1
|
Lee S. Modulation of amylin and calcitonin receptor activation by hybrid peptides. Peptides 2024; 182:171314. [PMID: 39454962 DOI: 10.1016/j.peptides.2024.171314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Calcitonin peptide hormone controls calcium homeostasis by activating the calcitonin receptor. When the calcitonin receptor forms a complex with an accessory protein, the complex functions as the receptors for another peptide hormone amylin. The amylin receptors are the drug target for diabetes and obesity treatment. Since human amylin can produce aggregates, rat amylin that does not form aggregates has been commonly used for research. Interestingly, calcitonin originated from salmons was reported to interact with human amylin receptors with higher affinity/potency than endogenous rat amylin. Here, the peptide hybrid was made of a rat amylin N-terminal fragment and a salmon calcitonin C-terminal fragment. This novel hybrid peptide showed higher potency for human amylin receptor 1/2 activation by 6- to 8-fold than endogenous rat amylin. To further examine the role of the peptide C-terminal fragment in receptor activation, another hybrid peptide was made where salmon calcitonin N-terminal 21 amino acids were fused with rat amylin C-terminal 11 amino acids. The rat amylin C-terminal fragment was previously reported to have relatively low affinity for calcitonin receptor extracellular domain. As expected, this calcitonin-amylin hybrid peptide decreased the potency for calcitonin receptor activation by 3-fold compared to salmon calcitonin. The hybrid strategy used in this study significantly changed the peptide potency for amylin and calcitonin receptor activation. These results provide insight into the role of peptide C-terminal fragments in modulating amylin and calcitonin receptor activation.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Jarrah M, Tasabehji D, Fraer A, Mokadem M. Spinal afferent neurons: emerging regulators of energy balance and metabolism. Front Mol Neurosci 2024; 17:1479876. [PMID: 39582948 PMCID: PMC11583444 DOI: 10.3389/fnmol.2024.1479876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in neurophysiology have challenged the long-held paradigm that vagal afferents serve as the primary conduits for physiological signals governing food intake and energy expenditure. An expanding body of evidence now illuminates the critical role of spinal afferent neurons in these processes, necessitating a reevaluation of our understanding of energy homeostasis regulation. This comprehensive review synthesizes cutting-edge research elucidating the multifaceted functions of spinal afferent neurons in maintaining metabolic equilibrium. Once predominantly associated with nociception and pathological states, these neurons are now recognized as integral components in the intricate network regulating feeding behavior, nutrient sensing, and energy balance. We explore the role of spinal afferents in food intake and how these neurons contribute to satiation signaling and meal termination through complex gut-brain axis pathways. The review also delves into the developing evidence that spinal afferents play a crucial role in energy expenditure regulation. We explore the ability of these neuronal fibers to carry signals that can modulate feeding behavior as well as adaptive thermogenesis in adipose tissue influencing basal metabolic rate, and thereby contributing to overall energy balance. This comprehensive analysis not only challenges existing paradigms but also opens new avenues for therapeutic interventions suggesting potential targets for treating metabolic disorders. In conclusion, this review highlights the need for a shift in our understanding of energy homeostasis, positioning spinal afferent neurons as key players in the intricate web of metabolic regulation.
Collapse
Affiliation(s)
- Mohammad Jarrah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana Tasabehji
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aviva Fraer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohamad Mokadem
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Orders of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
3
|
Gustafson TJ, McGrath LE, Hayes MR, Mietlicki-Baase EG. Ventral tegmental area amylin / calcitonin receptor signaling suppresses feeding and weight gain in female rats. Neurosci Res 2024:S0168-0102(24)00121-4. [PMID: 39389183 DOI: 10.1016/j.neures.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The pancreatic peptide amylin promotes negative energy balance in part through activation of amylin receptors (AmyRs) expressed in the ventral tegmental area (VTA), but studies have been limited to male rodents. We evaluated whether VTA amylin signaling governs feeding and body weight in female rats. Indeed, pharmacological VTA AmyR activation suppressed chow intake and body weight in females. Viral-mediated knockdown of VTA calcitonin receptor (GPCR of AmyR) supports the physiological relevance of VTA amylin signaling for energy balance control in females. Collectively, these data support the relevance of VTA amylin signaling for energy balance control in both sexes.
