1
|
Zhang W, Dong C, Li Z, Shi H, Xu Y, Zhu M. Serum targeted metabolomics uncovering specific amino acid signature for diagnosis of intrahepatic cholangiocarcinoma. J Pharm Biomed Anal 2025; 252:116457. [PMID: 39241676 DOI: 10.1016/j.jpba.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a hepatobiliary malignancy which accounts for approximately 5-10 % of primary liver cancers and has a high mortality rate. The diagnosis of iCCA remains significant challenges owing to the lack of specific and sensitive diagnostic tests available. Hence, improved methods are needed to detect iCCA with high accuracy. In this study, we evaluated the efficacy of serum amino acid profiling combined with machine learning modeling for the diagnosis of iCCA. A comprehensive analysis of 28 circulating amino acids was conducted in a total of 140 blood samples from patients with iCCA and normal individuals. We screened out 6 differentially expressed amino acids with the criteria of |Log2(Fold Change, FC)| > 0.585, P-value < 0.05, variable importance in projection (VIP) > 1.0 and area under the curve (AUC) > 0.8, in which amino acids L-Asparagine and Kynurenine showed an increasing tendency as the disease progressed. Five frequently used machine learning algorithms (Logistic Regression, Random Forest, Supporting Vector Machine, Neural Network and Naïve Bayes) for diagnosis of iCCA based on the 6 circulating amino acids were established and validated with high sensitivity and good overall accuracy. The resulting models were further improved by introducing a clinical indicator, gamma-glutamyl transferase (GGT). This study introduces a new approach for identifying potential serum biomarkers for the diagnosis of iCCA with high accuracy.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Chuntao Dong
- Nanjing High-Tech Precision Medicine Technology Co., Ltd, Nanjing 210061, China
| | - Zhaosheng Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Huina Shi
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
2
|
Steel TR, Stjärnhage J, Lin Z, Bloomfield HO, Herbert CD, Astin JW, Krawczyk K, Rychlik B, Plażuk D, Jamieson SMF, Hartinger CG. Biotin functionalization of 8-hydroxyquinoline anticancer organometallics: low in vivo toxicity but potent in vitro activity. Dalton Trans 2024. [PMID: 39659246 DOI: 10.1039/d4dt02296c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
[M(arene)(HQ)Cl] complexes (M = RuII/OsII/RhIII/IrIII; HQ = 8-hydroxyquinoline) have shown promise as anticancer agents. To assess the effect of conjugating biotin (vitamin B7) to such compounds and improve their tumor-targeting ability through interaction with the sodium-dependent multivitamin transporter (SMVT), the chlorido co-ligand was exchanged with biotinylated 6-aminoindazole. The complexes were characterized by NMR spectroscopy and mass spectrometry, and purity was determined by elemental analysis. The compounds were shown to be stable in aqueous solution but reacted in particular with biologically relevant nitrogen-donor ligands. The biotinylated organometallics were shown to be able to interact with the high-affinity biotin-binding protein streptavidin using molecular modelling. High antiproliferative activity of the biotinylated Rh complex (IC50 = 1.1-10 μM) and its chlorido precursor (IC50 = 2.1-7.0 μM) was demonstrated in human HCT116, NCI-H460, COLO 205, SW620, A2780 and A2780cis cancer cells, which feature differing levels of SMVT expression. While there was no clear relationship between the anticancer activity in cells and SMVT expression, the complexes showed similar activity in cisplatin-sensitive and -resistant cells. The most potent was the biotinylated Rh derivative which displayed low toxicity toward zebrafish embryos with >75% survival up to day 4 and after treatment with up to 32 μM complex.
Collapse
Affiliation(s)
- Tasha R Steel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Julia Stjärnhage
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Zexiong Lin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Hugh O Bloomfield
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Caitlin D Herbert
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Krzysztof Krawczyk
- Centre for Digital Biology and Biomedical Science - Biobank® Lodz, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Błażej Rychlik
- Centre for Digital Biology and Biomedical Science - Biobank® Lodz, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
3
|
M V, Mohammed AI, Briot C, Ryan RM, Hambley TW. Is ASCT2 a Suitable Vector for the Selective Delivery of Anticancer Drugs? Modification of Glutamine at Either the Carboxylate or the Side Chain Hinders Binding and Transport. ChemMedChem 2024:e202400759. [PMID: 39562323 DOI: 10.1002/cmdc.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The Alanine, Serine, and Cysteine Transporter 2 (ASCT2) transports glutamine into cells and is upregulated in many cancers. Attachment to glutamine to enable ASCT2 to transport anticancer agents into cells has been proposed, but the impact of such modifications is a critical determinant of the potential of this strategy. Transport via ASCT2 of two glutamine analogues modified in ways that reflect possible mechanisms for attaching anticancer agents was studied. The aim was to determine if the modification of glutamine interferes with its transport via ASCT2 and thereby establish whether the conjugation of drugs to glutamine can facilitate the accumulation of anticancer drugs in cancer cells. L-theanine and a glutamine derivative modified at the carboxylate (7) were applied to Xenopus laevis oocytes expressing ASCT2. Two-electrode voltage clamp electrophysiology was used to measure substrate-elicited currents over a range of membrane potentials. Compound 7 was identified as neither a substrate nor an inhibitor while L-theanine was identified as an inhibitor of ASCT2. Thus, modification of glutamine in these ways prevents it from acting as a substrate and suggests that ASCT2 may not be a suitable target for delivery of anticancer drugs attached via either the carboxylate or side chain positions.
Collapse
Affiliation(s)
- Vinitha M
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Adnan Ibrahim Mohammed
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- Department of Chemistry, College of Science, University of Kerbala, Kerbala, 56001, Iraq
| | - Chelsea Briot
- School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Renae M Ryan
- School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
5
|
Li X, Xu J, Yan L, Tang S, Zhang Y, Shi M, Liu P. Targeting Disulfidptosis with Potentially Bioactive Natural Products in Metabolic Cancer Therapy. Metabolites 2024; 14:604. [PMID: 39590840 PMCID: PMC11596291 DOI: 10.3390/metabo14110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic cancers are defined by metabolic reprogramming. Although this reprograming drives rapid tumour growth and invasion, it also reveals specific metabolic vulnerabilities that can be therapeutically exploited in cancer therapy. A novel form of programmed cell death, known as disulfidptosis, was identified last year; tumour cells with high SLC7A11 expression undergo disulfidptosis when deprived of glucose. Natural products have attracted increasing attention and have shown potential to treat metabolic cancers through diverse mechanisms. METHODS We systematically searched electronic databases involving PubMed, Web of Science, Gooale Scholar. To ensue comprehensive exploration, keywords including metabolic reprogramming, metabolic cancer, disulfidptosis, natural products and some other words were employed. RESULTS In this review, we focus on the shared characteristics and metabolic vulnerabilities of metabolic cancers. Additionally, we discuss the molecular mechanisms underlying disulfidptosis and highlight key regulatory genes. Furthermore, we predict bioactive natural products that target disulfidptosis-related genes, offering new perspectives for anticancer strategies through the modulation of disulfidptosis. CONCLUSIONS By summarizing current research progress, this review mainly analyzed the potential mechanisms of natural products in the treatment of metabolic cancer.
