1
|
Bharti S, Kumar A. Synergies in stem cell research: Integrating technologies, strategies, and bionanomaterial innovations. Acta Histochem 2024; 126:152119. [PMID: 38041895 DOI: 10.1016/j.acthis.2023.152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Since the 1960 s, there has been a substantial amount of research directed towards investigating the biology of several types of stem cells, including embryonic stem cells, brain cells, and mesenchymal stem cells. In contemporary times, a wide array of stem cells has been utilized to treat several disorders, including bone marrow transplantation. In recent years, stem cell treatment has developed as a very promising and advanced field of scientific research. The progress of therapeutic methodologies has resulted in significant amounts of anticipation and expectation. Recently, there has been a notable proliferation of experimental methodologies aimed at isolating and developing stem cells, which have emerged concurrently. Stem cells possess significant vitality and exhibit vigorous proliferation, making them suitable candidates for in vitro modification. This article examines the progress made in stem cell isolation and explores several methodologies employed to promote the differentiation of stem cells. This study also explores the method of isolating bio-nanomaterials and discusses their viewpoint in the context of stem cell research. It also covers the potential for investigating stem cell applications in bioprinting and the usage of bionanomaterial in stem cell-related technologies and research. In conclusion, the review article concludes by highlighting the importance of incorporating state-of-the-art methods and technological breakthroughs into the future of stem cell research. Putting such an emphasis on constant innovation highlights the ever-changing character of science and the never-ending drive toward unlocking the maximum therapeutic potential of stem cells. This review would be a useful resource for researchers, clinicians, and policymakers in the stem cell research area, guiding the next steps in this fast-developing scientific concern.
Collapse
Affiliation(s)
- Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
| |
Collapse
|
2
|
Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic adenocarcinoma. World J Gastrointest Oncol 2023; 15:571-595. [PMID: 37123059 PMCID: PMC10134207 DOI: 10.4251/wjgo.v15.i4.571] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median survival of 6 mo. In PDAC, several mutations in the genes are involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-preserving cancer stem cells, dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. Molecular targeted therapy is widely utilized and effective in several solid tumors. In PDAC, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. There is currently only one United States Food and Drug Administration-approved targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in combination with gemcitabine is also minimal (2 wk). In this review, we summarize current targeted therapies and clinical trials targeting dysregulated signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The PubMed database and National Center for Biotechnology Information clinical trial website (www.clinicaltrials.gov) were queried to identify completed and published (PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted therapy. The PubMed database was also queried to search for information about the pathogenesis and molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular pathways.
Collapse
Affiliation(s)
- Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, Hebei Province, China
| |
Collapse
|
3
|
Kuo YC, Kou HW, Hsu CP, Lo CH, Hwang TL. Identification and Clinical Significance of Pancreatic Cancer Stem Cells and Their Chemotherapeutic Drug Resistance. Int J Mol Sci 2023; 24:ijms24087331. [PMID: 37108495 PMCID: PMC10138402 DOI: 10.3390/ijms24087331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic cancer ranks in the 10th-11th position among cancers affecting men in Taiwan, besides being a rather difficult-to-treat disease. The overall 5-year survival rate of pancreatic cancer is only 5-10%, while that of resectable pancreatic cancer is still approximately 15-20%. Cancer stem cells possess intrinsic detoxifying mechanisms that allow them to survive against conventional therapy by developing multidrug resistance. This study was conducted to investigate how to overcome chemoresistance and its mechanisms in pancreatic cancer stem cells (CSCs) using gemcitabine-resistant pancreatic cancer cell lines. Pancreatic CSCs were identified from human pancreatic cancer lines. To determine whether CSCs possess a chemoresistant phenotype, the sensitivity of unselected tumor cells, sorted CSCs, and tumor spheroid cells to fluorouracil (5-FU), gemcitabine (GEM), and cisplatin was analyzed under stem cell conditions or differentiating conditions. Although the mechanisms