Collapse
Affiliation(s)
- Tyler J Gustafson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Lauren E McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
4
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
5
|
Larsen AT, Mohamed KE, Melander SA, Karsdal MA, Henriksen K. The enduring metabolic improvement of combining dual amylin and calcitonin receptor agonist and semaglutide treatments in a rat model of obesity and diabetes. Am J Physiol Endocrinol Metab 2024; 327:E145-E154. [PMID: 38864815 DOI: 10.1152/ajpendo.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Long-acting dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for the treatment of type 2 diabetes and obesity due to their beneficial effects on body weight, glucose control, and insulin action. However, how the metabolic benefits are maintained after long-lasting treatment is unknown. This study investigates the long-term anti-obesity and anti-diabetic treatment efficacy of the DACRA KBP-336 alone and combined with the GLP-1 analog semaglutide. Zucker diabetic Sprague Dawley (ZDSD) rats with obesity and diabetes received KBP-336 (4.5 nmol/kg Q3D), semaglutide (50 nmol/kg Q3D), or the combination for 7 mo, and the treatment impact on body weight, food intake, glucose control, and insulin action was evaluated. Furthermore, serum levels of the cardiac fibrosis biomarker endotrophin were evaluated. KBP-336, semaglutide, and the combination lowered body weight significantly compared with the vehicle, with the combination inducing a larger and more sustained weight loss than either monotherapy. All treatments resulted in reduced fasting blood glucose levels and HbA1c levels and improved glucose tolerance compared with vehicle-treated rats. Furthermore, all treatments protected against lost insulin secretory capacity and improved insulin action. Serum levels of endotrophin were significantly lowered by KBP-336 compared with vehicle. This study shows the benefit of combining KBP-336 and semaglutide to obtain significant and sustained weight loss, as well as improved glucose control. Furthermore, KBP-336-driven reductions in circulating endotrophin indicate a clear reduction in the risk of complications. Altogether, KBP-336 is a promising candidate for the treatment of obesity and type 2 diabetes both alone and in combination with GLP-1 analogs.NEW & NOTEWORTHY These studies describe the benefit of combining dual amylin and calcitonin receptor agonists (DACRA) with semaglutide for long-term treatment of obesity and type 2 diabetes. Combination treatment induced sustained weight loss and improved glucose control. A DACRA-driven reduction in a serological biomarker of cardiac fibrosis indicated a reduced risk of complications. These results highlight DACRAs as a promising candidate for combination treatment of obesity and type 2 diabetes and related long-term complications.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
6
|
Dahl K, Raun K, Hansen JL, Poulsen C, de la Cour CD, Clausen TR, Hansen AMK, John LM, Plesner A, Sun G, Schlein M, Skyggebjerg RB, Kruse T. NN1213 - A Potent, Long-Acting, and Selective Analog of Human Amylin. J Med Chem 2024; 67:11688-11700. [PMID: 38960379 PMCID: PMC11284788 DOI: 10.1021/acs.jmedchem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Amylin, a member of the calcitonin family, acts via amylin receptors in the hindbrain and hypothalamus to suppress appetite. Native ligands of these receptors are peptides with short half-lives. Conjugating fatty acids to these peptides can increase their half-lives. The long-acting human amylin analog, NN1213, was generated from structure-activity efforts optimizing solubility, stability, receptor affinity, and selectivity, as well as in vivo potency and clearance. In both rats and dogs, a single dose of NN1213 reduced appetite in a dose-dependent manner and with a long duration of action. Consistent with the effect on appetite, studies in obese rats demonstrated that daily NN1213 dosing resulted in a dose-dependent reduction in body weight over a 21-day period. Magnetic resonance imaging indicated that this was primarily driven by loss of fat mass. Based on these data, NN1213 could be considered an attractive option for weight management in the clinical setting.