Collapse
Affiliation(s)
- Xinyan Li
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Shenkang Tang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
6
|
Abbott KL, Subudhi S, Ferreira R, Gültekin Y, Steinbuch SC, Munim MB, Honeder SE, Kumar AS, Ramesh DL, Wu M, Hansen JA, Sivanand S, Riedmayr LM, Duquette M, Ali A, Henning N, Shevzov-Zebrun A, Gourgue F, Barbeau AM, Waite M, Kunchok T, Ferraro GB, Do BT, Spanoudaki V, Sánchez-Rivera FJ, Jin X, Church GM, Jain RK, Vander Heiden MG. Site of breast cancer metastasis is independent of single nutrient levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.616714. [PMID: 39484531 PMCID: PMC11527034 DOI: 10.1101/2024.10.24.616714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cancer metastasis is a major contributor to patient morbidity and mortality1, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs. We then asked how tumor growth in different tissues relates to nutrient availability and tumor biosynthetic activity. We find that single nutrients alone do not define the sites where breast cancer cells can grow as metastases. Additionally, we identify purine synthesis as a requirement for tumor growth and metastasis across many tissues and find that this phenotype is independent of tissue nucleotide availability or tumor de novo nucleotide synthesis activity. These data suggest that a complex interplay of multiple nutrients within the microenvironment dictates potential sites of metastatic cancer growth, and highlights the interdependence between extrinsic environmental factors and intrinsic cellular properties in influencing where breast cancer cells can grow as metastases.
Collapse
Affiliation(s)
- Keene L. Abbott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonu Subudhi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raphael Ferreira
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yetiş Gültekin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie C. Steinbuch
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Muhammad Bin Munim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie E. Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Ashwin S. Kumar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Diya L. Ramesh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Wu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob A. Hansen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharanya Sivanand
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M. Riedmayr
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Mark Duquette
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Ali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicole Henning
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Shevzov-Zebrun
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Gourgue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M. Barbeau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Millenia Waite
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Gino B. Ferraro
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian T. Do
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Virginia Spanoudaki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - George M. Church
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew G. Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
7
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
8
|
Wibowo A, Jahir Khan M, Sansanaphongpricha K, Khemthong P, Laosiripojana N, Yu YS, Wu KCW, Sakdaronnarong C. Carbon Dots in Photodynamic Therapy: The Role of Dopant and Solvent on Optical and Photo-Responsive Properties. Chemistry 2024; 30:e202400885. [PMID: 39032088 DOI: 10.1002/chem.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Carbon dots (CDs) are novel carbon-based luminescent materials with wide-ranging applications in biosensing, bioimaging, drug transportation, optical devices, and beyond. Their advantageous attributes, including biocompatibility, biodegradability, antioxidant activity, photostability, small particle size (<10 nm), and strong light absorption and excitation across a broad range of wavelengths, making them promising candidates in the field of photodynamic therapy (PDT) as photosensitizers (PSs). Further enhancements in functionality are imperative to enhance the effectiveness of CDs in PDT applications, notwithstanding their inherent benefits. Recently, doping agents and solvents have been demonstrated to improve CDs' optical properties, solubility, cytotoxicity, and organelle targeting efficiency. These improvements result from modifications to the CDs' carbon skeleton matrices, functional groups on the surface state, and chemical structures. This review discusses the modification of CDs with heteroatom dopants, dye dopants, and solvents to improve their physicochemical and optical properties for PDT applications. The correlations between the surface chemistry, functional groups, the structure of the CDs, and their optical characteristics toward quantum yield, redshift feature, and reactive oxygen species (ROS) generation, have also been discussed. Finally, the progressive trends for the use of CDs in PDT applications are also addressed in this review.
Collapse
Affiliation(s)
- Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Kanokwan Sansanaphongpricha
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
9
|
Talarposhti MV, Salehzadeh A, Jalali A. Comparing the toxicity effects of copper oxide nanoparticles conjugated with Lapatinib on breast (MDA-MB-231) and lung (A549) cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6855-6866. [PMID: 38563880 DOI: 10.1007/s00210-024-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
In recent years, the increase in cancer morbidity and mortality has presented scientists with a major challenge in developing new therapeutic agents against cancer cells. This study aims to characterize the anticancer effects of copper oxide nanoparticles (NPs) conjugated with Lapatinib (CuO@Lapatinib) on breast and lung cancer cell lines. The physicochemical properties of the NPs were characterized by fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and zeta potential analyses. The antiproliferative potential of the NPs in the breast (MDA-MB-231) and lung (A549) cancer cell lines and a normal cell line (MRC5) was investigated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Flow cytometry and Hoechst staining were used to evaluate cell apoptosis and cell cycle analysis. The reactive oxygen species (ROS) levels in the treated and control cells were also determined. The NPs were spherical, with a size range of 20-59nm, a DLS size of 338nm, and a zeta potential of -42.9 mV. The half maximal inhibitory concentration (IC50) of CuO@Lapatinib NPs for the normal, breast cancer, and lung cancer cell lines was 105, 98, and 87 µg/ml, respectively. Treatment with CuO@Lapatinib NPs caused considerable apoptosis induction in breast cancer (from 0.65% to 68.96%) and lung cancer cell lines (from 1.11% to 44.11%). Also, an increased level of cell cycle arrest at the S phase was observed in both cancer cell lines. The ROS level in the breast and lung cancer cell lines after treatment with CuO@Lapatinib NPs increased by 3.45 and 21.04 folds, respectively. Nuclear morphological alterations, including chromatin condensation and fragmentation, were observed in both cancer cell lines. This study indicates CuO@Lapatinib is a potent antiproliferative compound with more efficient inhibitory effects on lung cancer than breast cancer cells, which can be related to the higher ROS generation in the A549 cell line.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Amir Jalali
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| |
Collapse
|
10
|