underlying multidrug resistance in CSCs are poorly understood, ABC transporters such as ABCG2, ABCB1, and ABCC1 are believed to be responsible. Therefore, we measured the mRNA expression levels of ABCG2, ABCB1, and ABCC1 by real-time RT-PCR. Our results showed that no significant differences were found in the effects of different concentrations of gemcitabine on CSCs CD44+/EpCAM+ of various PDAC cell line cultures (BxPC-3, Capan-1, and PANC-1). There was also no difference between CSCs and non-CSCs. Gemcitabine-resistant cells exhibited distinct morphological changes, including a spindle-shaped morphology, the appearance of pseudopodia, and reduced adhesion characteristics of transformed fibroblasts. These cells were found to be more invasive and migratory, and showed increased vimentin expression and decreased E-cadherin expression. Immunofluorescence and immunoblotting experiments demonstrated increased nuclear localization of total β-catenin. These alterations are hallmarks of epithelial-to-mesenchymal transition (EMT). Resistant cells showed activation of the receptor protein tyrosine kinase c-Met and increased expression of the stem cell marker cluster of differentiation (CD) 24, CD44, and epithelial specific antigen (ESA). We concluded that the expression of the ABCG2 transporter protein was significantly higher in CD44+ and EpCAM+ CSCs of PDAC cell lines. Cancer stem-like cells exhibited chemoresistance. Gemcitabine-resistant pancreatic tumor cells were associated with EMT, a more aggressive and invasive phenotype of numerous solid tumors. Increased phosphorylation of c-Met may also be related to chemoresistance, and EMT and could be used as an attractive adjunctive chemotherapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Chi Kuo
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Hao-Wei Kou
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Chih-Po Hsu
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Chih-Hong Lo
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| | - Tsann-Long Hwang
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Lin-Kou, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Garg R, Melstrom L, Chen J, He C, Goel A. Targeting FTO Suppresses Pancreatic Carcinogenesis via Regulating Stem Cell Maintenance and EMT Pathway. Cancers (Basel) 2022; 14:cancers14235919. [PMID: 36497402 PMCID: PMC9737034 DOI: 10.3390/cancers14235919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification regulating cancer self-renewal. However, despite its functional importance and prognostic implication in tumorigenesis, the relevance of FTO, an m6A eraser, in pancreatic cancer (PC) remains elusive. Here, we establish the oncogenic role played by FTO overexpression in PC. FTO is upregulated in PC cells compared to normal human pancreatic ductal epithelial (HPDE) cells. Both RNAi depletion and CS1-mediated pharmacological inhibition of FTO caused a diminution of PC cell proliferation via cell cycle arrest in the G1 phase and p21cip1 and p27kip1 induction. While HPDE cells remain insensitive to CS1 treatment, FTO overexpression confers enhancements in growth, motility, and EMT transition, thereby inculcating tumorigenic properties in HPDE cells. Notably, shRNA-mediated FTO depletion in PC cells impairs their mobility and invasiveness, leading to EMT reversal. Mechanistically, this was associated with impaired tumorsphere formation and reduced expression of CSCs markers. Furthermore, FTO depletion in PC cells weakened their tumor-forming capabilities in nude mice; those tumors had increased apoptosis, decreased proliferation markers, and MET conversion. Collectively, our study demonstrates the functional importance of FTO in PC and the maintenance of CSCs via EMT regulation. Thus, FTO may represent an attractive therapeutic target for PC.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
- Correspondence:
| |
Collapse
|
5
|
Zhang W, Wang L, Li D, Campbell DH, Walsh BJ, Packer NH, Dong Q, Wang E, Wang Y. Phenotypic profiling of pancreatic ductal adenocarcinoma plasma-derived small extracellular vesicles for cancer diagnosis and cancer stage prediction: a proof-of-concept study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2255-2265. [PMID: 35612592 DOI: 10.1039/d2ay00536k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circulating pancreatic ductal adenocarcinoma (PDAC) derived small extracellular vesicles (sEVs) are nano-sized membranous vesicles secreted from PDAC cells and released into surrounding body fluids, such as blood. The use of plasma-derived sEVs for cancer diagnosis is particularly appealing in biomedical research because the sEVs reflect some key features (e.g. genetic and phenotypic status) related to the organs from which they originate. For example, the surface membrane proteins and their expression level on sEVs were reported to be related to the presence and progression of PDAC. However, difficulty in sEVs isolation and lack of ultrasensitive