Collapse
Affiliation(s)
- Kirsten Dahl
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Kirsten Raun
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | | | | | | | | | - Linu M. John
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Annette Plesner
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | - Gao Sun
- Novo
Nordisk China, Novo Nordisk Research Center China, Building 2, 20 Life Science Park Road, Changping
District, 102206 Beijing, China
| | - Morten Schlein
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| | | | - Thomas Kruse
- Novo
Nordisk A/S, Novo Nordisk
Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
7
|
Mohamed KE, Larsen AT, Melander S, Andersen F, Kerrn EB, Karsdal MA, Henriksen K. The dual amylin and calcitonin receptor agonist KBP-336 elicits a unique combination of weight loss, antinociception and bone protection - a novel disease-modifying osteoarthritis drug. Arthritis Res Ther 2024; 26:129. [PMID: 38997785 PMCID: PMC11241783 DOI: 10.1186/s13075-024-03361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Despite the extensive research to provide a disease-modifying osteoarthritis drug (DMOAD), there is still no approved DMOAD. Dual amylin and calcitonin receptor agonists (DACRA) can provide metabolic benefits along with antinociceptive and potential structural preserving effects. In these studies, we tested a DACRA named KBP-336 on a metabolic model of OA in meniscectomised (MNX) rats. METHODS We evaluated KBP-336's effect on pain-like symptoms in Sprague Dawley (SD) rats on high-fat diet (HFD) that underwent meniscectomy using the von Frey test to measure the 50% paw withdrawal threshold (PWT) and analyzed using one-way ANOVA. Short in vivo studies and in vitro cell receptor expression systems were used to illustrate receptor pharmacology. RESULTS After 30 weeks on HFD, including an 8-week treatment, female MNX animals receiving KBP-336 4.5 nmol/Kg/72 h had lower body weight and smaller adipose tissues than their vehicle-treated counterparts. After 20 weeks on HFD, including an 8-week treatment, male rats receiving KBP-336 had lower body weight than the vehicle group. In both the female and male rats, the MNX groups on KBP-336 treatment had a higher PWT than the vehicle-treated MNX group. Aiming to identify the receptor influencing pain alleviation, KBP-336 was compared to the long-acting human calcitonin (hCTA). Single-dose studies on 12-week-old male rats showed that hCTA lowers CTX-I without affecting food intake, confirming its calcitonin receptor selectivity. On the metabolic OA model with 18 weeks of HFD, including 6-week treatment, hCTA at 100 nmol/Kg/24 h and KBP-336 at 0.5, 1.5, and 4.5 nmol/Kg/72 h produced significantly higher PWT in MNX animals compared to MNX animals on vehicle treatment. hCTA and KBP-336 at 0.5 nmol/Kg did not affect body weight and fat tissues. CONCLUSION Overall, KBP-336 improved the pain observed in the metabolic OA model. Calcitonin receptor activation proved to be essential in this antinociceptive effect.
Collapse
Affiliation(s)
- Khaled Elhady Mohamed
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Simone Melander
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Frederik Andersen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Ellen Barendorff Kerrn
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
- KeyBioscience AG, Stans, Switzerland
- Department of Molecular and Medical Biology, Roskilde University Center, Roskilde, Denmark
| |
Collapse
|
8
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Cao J, Belousoff MJ, Danev R, Christopoulos A, Wootten D, Sexton PM. Cryo-EM Structure of the Human Amylin 1 Receptor in Complex with CGRP and Gs Protein. Biochemistry 2024; 63:1089-1096. [PMID: 38603770 PMCID: PMC11080994 DOI: 10.1021/acs.biochem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Arthur Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Keov P, Christopoulos G, Hick CA, Glendorf T, Ballarín-González B, Wootten D, Sexton PM. Development of a Novel Assay for Direct Assessment of Selective Amylin Receptor Activation Reveals Novel Differences in Behavior of Selective and Nonselective Peptide Agonists. Mol Pharmacol 2024; 105:359-373. [PMID: 38458773 DOI: 10.1124/molpharm.123.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Peter Keov
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - George Christopoulos
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Caroline A Hick
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Tine Glendorf
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Borja Ballarín-González
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Denise Wootten
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| |
Collapse
|
11
|