Liu F, Yao Y, Guo C, Dai P, Huang J, Peng P, Wang M, Dawa Z, Zhu C, Lin C. Trichodelphinine A alleviates pulmonary fibrosis by inhibiting collagen synthesis via NOX4-ARG1/TGF-β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155755. [PMID: 38870750 DOI: 10.1016/j.phymed.2024.155755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pulmonary fibrosis, a progressive and fatal lung disease with no effective treatment medication, is characterized by lung remodeling and fibroblastic foci caused by an oxidative imbalance with an overloading deposition of collagen. Trichodelphinine A, a hetisine-type C20-diterpenoid alkaloid, was found anti-fibrotic activity in vitro, but its effect and mechanism on pulmonary fibrosis still unknown. PURPOSE Our study aimed to investigate and validate the anti-fibrotic properties of trichodelphinine A in pulmonary fibrosis animals induced by bleomycin (BLM), and its mechanism whether via NOX4-ARG1/TGF-β signaling pathway. METHODS The anti-fibrotic effects of trichodelphinine A were evaluated using BLM-induced rats through indicators of lung histopathology and collagen synthesis. Dynamic metabolomics evaluated the metabolic disorder and therapeutic effect of trichodelphinine A. The interaction between trichodelphinine A and NOX4 receptor was confirmed using CETSA and molecular dynamics experiments. Molecular biology experiments were conducted in NOX4 gene knockout mice to investigate the intervention effect of trichodelphinine A. RESULTS Trichodelphinine A could suppress histopathologic changes, collagen deposition and proinflammatory cytokine release pulmonary fibrosis in bleomycin induced rats. Dynamic metabolomics studies revealed that trichodelphinine A could correct endogenous metabolic disorders of arachidonic acid, arginine and proline during fibrosis development, which revealed that the regulation of oxidative stress and amino acid metabolism targeting NOX4 and ARG1 may be the main pharmacological mechanisms of trichodelphinine A on pulmonary fibrosis. We further determined that trichodelphinine A inhibited over oxidative stress and collagen deposition by suppressing Nrf2-keap1 and ARG1-OAT signaling pathways, respectively. Molecular dynamics studies showed that trichodelphinine A was directly binds with NOX4, in which PHE354 and THR355 residues of NOX4 are critical binding sites for trichodelphinine A. Mechanistic validation in cells or mice with NOX4 knockout or silencing suggested that the anti-fibrotic effects of trichodelphinine A depended on inhibition of NOX4 to suppress ARG1/OAT activation and TGF-β/Smads signaling pathway. CONCLUSION Collectively, our findings indicate a powerful anti-fibrotic function of trichodelphinine A in pulmonary fibrosis via targeting NOX4. NOX4 mediates the activation of ARG1/OAT to regulate arginase-proline metabolism, and promotes TGF-β/Smads signaling pathway, thereby affecting the collagen synthesis in pulmonary fibrosis, which is a novel finding and indicates that inhibition of NOX4 is a novel therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; The First Affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Chengxi Guo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jinhao Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peng Peng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zeren Dawa
- University of Tibetan Medicine, Lasa 850000, PR China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Pessino G, Lonati L, Scotti C, Calandra S, Cazzalini O, Iaria O, Previtali A, Baiocco G, Perucca P, Tricarico A, Vetro M, Stivala LA, Ganini C, Cancelliere M, Zucchetti M, Guardamagna I, Maggi M. Differential effect of asparagine and glutamine removal on three adenocarcinoma cell lines. Heliyon 2024; 10:e35789. [PMID: 39170541 PMCID: PMC11337022 DOI: 10.1016/j.heliyon.2024.e35789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Asparagine and glutamine depletion operated by the drug Asparaginase (ASNase) has revolutionized therapy in pediatric patients affected by Acute Lymphoblastic Leukemia (ALL), bringing remissions to a remarkable 90 % of cases. However, the knowledge of the proproliferative role of asparagine in adult and solid tumors is still limited. We have here analyzed the effect of ASNase on three adenocarcinoma cell lines (A549, lung adenocarcinoma, MCF-7, breast cancer, and 786-O, kidney cancer). In contrast to MCF-7 cells, 786-O and A549 cells proved to be a relevant target for cell cycle perturbation by asparagine and glutamine shortage. Indeed, when the cell-cycle was analyzed by flow cytometry, A549 showed a canonical response to asparaginase, 786-O cells, instead, showed a reduction of the percentage of cells in the G1 phase and an increase of those in the S-phase. Despite an increased number of PCNA and RPA70 positive nuclear foci, BrdU and EdU incorporation was absent or strongly delayed in treated 786-O cells, thus indicating a readiness of replication forks unmatched by DNA synthesis. In 786-O asparagine synthetase was reduced following treatment and glutamine synthetase was totally absent. Interestingly, DNA synthesis could be recovered by adding Gln to the medium. MCF-7 cells showed no significant changes in the cell cycle phases, in DNA-bound PCNA and in total PCNA, but a significant increase in ASNS and GS mRNA and protein expression. The collected data suggest that the effect observed on 786-O cells following ASNase treatment could rely on mechanisms which differ from those well-known and described for leukemic blasts, consisting of a complete block in the G1/S transition in proliferating cells and on an increase on non-proliferative (G0) blasts.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Silvia Calandra
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Rheumatology Unit, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Ornella Cazzalini
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Previtali
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Paola Perucca
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Tricarico
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Martina Vetro
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Lucia Anna Stivala
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Carlo Ganini
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Interdisciplinary Department of Medicine, A. Moro University of Bari, Bari, Italy
| | - Marta Cancelliere
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
13
|
Zhan J, Huang L, Niu L, Lu W, Sun C, Liu S, Ding Z, Li E. Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism. Cell Commun Signal 2024; 22:387. [PMID: 39090604 PMCID: PMC11292923 DOI: 10.1186/s12964-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Liyan Niu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenhui Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Chengpeng Sun
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
14
|
Oatman N, Gawali MV, Congrove S, Caceres R, Sukumaran A, Gupta N, Murugesan N, Arora P, Subramanian SV, Choi K, Abdel-Malek Z, Reisz JA, Stephenson D, Amaravadi R, Desai P, D’Alessandro A, Komurov K, Dasgupta B. A Multimodal Drug-Diet-Immunotherapy Combination Restrains Melanoma Progression and Metastasis. Cancer Res 2024; 84:2333-2351. [PMID: 38885087 PMCID: PMC11250569 DOI: 10.1158/0008-5472.can-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mruniya V. Gawali
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sunny Congrove
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Roman Caceres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Abitha Sukumaran
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Narmadha Murugesan
- Divisions of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | | | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
15
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Brown RB. Spontaneous Tumor Regression and Reversion: Insights and Associations with Reduced Dietary Phosphate. Cancers (Basel) 2024; 16:2126. [PMID: 38893245 PMCID: PMC11172109 DOI: 10.3390/cancers16112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
17
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
18
|
Li X, Zhang HS. Amino acid metabolism, redox balance and epigenetic regulation in cancer. FEBS J 2024; 291:412-429. [PMID: 37129434 DOI: 10.1111/febs.16803] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