assays for simultaneous analysis of multiple protein biomarkers on patient plasma-derived sEVs hinder their application in the clinic. In our previous study, we have demonstrated the application of magnetic beads (MBs) and surface-enhanced Raman scattering (SERS) assay for phenotypic analysis of cancer cells-derived sEVs using different cell lines. To further demonstrate the clinical application of the proposed assay, we have profiled the sEVs' phenotypes (relative expression of biomarker Glypican 1, EpCAM and CD44V6) of healthy donors and PDAC patients to enable simultaneous detection of multiple surface membrane proteins on plasma-derived sEVs. We discovered that the PDAC sEVs' phenotype signatures had high accuracy for PDAC diagnosis (100%) and showed strong correlation with cancer stages, which were further validated by the imaging techniques (e.g. computerized tomography and magnetic resonance imaging) and also the correlation of cancer stages with CA19-9 (gold standard biomarker) and the sEVs' phenotype signatures. The present proof-of-concept study thus provides an initial investigation of using the proposed SERS assay for PDAC diagnosis and early cancer stage prediction in the clinic.
Collapse
Affiliation(s)
- Wei Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ling Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW 2113, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Qing Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
6
|
Liu M, Shi Y, Hu Q, Qin Y, Ji S, Liu W, Zhuo Q, Fan G, Ye Z, Song C, Yu X, Xu X, Xu W. SETD8 induces stemness and epithelial-mesenchymal transition of pancreatic cancer cells by regulating ROR1 expression. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1614-1624. [PMID: 34599596 DOI: 10.1093/abbs/gmab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most deadly diseases, and its incidence is increasing year by year. The methyltransferase SETD8 has been demonstrated to play an important role in tumor cell proliferation and metastasis. However, little is known about whether SETD8 could affect the invasion and metastasis of PC and the mechanism underlying the regulation. Based on our previous report, here, we further found that SETD8 could promote the invasion and migration of PC cells by inducing the expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 was predominantly upregulated in PC tissues and was correlated with lymph node metastasis and worse prognosis. Mechanistically, SETD8 mediated ROR1 activity and regulated PC cells invasion and migration, although promoting the expression of stemness and epithelial-mesenchymal transition-related molecules. This promotion effect disappeared when the catalytically inactive mutant SETD8 was overexpressed, which could be counteracted by the SETD8-specific methyltransferase inhibitor UNC0379. Collectively, our results demonstrate that SETD8 may be a novel prognostic factor and a therapeutic target of PC.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yihua Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Changfeng Song
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| |
Collapse
|
7
|
Wei W, Wang L, Xu L, Liang J, Teng L. MiR-199 Reverses the Resistance to Gemcitabine in Pancreatic Cancer by Suppressing Stemness through Regulating the Epithelial-Mesenchymal Transition. ACS OMEGA 2021; 6:31435-31446. [PMID: 34869970 PMCID: PMC8637594 DOI: 10.1021/acsomega.1c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE the present study aims to investigate the function of miR-199 on gemcitabine (GEM)-resistance in pancreatic cancer, as well as the underlying mechanism. METHODS the GEM-resistant SW1990 cell line (SW1990/SZ) was established. The CCK-8 assay was used to detect the cell viability. The self-renewal of SW1990/SZ cells was evaluated by sphere formation and the colony formation assay. The apoptosis was detected by flow cytometry and the migration ability was measured by the transwell assay. The dual-luciferase gene reporter assay was utilized to confirm the binding between miR-199 and Snail. The expression level of CD44, ALDH1, Nanog, E-cadherin, Vimentin, β-catenin, and Snail was determined by the Western blotting assay. RESULTS the cell sphere formation rate, number of spheres, and expression level of CD44, ALDH1, and Nanog in GEM-treated SW1990/SZ cells were significantly suppressed by miR-199, accompanied by declined proliferation ability, an increased apoptotic rate, inhibited migration ability, and suppressed EMT progression. The binding site between miR-199 and 3'-UTR of Snail was predicted and confirmed. The inhibitory effect of miR-199 on self-renewal of SW1990/GZ cells and the faciliating property of miR-199 on the inhibitory effect of GEM against the proliferation ability, migration ability, and EMT progression were abolished by overexpressing Snail. CONCLUSION MiR-199 reversed the resistance to GEM in pancreatic cancer by suppressing stemness through regulating the EMT.