Bailey CJ, Flatt PR, Conlon JM. Recent advances in peptide-based therapies for obesity and type 2 diabetes. Peptides 2024; 173:171149. [PMID: 38184193 DOI: 10.1016/j.peptides.2024.171149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Options for the treatment of type 2 diabetes mellitus (T2DM) and obesity have recently been expanded by the results of several large clinical trials with incretin-based peptide therapies. Most of these studies have been conducted with the glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, which is available as a once weekly subcutaneous injection and once daily tablet, and the once weekly injected dual agonist tirzepatide, which interacts with receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP). In individuals with T2DM these therapies have achieved reductions of glycated haemoglobin (HbA1c) by > 2% and lowered body weight by > 10%. In some studies, these agents tested in non-diabetic, obese individuals at much higher doses have lowered body weight by > 15%. Emerging evidence suggests these agents can also offer cardio-protective and potentially reno-protective effects. Other incretin-based peptide therapies in early clinical development, notably a triple GLP-1/GIP/glucagon receptor agonist (retatrutide) and a combination of semaglutide with the amylin analogue cagrilintide (CagriSema), have shown strong efficacy. Although incretin therapies can incur adverse gastrointestinal effects these are for most patients mild-to-moderate and transient but result in cessation of treatment in some cases. Thus, the efficacy of new incretin-based peptide therapies is enhancing the opportunity to control body weight and blood glucose and improve the treatment of T2DM and obesity.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
12
|
Bruijn N, van Lohuizen R, Boron M, Fitzek M, Gabriele F, Giuliani G, Melgarejo L, Řehulka P, Sebastianelli G, Triller P, Vigneri S, Özcan B, van den Brink AM. Influence of metabolic state and body composition on the action of pharmacological treatment of migraine. J Headache Pain 2024; 25:20. [PMID: 38347465 PMCID: PMC10863119 DOI: 10.1186/s10194-024-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Migraine is a disabling neurovascular disorder among people of all ages, with the highest prevalence in the fertile years, and in women. Migraine impacts the quality of life of affected individuals tremendously and, in addition, it is associated with highly prevalent metabolic diseases, such as obesity, diabetes mellitus and thyroid dysfunction. Also, the clinical response to drugs might be affected in patients with metabolic disease due to body composition and metabolic change. Therefore, the efficacy of antimigraine drugs could be altered in patients with both migraine and metabolic disease. However, knowledge of the pharmacology and the related clinical effects of antimigraine drugs in patients with metabolic disease are limited. Therefore, and given the clinical relevance, this article provides a comprehensive overview of the current research and hypotheses related to the influence of metabolic state and body composition on the action of antimigraine drugs. In addition, the influence of antimigraine drugs on metabolic functioning and, vice versa, the influence of metabolic diseases and its hormonal modulating medication on migraine activity is outlined. Future exploration on personalizing migraine treatment to individual characteristics is necessary to enhance therapeutic strategies, especially given its increasing significance in recent decades.
Collapse
Affiliation(s)
- Noor Bruijn
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Romy van Lohuizen
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Malgorzata Boron
- Department of Neurology, University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Mira Fitzek
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Gabriele
- Department of Applied Clinical Sciences and Biotechnology, Neuroscience Section, University of L'Aquila, L'Aquila, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Laura Melgarejo
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pavel Řehulka
- St. Anne's University Hospital, Faculty of Medicine Masaryk University Czech Republic, Brno, Czech Republic
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Paul Triller
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Vigneri
- Casa Di Cura Santa Maria Maddalena, Neurology and Neurophysiology Service, Occhiobello, Italy
| | - Behiye Özcan
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Antoinette Maassen van den Brink