19
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
20
|
Dong Y, Wei J, Yang F, Qu Y, Huang J, Shi D. Nutrient-Based Approaches for Melanoma: Prevention and Therapeutic Insights. Nutrients 2023; 15:4483. [PMID: 37892558 PMCID: PMC10609833 DOI: 10.3390/nu15204483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Melanoma, a prevalent and lethal form of skin cancer, remains a formidable challenge in terms of prevention and treatment. While significant progress has been made in understanding its pathogenesis and treatment, the quest for effective prevention strategies and therapeutic approaches remains ongoing. Considering the increased advancements in understanding the dynamic interplay between nutrients and melanoma, we aim to offer a refreshed perspective on nutrient-based approaches for melanoma prevention and adjunctive therapy. In contrast to other studies, we have innovatively provided a detailed exposition of the nutrients' influences on melanoma prognosis and treatment. This review firstly examines various nutrients, including antioxidants (namely vitamins A, D, C, and E; selenium; and caffeine), polyunsaturated fatty acids, and flavonoids, for their effects and underlying mechanisms in reducing melanoma risk. Among these nutrients, caffeine shows the most promising potential, as it is supported by multiple cohort studies for its protective effect against melanoma. In contrast, there is a certain degree of inconsistency in the research of other nutrients, possibly due to inherent differences between animal studies and epidemiological research, as well as variations in the definition of nutrient intake. To comprehensively investigate the impact of nutrients on melanoma progression and therapeutic approaches, the following sections will explore how nutrients influence immune responses and other physiological processes. While there is robust support from cell and animal studies regarding the immunomodulatory attributes of vitamins D and zinc, the anti-angiogenic potential of polyphenols, and the cell growth-inhibitory effects of flavonoids, the limited availability of human-based research substantially constrains their practical relevance in clinical contexts. As for utilizing nutrients in adjuvant melanoma treatments, multiple approaches have garnered clinical research support, including the utilization of vitamin D to decrease the postoperative recurrence rates among melanoma patients and the adoption of a high-fiber diet to enhance the effectiveness of immunotherapy. In general, the effects of most nutrients on reducing the risk of melanoma are not entirely clear. However, several nutrients, including vitamin D and dietary fiber, have demonstrated their potential to improve the melanoma prognosis and enhance the treatment outcomes, making them particularly deserving of clinical attention. A personalized and interdisciplinary approach, involving dermatologists, oncologists, nutritionists, and researchers, holds the promise of optimizing melanoma treatment strategies.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Di Shi
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
21
|
Chen S, Ma J, Xiao Y, Zhou D, He P, Chen Y, Zheng X, Lin H, Qiu F, Yuan Y, Zhong J, Li X, Pan X, Fang Z, Wang C. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer. Mol Pharm 2023; 20:5214-5225. [PMID: 37733628 DOI: 10.1021/acs.molpharmaceut.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..
Collapse
Affiliation(s)
- Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Dongyan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xiaolu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
- Pharmaceutical Department, Jinhua Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yuying Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jiaben Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| |
Collapse
|
22
|
You S, Wang MJ, Hou ZY, Wang WD, Du TT, Xue NN, Ji M, Chen XG. Chlorogenic Acid Induced Neuroblastoma Cells Differentiation via the ACAT1-TPK1-PDH Pathway. Pharmaceuticals (Basel) 2023; 16:877. [PMID: 37375824 DOI: 10.3390/ph16060877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chlorogenic acid (CHA) has been shown to have substantial biological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the pharmacological role of CHA in neuroblastoma has not yet been assessed. Neuroblastoma is a type of cancer that develops in undifferentiated sympathetic ganglion cells. This study aims to assess the antitumor activity of CHA against neuroblastoma and reveal its mechanism of action in cell differentiation. METHODS Be(2)-M17 and SH-SY5Y neuroblastoma cells were used to confirm the differentiation phenotype. Subcutaneous and orthotopic xenograft mouse models were also used to evaluate the antitumor activity of CHA. Seahorse assays and metabolomic analyses were further performed to investigate the roles of CHA and its target ACAT1 in mitochondrial metabolism. RESULTS CHA induced the differentiation of Be(2)-M17 and SH-SY5Y neuroblastoma cells in vivo and in vitro. The knockdown of mitochondrial ACAT1, which was inhibited by CHA, also resulted in differentiation characteristics in vivo and in vitro. A metabolomic analysis revealed that thiamine metabolism was involved in the differentiation of neuroblastoma cells. CONCLUSIONS These results provide evidence that CHA shows good antitumor activity against neuroblastoma via the induction of differentiation, by which the ACAT1-TPK1-PDH pathway is involved. CHA is a potential drug candidate for neuroblastoma therapy.
Collapse
Affiliation(s)
- Shen You
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Jin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Yan Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei-Da Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ni-Na Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao-Guang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Parida PK, Marquez-Palencia M, Ghosh S, Khandelwal N, Kim K, Nair V, Liu XZ, Vu HS, Zacharias LG, Gonzalez-Ericsson PI, Sanders ME, Mobley BC, McDonald JG, Lemoff A, Peng Y, Lewis C, Vale G, Halberg N, Arteaga CL, Hanker AB, DeBerardinis RJ, Malladi S. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases. NATURE CANCER 2023; 4:893-907. [PMID: 37248394 PMCID: PMC11290463 DOI: 10.1038/s43018-023-00563-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mauricio Marquez-Palencia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suvranil Ghosh
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nitin Khandelwal
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kangsan Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vidhya Nair
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hieu S Vu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Melinda E Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Allard D, Cousineau I, Ma EH, Allard B, Bareche Y, Fleury H, Stagg J. The CD73 immune checkpoint promotes tumor cell metabolic fitness. eLife 2023; 12:e84508. [PMID: 37261423 PMCID: PMC10259490 DOI: 10.7554/elife.84508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/02/2023] Open
Abstract
CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Isabelle Cousineau
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Eric H Ma
- McGill Goodman Cancer Research CentreMontréalCanada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Hubert Fleury
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| |
Collapse
|
25
|
Apiz Saab JJ, Dzierozynski LN, Jonker PB, AminiTabrizi R, Shah H, Menjivar RE, Scott AJ, Nwosu ZC, Zhu Z, Chen RN, Oh M, Sheehan C, Wahl DR, Pasca di Magliano M, Lyssiotis CA, Macleod KF, Weber CR, Muir A. Pancreatic tumors exhibit myeloid-driven amino acid stress and upregulate arginine biosynthesis. eLife 2023; 12:e81289. [PMID: 37254839 PMCID: PMC10260022 DOI: 10.7554/elife.81289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.