Collapse
Affiliation(s)
- Weitian Wei
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liang Wang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Liwei Xu
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Jinxiao Liang
- Department
of Surgical Oncology, Zhejiang Cancer Hospital, No. 1, East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Lisong Teng
- Department
of Surgical Oncology, Zhejiang University
School of Medicine First Affiliated Hospital, No. 79 Qingchun Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
8
|
Jagust P, Alcalá S, Jr BS, Heeschen C, Sancho P. Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells. World J Stem Cells 2020; 12:1410-1428. [PMID: 33312407 PMCID: PMC7705467 DOI: 10.4252/wjsc.v12.i11.1410] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cellular metabolism regulates stemness in health and disease. A reduced redox state is essential for self-renewal of normal and cancer stem cells (CSCs). However, while stem cells rely on glycolysis, different CSCs, including pancreatic CSCs, favor mitochondrial metabolism as their dominant energy-producing pathway. This suggests that powerful antioxidant networks must be in place to detoxify mitochondrial reactive oxygen species (ROS) and maintain stemness in oxidative CSCs. Since glutathione metabolism is critical for normal stem cell function and CSCs from breast, liver and gastric cancer show increased glutathione content, we hypothesized that pancreatic CSCs also rely on this pathway for ROS detoxification.
AIM To investigate the role of glutathione metabolism in pancreatic CSCs.
METHODS Primary pancreatic cancer cells of patient-derived xenografts (PDXs) were cultured in adherent or CSC-enriching sphere conditions to determine the role of glutathione metabolism in stemness. Real-time polymerase chain reaction (PCR) was used to validate RNAseq results involving glutathione metabolism genes in adherent vs spheres, as well as the expression of pluripotency-related genes following treatment. Public TCGA and GTEx RNAseq data from pancreatic cancer vs normal tissue samples were analyzed using the webserver GEPIA2. The glutathione-sensitive fluorescent probe monochlorobimane was used to determine glutathione content by fluorimetry or flow cytometry. Pharmacological inhibitors of glutathione synthesis and recycling [buthionine-sulfoximine (BSO) and 6-Aminonicotinamide (6-AN), respectively] were used to investigate the impact of glutathione depletion on CSC-enriched cultures. Staining with propidium iodide (cell cycle), Annexin-V (apoptosis) and CD133 (CSC content) were determined by flow cytometry. Self-renewal was assessed by sphere formation assay and response to gemcitabine treatment was used as a readout for chemoresistance.
RESULTS Analysis of our previously published RNAseq dataset E-MTAB-3808 revealed up-regulation of genes involved in the KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Glutathione Metabolism in CSC-enriched cultures compared to their differentiated counterparts. Consistently, in pancreatic cancer patient samples the expression of most of these up-regulated genes positively correlated with a stemness signature defined by NANOG, KLF4, SOX2 and OCT4 expression (P < 10-5). Moreover, 3 of the upregulated genes (MGST1, GPX8, GCCT) were associated with reduced disease-free survival in patients [Hazard ratio (HR) 2.2-2.5; P = 0.03-0.0054], suggesting a critical role for this pathway in pancreatic cancer progression. CSC-enriched sphere cultures also showed increased expression of different glutathione metabolism-related genes, as well as enhanced glutathione content in its reduced form (GSH). Glutathione depletion with BSO induced cell cycle arrest and apoptosis in spheres, and diminished the expression of stemness genes. Moreover, treatment with either BSO or the glutathione recycling inhibitor 6-AN inhibited self-renewal and the expression of the CSC marker CD133. GSH content in spheres positively correlated with intrinsic resistance to gemcitabine treatment in different PDXs r = 0.96, P = 5.8 × 1011). Additionally, CD133+ cells accumulated GSH in response to gemcitabine, which was abrogated by BSO treatment (P < 0.05). Combined treatment with BSO and gemcitabine-induced apoptosis in CD133+ cells to levels comparable to CD133- cells and significantly diminished self-renewal (P < 0.05), suggesting that chemoresistance of CSCs is partially dependent on GSH metabolism.
