient rise in glutamate levels in response to hypoglycemia is absent in RH animals. More importantly, RH reduced extracellular glutamate concentrations partly as a result of decreased glutaminase expression. Decreased glutamate was also associated with reduced astrocytic glutamate transport in the VMH. NMR analysis revealed a decrease in [4-13C]glutamate but unaltered [4-13C]glutamine concentrations in the VMH of RH animals. The data suggest that glutamate release is important for proper activation of the counterregulatory response to hypoglycemia and that impairment of glutamate metabolic and resynthetic pathways with RH may contribute to counterregulatory failure.
Collapse
Affiliation(s)
- Golam M I Chowdhury
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT
| | - Peili Wang
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Alisha Ciardi
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Ramanaiah Mamillapalli
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Justin Johnson
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Wanling Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Tore Eid
- Departments of Neurosurgery and Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Kevin Behar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT
| | - Owen Chan
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
11
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. RECENT FINDINGS In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. SUMMARY There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Diabetes and Obesity Center of Excellence and Department of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
13
|
Resch JM, Maunze B, Phillips KA, Choi S. Inhibition of food intake by PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA receptors. Physiol Behav 2014; 133:230-5. [PMID: 24878316 DOI: 10.1016/j.physbeh.2014.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain regions through mechanisms involving NMDA receptor potentiation via activation of the Src family of protein tyrosine kinases. With this in mind, we examined the Src-NMDA receptor signaling pathway as a target for PACAP signaling in the VMN that may mediate its effects on feeding behavior. Under nocturnal feeding conditions, NMDA receptor antagonism prior to PACAP administration into the VMN attenuated PACAP-mediated decreases in feeding suggesting that glutamatergic signaling via NMDA receptors is necessary for PACAP-induced hypophagia. Furthermore, PACAP administration into the VMN resulted in increased tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor, and inhibition of Src kinase activity also blocked the effects of PACAP administration into the VMN on feeding behavior. These results indicate that PACAP neurotransmission in the VMN likely augments glutamate signaling by potentiating NMDA receptors activity through the tyrosine phosphorylation events mediated by the Src kinase family, and modulation of NMDA receptor activity by PACAP in the hypothalamus may be a primary mechanism for its regulation of food intake.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kailynn A Phillips
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
14
|
Gonzalez-Campoy JM, Richardson B, Richardson C, Gonzalez-Cameron D, Ebrahim A, Strobel P, Martinez T, Blaha B, Ransom M, Quinonez-Weislow J, Pierson A, Gonzalez Ahumada M. Bariatric endocrinology: principles of medical practice. Int J Endocrinol 2014; 2014:917813. [PMID: 24899894 PMCID: PMC4036612 DOI: 10.1155/2014/917813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/19/2014] [Accepted: 04/11/2014] [Indexed: 12/11/2022] Open
Abstract
Obesity, is a chronic, biological, preventable, and treatable disease. The accumulation of fat mass causes physical changes (adiposity), metabolic and hormonal changes due to adipose tissue dysfunction (adiposopathy), and psychological changes. Bariatric endocrinology was conceived from the need to address the neuro-endocrinological derangements that are associated with adiposopathy, and from the need to broaden the scope of the management of its complications. In addition to the well-established metabolic complications of overweight and obesity, adiposopathy leads to hyperinsulinemia, hyperleptinemia, hypoadiponectinemia, dysregulation of gut peptides including GLP-1 and ghrelin, the development of an inflammatory milieu, and the strong risk of vascular disease. Therapy for adiposopathy hinges on effectively lowering the ratio of orexigenic to anorexigenic signals reaching the the hypothalamus and other relevant brain regions, favoring a lower caloric intake. Adiposopathy, overweight and obesity should be treated indefinitely with the specific aims to reduce fat mass for the adiposity complications, and to normalize adipose tissue function for the adiposopathic complications. This paper defines the principles of medical practice in bariatric endocrinology-the treatment of overweight and obesity as means to treat adiposopathy and its accompanying metabolic and hormonal derangements.
Collapse
Affiliation(s)
- J. Michael Gonzalez-Campoy
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Bruce Richardson
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Conor Richardson
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - David Gonzalez-Cameron
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Ayesha Ebrahim
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Pamela Strobel
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Tiphani Martinez
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Beth Blaha
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Maria Ransom
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Jessica Quinonez-Weislow
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Andrea Pierson
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| | - Miguel Gonzalez Ahumada
- Minnesota Center for Obesity, Metabolism and Endocrinology (MNCOME), 1185 Town Centre Drive, Suite 220, Eagan, MN 55123, USA
| |
Collapse
|