Collapse
Affiliation(s)
- Juan J Apiz Saab
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Patrick B Jonker
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of ChicagoChicagoUnited States
| | - Rosa Elena Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Andrew J Scott
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zhou Zhu
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Riona N Chen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Moses Oh
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of MichiganAnn ArborUnited States
| | | | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kay F Macleod
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
26
|
Grassilli E, Cerrito MG. "Ironing out" fasting-induced persister cancer cells to render chemotherapy effective: is this the solution? EBioMedicine 2023; 90:104542. [PMID: 36963237 PMCID: PMC10053373 DOI: 10.1016/j.ebiom.2023.104542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023] Open
Affiliation(s)
- Emanuela Grassilli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy.
| | - Maria Grazia Cerrito
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| |
Collapse
|
27
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Caligiuri G, Tuveson DA. Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell 2023; 41:434-449. [PMID: 36917949 PMCID: PMC11022589 DOI: 10.1016/j.ccell.2023.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Activated fibroblasts in tumors, or cancer-associated fibroblasts (CAFs), have become a popular research area over the past decade. As important players in many aspects of tumor biology, with functions ranging from collagen deposition to immunosuppression, CAFs have been the target of clinical and pre-clinical studies that have revealed their potential pro- and anti-tumorigenic dichotomy. In this review, we describe the important role of CAFs in the tumor microenvironment and the technological advances that made these discoveries possible, and we detail the models that are currently available for CAF investigation. Additionally, we present evidence to support the value of encompassing CAF investigation as a future therapeutic avenue alongside immune and cancer cells while highlighting the challenges that must be addressed for successful clinical translation of new findings.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
29
|
Metabolic reprogramming of glutamine involved in tumorigenesis, multidrug resistance and tumor immunity. Eur J Pharmacol 2023; 940:175323. [PMID: 36535492 DOI: 10.1016/j.ejphar.2022.175323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022]
Abstract
Glutamine, as the most abundant amino acid in the body, participates in the biological synthesis of nucleotides and other non-essential amino acids in the process of cell metabolism. Recent studies showed that glutamine metabolic reprogramming is an important signal during cancer development and progression. This metabolic signature in cancer cells can promote the development of cancer by activating multiple signaling pathways and oncogenes. It can also be involved in tumor immune regulation and promote the development of drug resistance to tumors. In this review, we mainly summarize the role of glutamine metabolic reprogramming in tumors, including the regulation of multiple signaling pathways. We further discussed the promising tumor treatment strategy by targeting glutamine metabolism alone or in combination with chemotherapeutics.
Collapse
|
30
|
Sharma D, Mishra A. Apoptosis induction in leukemic cells by L-asparaginase preparation from Bacillus indicus: bench-scale production, purification and therapeutic application. 3 Biotech 2023; 13:21. [PMID: 36568498 PMCID: PMC9772365 DOI: 10.1007/s13205-022-03440-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
With the emergence of multiple side effects on the usage of commercial L-asparaginase formulations, keen interest is provoked to investigate new sources of L-asparaginases that possess antileukemic properties with minimal side effects. The present study reports the cost-effective bench-scale production, homogeneity purification and apoptosis induction potential of a new L-asparaginase preparation from Bacillus indicus against human leukemia cells. The enzyme is highly specific toward the natural substrate L-asparagine. The study initiated with the enzyme production using cost-effective substrates in which a 3.28-fold enhancement of enzyme activity was achieved in comparison with an unoptimized medium using the central composite experimental design approach. The scale-up of the process in a 3.7-L batch bioreactor resulted in 16.42 ± 0.17 IU/mL of L-asparaginase activity in 24 h. The crude extracellular enzyme was purified to homogeneity using anion exchange chromatography followed by gel filtration chromatography. A single band of approximately 35 kDa molecular weight was obtained on SDS-PAGE, while native PAGE analysis confirmed it to be a tetramer of four identical subunits. The circular dichroism spectroscopic study revealed the α + β mixed type of secondary structure with 38.7% α-helices and 27.4% β pleated sheets. The antitumor toxicity exhibited on the MOLT-4 leukemia cells by the new L-asparaginase was revealed using the MTT assay and acridine orange/propidium iodide dual staining for live/dead cells. The flow cytometry analysis established the potential of the purified L-asparaginase to induce the apoptotic cell death mechanism in MOLT-4 leukemia cells. Conclusively, the L-asparaginase of Bacillus indicus is a highly promising candidate that can be introduced as a new enzyme therapeutic against various leukemia disorders.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
31
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
32
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|
33
|
Darvishi F, Jahanafrooz Z, Mokhtarzadeh A. Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Appl Microbiol Biotechnol 2022; 106:5335-5347. [DOI: 10.1007/s00253-022-12086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
34
|
Du Z, Li T, Huang J, Chen Y, Chen C. Arginase: Mechanisms and Clinical Application in Hematologic Malignancy. Front Oncol 2022; 12:905893. [PMID: 35814439 PMCID: PMC9260017 DOI: 10.3389/fonc.2022.905893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compared to normal tissues and cells, the metabolic patterns of tumor illnesses are more complex, and there are hallmarks of metabolic reprogramming in energy metabolism, lipid metabolism, and amino acid metabolism. When tumor cells are in a state of fast growth, they are susceptible to food shortage, resulting in growth suppression. Using this metabolic sensitivity of tumor cells to construct amino acid consumption therapy does not harm the function of normal cells, which is the focus of metabolic therapy research at the moment. As a non-essential amino acid, arginine is involved in numerous crucial biological processes, including the signaling system, cell proliferation, and material metabolism. Rapidly dividing tumor cells are more likely to be deficient in arginine; hence, utilizing arginase to consume arginine can suppress tumor growth. Due to the absence of arginine succinate synthase, arginine succinate lyase, and ornithine carbamoyl transferase in some blood tumors, arginases may be employed to treat blood tumors. By investigating the mechanism of arginase treatment and the mechanism of drug resistance in greater depth, arginase treatment becomes more successful in hematological cancers and a new anti-cancer agent in clinical practice.