CONCLUSION Our data suggest that pancreatic CSCs depend on glutathione metabolism. Pharmacological targeting of this pathway showed that high GSH content is essential to maintain CSC functionality in terms of self-renewal and chemoresistance.
Collapse
Affiliation(s)
- Petra Jagust
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Bruno Sainz Jr
- Department of Biochemistry, Autónoma University of Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid 28029, Spain
| | - Christopher Heeschen
- Center for Single-Cell Omics & Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza 50009, Spain
| |
Collapse
|
9
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|
10
|
Wu W, Xu C, Zhang X, Yu A, Shu L. Shrimp miR-965 induced the human melanoma stem-like cell apoptosis and inhibited their stemness by disrupting the MCL-1-ER stress-XBP1 feedback loop in a cross-species manner. Stem Cell Res Ther 2020; 11:248. [PMID: 32586376 PMCID: PMC7318764 DOI: 10.1186/s13287-020-01734-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Melanoma is a type of aggressive skin cancer with a poor survival rate. The resistance to conventional therapy of this disease is, at least in part, attributed to its cancer stem cell population. However, the mechanism of survival and stemness maintenance of cancer stem cells remains to be investigated. METHODS Tumorsphere formation assay was used to study the stem-like property of melanoma stem-like cells (MSLC). Chromatin immunoprecipitation (ChIP), promoter luciferase reporter assay were included for exploring the role of MCL-1 in MSLC and electrophoretic mobility shift assay were used to evaluate the interaction between shrimp miR-965 and human Ago2 protein. Melanoma xenograft nude mice were used to study the inhibition of tumor development. RESULTS In the present study, our results showed that myeloid cell leukemia sequence 1 (MCL-1) knocking down induced ER stress and apoptosis, and the expression reduction of stemness associated genes in MSLC, which implied a significant role of MCL-1 in MSLC. Further study indicated that ER stress agonist (tunicamycin) treatment in MSLC results in the translocation of XBP1, an ER stress sensor, into the nucleus to induce MCL-1 expression through direct binding to the - 313- to - 308-bp region of MCL-1 promoter. In addition, we found that a shrimp-derived miRNA (shrimp miR-965) could interact with the human Ago2 protein and suppressed the human MCL-1 expression by binding to the 3' UTR of MCL-1 mRNA, thereby inhibiting the MSLC proliferation and stemness in vitro and in vivo in a cross-species manner. CONCLUSION In conclusion, we identified an important role of MCL-1-ER stress-XBP1 feedback loop in the stemness and survival maintenance of MSLC, and shrimp miR-965, a natural food derived miRNA, could regulate MSLC stemness and survival by targeting MCL-1 and disrupting the balance of MCL-1-ER stress-XBP1 feedback loop. In conclusion, this study indicated an important mechanism of the regulation of MSLC stemness and survival, otherwise it also demonstrated the significance of cross-species-derived miRNA as promising natural drugs in melanoma therapy.