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Sun W, Li Y, Xia B, Chen J, Liu Y, Pang J, Liu F, Cheng H. Adverse event reporting of four anti-Calcitonin gene-related peptide monoclonal antibodies for migraine prevention: a real-world study based on the FDA adverse event reporting system. Front Pharmacol 2024; 14:1257282. [PMID: 38264523 PMCID: PMC10803415 DOI: 10.3389/fphar.2023.1257282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Anti-Calcitonin gene-related peptide monoclonal antibodies (anti-CGRP mAbs) have shown significant efficacy in preventing migraine. However, there have been limited reports of adverse events (AEs) after marketing, particularly for eptinezumab launched in 2020. The study aimed to mine and analyze the AE signals with four anti-CGRP mAbs from the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database to gain insights into the safety profile of these medications post-marketing. Methods: All AE reports on the four anti-CGRP mAbs (erenumab, galcanezumab, fremanezumab, and eptinezumab) were retrieved from the FAERS database from the first quarter (Q1) of 2018 to Q1 of 2023. Disproportionality analysis was measured by reporting odd ratio (ROR) and Bayesian confidence propagation neural network (BCPNN) to identify potential AE signals. Comparisons were made between the four drugs in terms of AEs. Results: A total of 38,515 reports of erenumab, 19,485 reports of galcanezumab, 5,332 reports of fremanezumab, and 2,460 reports of eptinezumab were obtained, mostly reported in the second to third year after launch in the market. The common AEs to erenumab included constipation (17.93%), injection site pain (14.08%), and alopecia (7.23%). The AEs that occurred more frequently with galcanezumab included injection site pain (24.37%), injection site erythema (5.35%), and injection site haemorrhage (4.97%). Common AEs related to fremanezumab were injection site pain (13.10%), injection site erythema (7.02%), and injection site pruritus (5.47%). Fatigue (13.54%), throat irritation (9.02%), and pruritus (8.20%) were the most common AEs with eptinezumab. In addition, there are new AEs that were not listed in the drug instructions but occurred concurrently with multiple drugs, such as Raynaud's phenomenon, weight increase, menstrual disorders, throat tightness, and paraesthesia oral. Conclusion: Common AE signals of the four anti-CGRP mAbs and new AE signals were found to provide a reference for clinical drug selection in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Hao S, Xinqi M, Weicheng X, Shiwei Y, Lumin C, Xiao W, Dong L, Jun H. Identification of key immune genes of osteoporosis based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2023; 14:1118886. [PMID: 37361541 PMCID: PMC10289263 DOI: 10.3389/fendo.2023.1118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Immunity is involved in a variety of bone metabolic processes, especially osteoporosis. The aim of this study is to explore new bone immune-related markers by bioinformatics method and evaluate their ability to predict osteoporosis. Methods The mRNA expression profiles were obtained from GSE7158 in Gene expression Omnibus (GEO), and immune-related genes were obtained from ImmPort database (https://www.immport.org/shared/). immune genes related to bone mineral density(BMD) were screened out for differential analysis. protein-protein interaction (PPIs) networks were used to analyze the interrelationships between different immune-related genes (DIRGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DIRGs function were performed. A least absolute shrinkage and selection operation (LASSO) regression model and multiple Support Vector Machine-Recursive Feature Elimination (mSVM-RFE) model were constructed to identify the candidate genes for osteoporosis prediction The receiver operator characteristic (ROC) curves were used to validate the performances of predictive models and candidate genes in GEO database (GSE7158,GSE13850).Through the RT - qPCR verify the key genes differentially expressed in peripheral blood mononuclear cells Finally, we constructed a nomogram model for predicting osteoporosis based on five immune-related genes. CIBERSORT algorithm was used to calculate the relative proportion of 22 immune cells. Results A total of 1158 DEGs and 66 DIRGs were identified between high-BMD and low-BMD women. These DIRGs were mainly enriched in cytokine-mediated signaling pathway, positive regulation of response to external stimulus and the cellular components of genes are mostly localized to external side of plasma membrane. And the KEGG enrichment analysis were mainly involved in Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction,Natural killer cell mediated cytotoxicity. Then five key genes (CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1) were identified and used as features to construct a predictive prognostic model for osteoporosis using the GSE7158 dataset. Conclusion Immunity plays an important role in the development of osteoporosis.CCR5, IAPP, IFNA4, IGHV3-73 and PTGER1were play an important role in the occurrences and diagnosis of OP.