Collapse
Affiliation(s)
- Zefan Du
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tianwen Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| |
Collapse
|
35
|
Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188724. [DOI: 10.1016/j.bbcan.2022.188724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
|
36
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
37
|
Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022; 14:nu14091722. [PMID: 35565690 PMCID: PMC9103817 DOI: 10.3390/nu14091722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Since Otto Warburg's first report on the increased uptake of glucose and lactate release by cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the link between cancer-nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the roles of relatively underappreciated metabolites in cancer-nerve crosstalk, including lactate, vitamins, and amino acids, and propose the investigation of nutrients in cancer-nerve crosstalk based on their tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of cancer-nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and may lead to the identification of potential targets for future cancer therapies.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Casey Atwood
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
38
|
Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol 2022; 12:820173. [PMID: 35178349 PMCID: PMC8846368 DOI: 10.3389/fonc.2022.820173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumor. Growing evidence suggests metabolic changes that support oncogenic progression may cause selective vulnerabilities that can be exploited for cancer treatment. Increasing demands for certain nutrients under genetic determination or environmental challenge enhance dependency of tumor cells on specific nutrient, which could be therapeutically developed through targeting such nutrient dependency. Various nutrients including several amino acids and glucose have been found to induce dependency in genetic alteration- or context-dependent manners. In this review, we discuss the extensively studied nutrient dependency and the biological mechanisms behind such vulnerabilities. Besides, existing applications and strategies to target nutrient dependency in different cancer types, accompanied with remaining challenges to further exploit these metabolic vulnerabilities to improve cancer therapies, are reviewed.
Collapse
Affiliation(s)
- Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
39
|
Wei Y, Huang YH, Skopelitis DS, Iyer SV, Costa AS, Yang Z, Kramer M, Adelman ER, Klingbeil O, Demerdash OE, Polyanskaya SA, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Vakoc CR. SLC5A3-Dependent Myo-inositol Auxotrophy in Acute Myeloid Leukemia. Cancer Discov 2022; 12:450-467. [PMID: 34531253 PMCID: PMC8831445 DOI: 10.1158/2159-8290.cd-20-1849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Abstract
An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate-limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme. SIGNIFICANCE: We show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically defined subset of AML.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V. Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Stony Brook University, Stony Brook, New York
| | - Ana S.H. Costa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emmalee R. Adelman
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Sofya A. Polyanskaya
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Christopher R. Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Corresponding Author: Christopher R. Vakoc, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724. Phone: 516-367-5030; E-mail:
| |
Collapse
|
40
|
Fan FS. Consumption of meat containing ractopamine might enhance tumor growth through induction of asparagine synthetase. Eur J Cancer Prev 2022; 31:82-84. [PMID: 33369951 PMCID: PMC8638813 DOI: 10.1097/cej.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
There is currently no evidence of the carcinogenic effect of the β-adrenergic agonist ractopamine added in finishing swine and cattle feed for promoting leanness. Nonetheless, it has the capability of stimulating expression of asparagine synthetase (ASNS) through activating transcription factor 5, and many other genes involved in the stress reaction in the skeletal muscle of pigs according to published scientific articles. Because overexpression of ASNS has been detected as a key player in amino acid response and unfolded protein response during the development of not a few malignant diseases, especially those with KRAS mutations, and found to be closely related to tumor proliferation, invasion and metastasis, it seems reasonable to hypothesize that intake of ractopamine residue in meat might bring negative effects to cancer patients.
Collapse
Affiliation(s)
- Frank S. Fan
- Department of Medicine, Section of Haematology and Oncology, Ministry of Health and Welfare Taitung Hospital, Taitung County, Taiwan
| |
Collapse
|
41
|
Helenius IT, Madala HR, Yeh JRJ. An Asp to Strike Out Cancer? Therapeutic Possibilities Arising from Aspartate's Emerging Roles in Cell Proliferation and Survival. Biomolecules 2021; 11:1666. [PMID: 34827664 PMCID: PMC8615858 DOI: 10.3390/biom11111666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
A better understanding of the metabolic constraints of a tumor may lead to more effective anticancer treatments. Evidence has emerged in recent years shedding light on a crucial aspartate dependency of many tumor types. As a precursor for nucleotide synthesis, aspartate is indispensable for cell proliferation. Moreover, the malate-aspartate shuttle plays a key role in redox balance, and a deficit in aspartate can lead to oxidative stress. It is now recognized that aspartate biosynthesis is largely governed by mitochondrial metabolism, including respiration and glutaminolysis in cancer cells. Therefore, under conditions that suppress mitochondrial metabolism, including mutations, hypoxia, or chemical inhibitors, aspartate can become a limiting factor for tumor growth and cancer cell survival. Notably, aspartate availability has been associated with sensitivity or resistance to various therapeutics that are presently in the clinic or in clinical trials, arguing for a critical need for more effective aspartate-targeting approaches. In this review, we present current knowledge of the metabolic roles of aspartate in cancer cells and describe how cancer cells maintain aspartate levels under different metabolic states. We also highlight several promising aspartate level-modulating agents that are currently under investigation.
Collapse
Affiliation(s)
| | - Hanumantha Rao Madala
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| |
Collapse
|
42
|
Kurth I, Yamaguchi N, Andreu-Agullo C, Tian HS, Sridhar S, Takeda S, Gonsalves FC, Loo JM, Barlas A, Manova-Todorova K, Busby R, Bendell JC, Strauss J, Fakih M, McRee AJ, Hendifar AE, Rosen LS, Cercek A, Wasserman R, Szarek M, Spector SL, Raza S, Tavazoie MF, Tavazoie SF. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels. SCIENCE ADVANCES 2021; 7:eabi7511. [PMID: 34613776 PMCID: PMC8494442 DOI: 10.1126/sciadv.abi7511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels, and induces tumor apoptosis. RGX-202 suppressed CRC growth across KRAS wild-type and KRAS mutant xenograft, syngeneic, and patient-derived xenograft (PDX) tumors. Antitumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5-fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in patients with metastatic CRC in a phase 1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of preclinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, thus revealing a critical therapeutic target.