Collapse
Affiliation(s)
- Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 36200, Fujian Province, People's Republic of China
| | - Chenxi Xu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Xiaobo Zhang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - An Yu
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Le Shu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
11
|
Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:469-482. [PMID: 32489562 PMCID: PMC7239422 DOI: 10.22038/ijbms.2020.39427.9349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Silibinin, as an herbal compound, has anti-cancer activity. Because of low solubility of silibinin in water and body fluids, it was encapsulated in polymersome nanoparticles and its effects were evaluated on pancreatic cancer cells and cancer stem cells. MATERIALS AND METHODS MIA PaCa-2 pancreatic cancer cells were treated with different doses of silibinin encapsulated in polymersome nanoparticles (SPNs). Stemness of MIA PaCa-2 cells was evaluated by hanging drop technique and CD133, CD24, and CD44 staining. The effects of SPNs on cell cycle, apoptosis and the expression of several genes and miRNAs were investigated. RESULTS IC50 of SPNs was determined to be 40 µg/ml after 24 hr. Our analysis showed that >98% of MIA PaCa-2 cells expressed three stem cell markers. FACS analysis showed a decrease in these markers in SPNs-treated cells. PI/AnnexinV staining revealed that 40 µg/ml and 50 µg/ml of SPNs increased apoptosis up to ~40% and >80% of treated cells, respectively. Upregulation of miR-34a, miR-126, and miR-let7b and downregulation of miR-155, miR-222 and miR-21 was observed in SPNs-treated cells. In addition, downregulation of some genes involved in proliferation or migration such as AKT3, MASPINE, and SERPINEA12, and upregulation of apoptotic genes were observed in treated cells. CONCLUSION Our results suggested that SPNs induced apoptosis and inhibited migration and proliferation in pancreatic cells and cancer stem cells through suppression of some onco-miRs and induction of some tumor suppressive miRs, as well as their targets.
Collapse
Affiliation(s)
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang W, Jiang L, Diefenbach RJ, Campbell DH, Walsh BJ, Packer NH, Wang Y. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. ACS Sens 2020; 5:764-771. [PMID: 32134252 DOI: 10.1021/acssensors.9b02377] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer.
Collapse
Affiliation(s)
- Wei Zhang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lianmei Jiang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Russell J. Diefenbach
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | - Bradley J. Walsh
- Minomic International Ltd, Macquarie Park, New South Wales 2113, Australia
| | - Nicolle H. Packer
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuling Wang
- ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
13
|
Lei F, Xi X, Batra SK, Bronich TK. Combination Therapies and Drug Delivery Platforms in Combating Pancreatic Cancer. J Pharmacol Exp Ther 2019; 370:682-694. [PMID: 30796131 PMCID: PMC6806650 DOI: 10.1124/jpet.118.255786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer-related death in the United States, is highly aggressive and resistant to both chemo- and radiotherapy. It remains one of the most difficult-to-treat cancers, not only due to its unique pathobiological features such as stroma-rich desmoplastic tumors surrounded by hypovascular and hypoperfused vessels limiting the transport of therapeutic agents, but also due to problematic early detection, which renders most treatment options largely ineffective, resulting in extensive metastasis. To elevate therapeutic effectiveness of treatments and overt their toxicity, significant enthusiasm was generated to exploit new strategies for combating PDAC. Combination therapy targeting different barriers to mitigate delivery issues and reduce tumor recurrence and metastasis has demonstrated optimal outcomes in patients' survival and quality of life, providing possible approaches to overcome therapeutic challenges. This paper aims to provide an overview of currently explored multimodal therapies using either conventional therapy or nanomedicines along with rationale, up-to-date progress, as well as the key challenges that must be overcome. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing therapeutic efficacy in PDAC.