Collapse
Affiliation(s)
- Song Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Xinqi
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Weicheng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Shiwei
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cao Lumin
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Jun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
17
|
Zhang X, Kupczyk E, Schmitt-Kopplin P, Mueller C. Current and future approaches for in vitro hit discovery in diabetes mellitus. Drug Discov Today 2022; 27:103331. [PMID: 35926826 DOI: 10.1016/j.drudis.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a serious public health problem. In this review, we discuss current and promising future drugs, targets, in vitro assays and emerging omics technologies in T2DM. Importantly, we open the perspective to image-based high-content screening (HCS), with the focus of combining it with metabolomics or lipidomics. HCS has become a strong technology in phenotypic screens because it allows comprehensive screening for the cell-modulatory activity of small molecules. Metabolomics and lipidomics screen for perturbations at the molecular level. The combination of these data-intensive comprehensive technologies is enabled by the rapid development of artificial intelligence. It promises a deep cellular and molecular phenotyping directly linked to chemical information about the applied drug candidates or complex mixtures.
Collapse
Affiliation(s)
- Xin Zhang
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Erwin Kupczyk
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - Constanze Mueller
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
18
|
De Silva K, Demmer RT, Jönsson D, Mousa A, Forbes A, Enticott J. Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow. Funct Integr Genomics 2022; 22:1003-1029. [PMID: 35788821 PMCID: PMC9255467 DOI: 10.1007/s10142-022-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes (T2D) has a complex etiology which is not yet fully elucidated. The identification of gene perturbations and hub genes of T2D may deepen our understanding of its genetic basis. We aimed to identify highly perturbed genes and hub genes associated with T2D via an extensive bioinformatics analytic workflow consisting of five steps: systematic review of Gene Expression Omnibus and associated literature; identification and classification of differentially expressed genes (DEGs); identification of highly perturbed genes via meta-analysis; identification of hub genes via network analysis; and downstream analysis of highly perturbed genes and hub genes. Three meta-analytic strategies, random effects model, vote-counting approach, and p value combining approach, were applied. Hub genes were defined as those nodes having above-average betweenness, closeness, and degree in the network. Downstream analyses included gene ontologies, Kyoto Encyclopedia of Genes and Genomes pathways, metabolomics, COVID-19-related gene sets, and Genotype-Tissue Expression profiles. Analysis of 27 eligible microarrays identified 6284 DEGs (4592 downregulated and 1692 upregulated) in four tissue types. Tissue-specific gene expression was significantly greater than tissue non-specific (shared) gene expression. Analyses revealed 79 highly perturbed genes and 28 hub genes. Downstream analyses identified enrichments of shared genes with certain other diabetes phenotypes; insulin synthesis and action-related pathways and metabolomics; mechanistic associations with apoptosis and immunity-related pathways; COVID-19-related gene sets; and cell types demonstrating over- and under-expression of marker genes of T2D. Our approach provided valuable insights on T2D pathogenesis and pathophysiological manifestations. Broader utility of this pipeline beyond T2D is envisaged.
Collapse
Affiliation(s)
- Kushan De Silva
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia.
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Daniel Jönsson
- Department of Periodontology, Faculty of Odontology, Malmö University, 21119, Malmö, Sweden.,Department of Clinical Sciences, Lund University, 21428, Malmö, Sweden
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia
| | - Andrew Forbes
- Biostatistics Unit, Division of Research Methodology, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, 3004, Australia
| | - Joanne Enticott
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Clayton, 3168, Australia
| |
Collapse
|
19
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
20
|
Schneider E, Dourish CT, Higgs S. Utility of an experimental medicine model to evaluate efficacy, side-effects and mechanism of action of novel treatments for obesity and binge-eating disorder. Appetite 2022; 176:106087. [PMID: 35588993 DOI: 10.1016/j.appet.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity and Binge Eating Disorder (BED) are prevalent conditions that are associated with increased risk of morbidity and mortality. There is evidence that the use of pharmacotherapy alongside behavioural treatments can improve quality of life and reduce disease risk for patients with these disorders. However, there are few approved drug therapies for obesity, and these are limited by poor efficacy and/or side effects and only one drug has been approved for the treatment of BED. There is considerable potential to use experimental medicine models to identify new drug treatments for obesity and BED, with greater efficacy and an improved side effect profile, at an early stage of development. Here, we present a model developed in our laboratory that incorporates both behavioural and neuroimaging measures which can be used to facilitate drug development for obesity and BED. The results from validation studies conducted to date using our model suggest that it is sensitive to the effects of agents with behavioural, neurophysiological and neuropharmacological mechanisms of action known to be associated with weight loss and reductions in binge eating. Future studies using the model will be valuable to evaluate the potential efficacy and side-effects of new candidate drugs at an early stage in the development pipeline for both obesity and BED.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Colin T Dourish
- P1vital Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom; P1vital Products Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
21
|
Weber HC. Gastrointestinal regulatory peptides. Curr Opin Endocrinol Diabetes Obes 2022; 29:167-168. [PMID: 35197424 DOI: 10.1097/med.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H Christian Weber
- Boston University School of Medicine, Section of Gastroenterology and Hepatology
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Jiang J, Ju J, Luo L, Song Z, Liao H, Yang X, Wei S, Wang D, Zhu W, Chang J, Ma J, Hu H, Yu J, Wang H, Hou ST, Li S, Li H, Li N. Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors. Front Pharmacol 2022; 13:826055. [PMID: 35237169 PMCID: PMC8883047 DOI: 10.3389/fphar.2022.826055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future.