Collapse
Affiliation(s)
- Isabel Kurth
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Helen S. Tian
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | - Jia Min Loo
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Laboratory of Precision Oncology and Tumor Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Afsar Barlas
- Memorial Sloan Kettering Cancer Center, 275 York Ave., New York, NY 10065, USA
| | | | - Robert Busby
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | - Johanna C. Bendell
- Sarah Cannon Research Institute, 250 25th Ave N, Nashville, TN 37203, USA
| | - James Strauss
- Mary Crowley Cancer Research, Building C, 7777 Forest Ln #707, Dallas, TX 75230, USA
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Autumn J. McRee
- The University of North Carolina at Chapel Hill, 27599 Chapel Hill, NC, USA
| | - Andrew E. Hendifar
- Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lee S. Rosen
- Jonsson Comprehensive Cancer Center, University of California, 10833 Le Conte Ave, Los Angeles, CA 90024, USA
| | - Andrea Cercek
- Memorial Sloan Kettering Cancer Center, 275 York Ave., New York, NY 10065, USA
| | | | - Michael Szarek
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
- University of Colorado School of Medicine, 13001 E 17th Pl, Aurora, CO 80045, USA
- SUNY Downstate Health Sciences University School of Public Health, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | - Syed Raza
- Inspirna, Inc., 310 E. 67th St, New York, NY 10065, USA
| | | | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
43
|
Wu J, Yang T, Wang X, Li W, Pang M, Sun H, Liang H, Yang F. Development of a multi-target anticancer Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complex. Dalton Trans 2021; 50:10909-10921. [PMID: 34313274 DOI: 10.1039/d1dt01272j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we proposed to design effective multi-target anticancer agents based on the chelation of nontoxic metals with ligands that possess anticancer activity. In total, five Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complexes are synthesized and their activities are tested. Among these complexes, C5 is found to show the highest cytotoxicity on investigating their structure-activity relationships. In addition, C5 not only exhibits an effective inhibitory effect against tumor growth in vivo, but also suppresses angiogenesis and restricts the metastasis of cancer cells in vitro. Multiple mechanisms underlie the antitumor effect of C5, and they include acting against DNA, inducing apoptosis, and inhibiting the activities of anti-apoptotic Bcl-xL protein, metalloproteinase MMP2 and topoisomerase II.
Collapse
Affiliation(s)
- Junmiao Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Xiaojun Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
44
|
Shi W, Li X, Su X, Wen H, Chen T, Wu H, Liu M. The role of multiple metabolic genes in predicting the overall survival of colorectal cancer: A study based on TCGA and GEO databases. PLoS One 2021; 16:e0251323. [PMID: 34398900 PMCID: PMC8367004 DOI: 10.1371/journal.pone.0251323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/25/2021] [Indexed: 12/22/2022] Open
Abstract
The recent advances in gene chip technology have led to the identification of multiple metabolism-related genes that are closely associated with colorectal cancer (CRC). Nevertheless, none of these genes could accurately diagnose or predict CRC. The prognosis of CRC has been made by previous prognostic models constructed by using multiple genes, however, the predictive function of multi-gene prognostic models using metabolic genes for the CRC prognosis remains unexplored. In this study, we used the TCGA-CRC cohort as the test dataset and the GSE39582 cohort as the experimental dataset. Firstly, we constructed a prognostic model using metabolic genes from the TCGA-CRC cohort, which were also associated with CRC prognosis. We analyzed the advantages of the prognostic model in the prognosis of CRC and its regulatory mechanism of the genes associated with the model. Secondly, the outcome of the TCGA-CRC cohort analysis was validated using the GSE39582 cohort. We found that the prognostic model can be employed as an independent prognostic risk factor for estimating the CRC survival rate. Besides, compared with traditional clinical pathology, it can precisely predict CRC prognosis as well. The high-risk group of the prognostic model showed a substantially lower survival rate as compared to the low-risk group. In addition, gene enrichment analysis of metabolic genes showed that genes in the prognostic model are enriched in metabolism and cancer-related pathways, which may explain its underlying mechanism. Our study identified a novel metabolic profile containing 11 genes for prognostic prediction of CRC. The prognostic model may unravel the imbalanced metabolic microenvironment, and it might promote the development of biomarkers for predicting treatment response and streamlining metabolic therapy in CRC.
Collapse
Affiliation(s)
- Weijun Shi
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xincan Li
- Department of General Medicine, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xu Su
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianwen Chen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| | - Mulin Liu
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| |
Collapse
|
45
|
Zain JM, Hanona P. Aggressive T-cell lymphomas: 2021 Updates on diagnosis, risk stratification and management. Am J Hematol 2021; 96:1027-1046. [PMID: 34111312 DOI: 10.1002/ajh.26270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 27 different subtypes of peripheral T-cell lymphoma (PTCL), and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL Gene expression profiling (GEP) can help in diagnosis and prognostication of various subtypes including PTCL-nos and anaplastic large cell lymphoma (ALCL). In addition, mutational analysis is now being incorporated in clinical trials of novel agents to evaluate various biomarkers of response to allow better therapeutic choices for patients. TARGETED THERAPIES There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. This includes the CD30 directed antibody drug conjugate brentuximab vedotin. Other notable targets are CD25, CCR4, inhibition of PI3kinase - m TOR and JAK/STAT pathways. The ALK inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL. The use of checkpoint inhibitors in the treatment of PTCL is still controversial. The most promising results have been seen in cases of extranodal natural killer cell/T-cell (ENK/T) lymphomas and cutaneous T-cell lymphomas (CTCL). Bispecific antibody based treatments as well as CAR-T cell based therapies are in clinical trials.
Collapse
Affiliation(s)
- Jasmine M. Zain
- Department of Hematology/Hematopoietic Cell Transplantation City of Hope Medical Center Duarte California USA
| | | |
Collapse
|
46
|
Bayford RH, Damaso R, Neshatvar N, Ivanenko Y, Rademacher TW, Wu Y, Seifnaraghi N, Ghali L, Patel N, Roitt I, Nordebo S, Demosthenous A. Locating Functionalized Gold Nanoparticles Using Electrical Impedance Tomography. IEEE Trans Biomed Eng 2021; 69:494-502. [PMID: 34314352 DOI: 10.1109/tbme.2021.3100256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE An imaging device to locate functionalized nanoparticles, whereby therapeutic agents are transported from the site of administration specifically to diseased tissues, remains a challenge for pharmaceutical research. Here, we show a new method based on electrical impedance tomography (EIT) to provide images of the location of gold nanoparticles (GNPs) and the excitation of GNPs with radio frequencies (RF) to change impedance permitting an estimation of their location in cell models Methods: We have created an imaging system using quantum cluster GNPs as a contrast agent, activated with RF fields to heat the functionalized GNPs, which causes a change in impedance in the surrounding region. This change is then identified with EIT. RESULTS Images of impedance changes of around 804% are obtained for a sample of citrate stabilized GNPs in a solution of phosphate-buffered saline. A second quantification was carried out using colorectal cancer cells incubated with culture media, and the internalization of GNPs into the colorectal cancer cells was undertaken to compare them with the EIT images. When the cells were incubated with functionalized GNPs, the change was more apparent, approximately 402%. This change was reflected in the EIT image as the cell area was more clearly identifiable from the rest of the area. SIGNIFICANCE EIT can be used as a new method to locate functionalized GNPs in human cells and help in the development of GNP-based drugs in humans to improve their efficacy in the future.