Collapse
Affiliation(s)
- Fan Lei
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Xinyuan Xi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy (F.L., X.X., T.K.B.), and Department of Biochemistry and Molecular Biology (S.K.B.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
14
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
15
|
Khan S, Setua S, Kumari S, Dan N, Massey A, Hafeez BB, Yallapu MM, Stiles ZE, Alabkaa A, Yue J, Ganju A, Behrman S, Jaggi M, Chauhan SC. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019; 208:83-97. [PMID: 30999154 DOI: 10.1016/j.biomaterials.2019.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/08/2019] [Accepted: 04/05/2019] [Indexed: 01/14/2023]
Abstract
Pancreatic cancer is a complex disease accounting for fibrotic tumors and an aggressive phenotype. Gemcitabine (GEM) is used as a standard therapy, which develops chemoresistance leading to poor patient outcome. We have recently developed a superparamagnetic iron oxide nanoparticle (SPION) formulation of curcumin (SP-CUR), which is a nontoxic, bioactive anti-inflammatory/anti-cancer agent for its enhanced delivery in tumors. In this study, we demonstrate that SP-CUR effectively delivers bioactive curcumin to pancreatic tumors, simultaneously enhances GEM uptake and its efficacy. Mechanistic revelations suggest that SP-CUR targets tumor microenvironment via suppression of sonic hedgehog (SHH) pathway and an oncogenic CXCR4/CXCL12 signaling axis that inhibits bidirectional tumor-stromal cells interaction. Increased GEM uptake was observed due to upregulation of the human nucleoside transporter genes (DCK, hCNT) and blocking ribonucleotide reductase subunits (RRM1/RRM2). Additionally, co-treatment of SP-CUR and GEM targets cancer stem cells by regulating pluripotency maintaining stemness factors (Nanog, Sox2, c-Myc and Oct-4), and restricting tumor sphere formation. In an orthotopic mouse model, an enhanced accumulation of SP-CUR was found in pancreas, which potentiated GEM to reduce tumor growth and metastasis. Analysis of tumor tissues suggest that the treatment inhibits tumor stroma (α-SMA, Desmin and Hyluronic Acid) and induces changes in cell stiffness, as measured via Atomic Force Microscopy. This was accompanied by alteration of key cellular proteins of SHH signaling such as SHH, Gli-1, Gli-2, Sufu, and NFĸB-65 as indicated by Immunoblotting and Immunohistochemistry. These results suggest that SP-CUR has a great potential for future clinical use in the management of pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Saini Setua
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Andrew Massey
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Bilal Bin Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Zachary Edwar Stiles
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Anas Alabkaa
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Stephen Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
16
|
MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:126. [PMID: 30866999 PMCID: PMC6416947 DOI: 10.1186/s13046-019-1105-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background Cancer stem cells (CSCs) play an important role in the development of pancreatic cancer. We previously showed that the microRNA miR-137 is downregulated in clinical samples of pancreatic cancer, and its expression negatively regulates the proliferation and invasiveness of pancreatic cancer cells. Methods The stemness features of pancreatic cancer cells was detected by flow cytometry, immunofluorescence and sphere formation assay. Xenograft mouse models were used to assess the role of miR-137 in stemness features of pancreatic cancer cells in vivo. Dual-luciferase reporter assays were used to determine how miR-137 regulates KLF12. Bioinformatics and Chromatin immunoprecipitation analysis of KLF12 recruitment to the DVL2 promoters. Involvement of the Wnt/β-catenin pathways was investigated by western blot and Immunohistochemistry. Results miR-137 inhibits pancreatic cancer cell stemness in vitro and vivo. KLF12 as miR-137 target inhibits CSC phenotype in pancreatic cancer cells. Suppression of KLF12 by miR-137 inhibits Wnt/β-catenin signalling. KLF12 expression correlates with DVL2 and canonical Wnt pathway in clinical pancreatic cancer. Conclusion Our results suggest that miR-137 reduces stemness features of pancreatic cancer cells by Targeting KLF12-associated Wnt/β-catenin pathways and may identify new diagnostic and therapeutic targets in pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1105-3) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T, Aida J. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 2018; 24:797-805. [PMID: 29948612 DOI: 10.1007/s12253-018-0420-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Hisashi Yoshimura
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-0022, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shunji Ishiwata
- Division of Medical Pharmaceutics & Therapeutics, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
18
|