Collapse
Affiliation(s)
- Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Ju
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ze Song
- Oncology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanquan Liao
- The Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junzhe Ma
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
| | - Hao Hu
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiqing Wang
- The Fifth People’s Hospital of Datong City, Datong, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Shupeng Li, ; Huiliang Li, ; Ningning Li,
| |
Collapse
|
23
|
Abstract
Cross-talk between peripheral tissues is essential to ensure the coordination of nutrient intake with disposition during the feeding period, thereby preventing metabolic disease. This mini-review considers the interactions between the key peripheral tissues that constitute the metabolic clock, each of which is considered in a separate mini-review in this collation of articles published in Endocrinology in 2020 and 2021, by Martchenko et al (Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones); Alvarez et al (The microbiome as a circadian coordinator of metabolism); Seshadri and Doucette (Circadian regulation of the pancreatic beta cell); McCommis et al (The importance of keeping time in the liver); Oosterman et al (The circadian clock, shift work, and tissue-specific insulin resistance); and Heyde et al (Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism). The use of positive- and negative-feedback signals, both hormonal and metabolic, between these tissues ensures that peripheral metabolic pathways are synchronized with the timing of food intake, thus optimizing nutrient disposition and preventing metabolic disease. Collectively, these articles highlight the critical role played by the circadian clock in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Correspondence: P. L. Brubaker, PhD, Departments of Physiology and Medicine, University of Toronto, Medical Sciences Bldg, Rm 3366, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada.
| | | |
Collapse
|
24
|
Lee S. Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules 2021; 11:biom11091364. [PMID: 34572577 PMCID: PMC8466238 DOI: 10.3390/biom11091364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
The calcitonin and amylin receptors (CTR and AMY receptors) are the drug targets for osteoporosis and diabetes treatment, respectively. Salmon calcitonin (sCT) and pramlintide were developed as peptide drugs that activate these receptors. However, next-generation drugs with improved receptor binding profiles are desirable for more effective pharmacotherapy. The extracellular domain (ECD) of CTR was reported as the critical binding site for the C-terminal half of sCT. For the screening of high-affinity sCT analog fragments, purified CTR ECD was used for fluorescence polarization/anisotropy peptide binding assay. When three mutations (N26D, S29P, and P32HYP) were introduced to the sCT(22–32) fragment, sCT(22–32) affinity for the CTR ECD was increased by 21-fold. CTR was reported to form a complex with receptor activity-modifying protein (RAMP), and the CTR:RAMP complexes function as amylin receptors with increased binding for the peptide hormone amylin. All three types of functional AMY receptor ECDs were prepared and tested for the binding of the mutated sCT(22–32). Interestingly, the mutated sCT(22–32) also retained its high affinity for all three types of the AMY receptor ECDs. In summary, the mutated sCT(22–32) showing high affinity for CTR and AMY receptor ECDs could be considered for developing the next-generation peptide agonists.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| |
Collapse
|