Collapse
|
47
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
48
|
Grima-Reyes M, Martinez-Turtos A, Abramovich I, Gottlieb E, Chiche J, Ricci JE. Physiological impact of in vivo stable isotope tracing on cancer metabolism. Mol Metab 2021; 53:101294. [PMID: 34256164 PMCID: PMC8358691 DOI: 10.1016/j.molmet.2021.101294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is growing interest in the analysis of tumor metabolism to identify cancer-specific metabolic vulnerabilities and therapeutic targets. Finding of such candidate metabolic pathways mainly relies on the highly sensitive identification and quantitation of numerous metabolites and metabolic fluxes using metabolomics and isotope tracing analyses. However, nutritional requirements and metabolic routes used by cancer cells cultivated in vitro do not always reflect the metabolic demands of malignant cells within the tumor milieu. Therefore, to understand how the metabolism of tumor cells in its physiological environment differs from that of normal cells, these analyses must be performed in vivo. Scope of Review This review covers the physiological impact of the exogenous administration of a stable isotope tracer into cancer animal models. We discuss specific aspects of in vivo isotope tracing protocols based on discrete bolus injections of a labeled metabolite: the tracer administration per se and the fasting period prior to it. In addition, we illustrate the complex physiological scenarios that arise when studying tumor metabolism – by isotopic labeling in animal models fed with a specific amino acid restricted diet. Finally, we provide strategies to minimize these limitations. Major Conclusions There is growing evidence that metabolic dependencies in cancers are influenced by tissue environment, cancer lineage, and genetic events. An increasing number of studies describe discrepancies in tumor metabolic dependencies when studied in in vitro settings or in vivo models, including cancer patients. Therefore, in-depth in vivo profiling of tumor metabolic routes within the appropriate pathophysiological environment will be key to identify relevant alterations that contribute to cancer onset and progression. In vivo isotope tracing is the state-of-the-art approach to study tumor metabolism. In vivo tracer administration challenges the physiological metabolism of mice. Interorgan conversion of the tracer might confound tumor labeling patterns. Mouse fasting before in vivo tracing impacts on systemic and tumor metabolism. Optimization is key to minimize physiological alterations linked to in vivo tracing.
Collapse
Affiliation(s)
- Manuel Grima-Reyes
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Adriana Martinez-Turtos
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Johanna Chiche
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France.
| |
Collapse
|
49
|
Metabolic Reprogramming in Anticancer Drug Resistance: A Focus on Amino Acids. Trends Cancer 2021; 7:682-699. [PMID: 33736962 DOI: 10.1016/j.trecan.2021.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Overcoming anticancer drug resistance is a major challenge in cancer therapy, requiring innovative strategies that consider the extensive tumor heterogeneity and adaptability. We provide recent evidence highlighting the key role of amino acid (AA) metabolic reprogramming in cancer cells and the supportive microenvironment in driving resistance to anticancer therapies. AAs sustain the acquisition of anticancer resistance by providing essential building blocks for biosynthetic pathways and for maintaining a balanced redox status, and modulating the epigenetic profile of both malignant and non-malignant cells. In addition, AAs support the reduced intrinsic susceptibility of cancer stem cells to antineoplastic therapies. These findings shed new light on the possibility of targeting nonresponding tumors by modulating AA availability through pharmacological or dietary interventions.
Collapse
|
50
|
Fu Y, Ding L, Yang X, Ding Z, Huang X, Zhang L, Chen S, Hu Q, Ni Y. Asparagine Synthetase-Mediated l-Asparagine Metabolism Disorder Promotes the Perineural Invasion of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:637226. [PMID: 33777794 PMCID: PMC7987891 DOI: 10.3389/fonc.2021.637226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/23/2023] Open
Abstract
Dysregulated amino acids metabolism reciprocally interplays with evolutionary phenotypic characteristics of cancer cells to enhance metastasis. The high metastasis potential of oral squamous cell carcinoma (OSCC) can manifest with perineural invasion (PNI). We here aimed to determine the role of amino acids metabolism in OSCCs with different PNI statuses. Targeted metabolomics was used to quantify 48 amino acids in 20 fresh OSCC samples and 25 amino acids were successfully detected, within which 9 were significantly up-regulated in PNI positive (PNI+) samples. As its highest area under the curve value (0.9063), l-asparagine was selected as the biomarker to distinguish PNI+ from PNI negative (PNI-). Then, the key enzyme of l-asparagine, asparagine synthetase (ASNS), was investigated using immunohistochemistry with 86 OSCC patients. The results showed that ASNS mainly expressed in tumor epitheliums and positively correlated with lymph node metastasis and PNI. Moreover, subgroup survival analysis revealed that ASNS expression combined with PNI status significantly improved their prognostic value, which was confirmed by the TCGA OSCC cohort (n = 279). To validate whether ASNS promotes PNI, we determined ASNS expression levels in five OSCC cell lines and one normal oral keratinocyte, and HSC3 showed the lowest ASNS level but CAL33 had the highest. Therefore, HSC3 and CAL33 (or PBS as control) were selected and injected separately into sciatic nerves to construct the in vivo PNI mouse models. Although both models eventually developed the hind-limb paralysis, nerve dysfunction in the CAL33 model progressed significantly earlier than HSC3 (Day 9 vs. Day 24). Besides, CAL33 migrated significantly farther than HSC3 in the nerve microenvironment (P = 0.0003), indicating high ASNS expression is indispensable for OSCC progression, especially PNI formation, through l-asparagine metabolism alteration. This study provides novel insights into how amino acids metabolism disorders alter tumor neurotropism which helps cancer metastasis.
Collapse
Affiliation(s)
- Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Zhang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|