Sasaki N, Ishiwata T, Hasegawa F, Michishita M, Kawai H, Matsuda Y, Arai T, Ishikawa N, Aida J, Takubo K, Toyoda M. Stemness and anti-cancer drug resistance in ATP-binding cassette subfamily G member 2 highly expressed pancreatic cancer is induced in 3D culture conditions. Cancer Sci 2018; 109:1135-1146. [PMID: 29444383 PMCID: PMC5891171 DOI: 10.1111/cas.13533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The expression of ATP-binding cassette subfamily G member 2 (ABCG2) is related to tumorigenic cancer stem cells (CSC) in several cancers. However, the effects of ABCG2 on CSC-related malignant characteristics in pancreatic ductal adenocarcinoma (PDAC) are not well elucidated. In this study, we compared the characteristics of low (ABCG2-) and high (ABCG2+)-ABCG2-expressing PDAC cells after cell sorting. In adherent culture condition, human PDAC cells, PANC-1, contained approximately 10% ABCG2+ cell populations, and ABCG2+ cells displayed more and longer microvilli compared with ABCG2- cells. Unexpectedly, ABCG2+ cells did not show significant drug resistance against fluorouracil, gemcitabine and vincristine, and ABCG2- cells exhibited higher sphere formation ability and stemness marker expression than those of ABCG2+ cells. Cell growth and motility was greater in ABCG2- cells compared with ABCG2+ cells. In contrast, epithelial-mesenchymal transition ability between ABCG2- and ABCG2+ cells was comparable. In 3D culture conditions, spheres derived from ABCG2- cells generated a large number of ABCG2+ cells, and the expression levels of stemness markers in these spheres were higher than spheres from ABCG2+ cells. Furthermore, spheres containing large populations of ABCG2+ cells exhibited high resistance against anti-cancer drugs presumably depending on ABCG2. ABCG2+ cells in PDAC in adherent culture are not correlated with stemness and malignant behaviors, but ABCG2+ cells derived from ABCG2- cells after sphere formation have stemness characteristics and anti-cancer drug resistance. These findings suggest that ABCG2- cells generate ABCG2+ cells and the malignant potential of ABCG2+ cells in PDAC varies depending on their environments.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Toshiyuki Ishiwata
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Fumio Hasegawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masaki Michishita
- Department of Veterinary PathologySchool of Veterinary MedicineNippon Veterinary and Life Science UniversityTokyoJapan
| | - Hiroki Kawai
- Research and Development DepartmentLPixleTokyoJapan
| | - Yoko Matsuda
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Tomio Arai
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Naoshi Ishikawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Junko Aida
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Kaiyo Takubo
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| |
Collapse
|
19
|
Ishiwata T, Hasegawa F, Michishita M, Sasaki N, Ishikawa N, Takubo K, Matsuda Y, Arai T, Aida J. Electron microscopic analysis of different cell types in human pancreatic cancer spheres. Oncol Lett 2017; 15:2485-2490. [PMID: 29434962 DOI: 10.3892/ol.2017.7554] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs), which are pluripotent and self-renewable, contribute to the initiation and metastasis of cancer, and are responsible for resistance to chemotherapy and radiation. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer that is associated with a high incidence of distant metastasis and recurrence. Sphere formation reveals cell proliferation under nonadherent conditions and is commonly used to identify CSCs; measurements of the number, area and volume of the spheres are used to estimate stemness of PDAC cells. However, detailed morphological analysis of such spheres has not been performed. The aim of the present study was to examine the morphology of spheres isolated from PANC-1 human pancreatic cancer cells via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). PANC-1 cells formed round to irregular oblong spheres within 1 week following seeding in ultra-low-attachment plates. These spheres exhibited higher levels of expression of CSC markers, including nestin, sex determining region Y-box 2, and CD44 containing variant exon 9, compared with adherent cells. SEM analysis revealed that the spheres exhibited a grape-like appearance, harboring cancer cells with smooth or rough surfaces. Similarly, TEM analysis detected cancer cells with varying surface types within the spheres: Those with smooth surfaces, irregular large protrusions, protrusions and a small number of microvilli, and those with many microvilli throughout the entire cell surface. These morphological differences among cancer cells may be indicative of different stages in the differentiation process, from CSCs to non-CSCs, within the spheres.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
20
|
Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:1-12. [PMID: 27837550 DOI: 10.1007/978-3-319-45457-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.
Collapse
|
21
|
Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs). PLoS One 2017; 12:e0184110. [PMID: 28854261 PMCID: PMC5576696 DOI: 10.1371/journal.pone.0184110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/17/2017] [Indexed: 02/05/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. Methods We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3’-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Results Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on interaction with mutant p53-R273H. Upregulation of uPA abolished CP-31398-mediated restoration of mutant p53 transcriptional activity in panc-1 CSCs. Conclusion Gemcitabine treatment induced ER stress and promoted mutant p53-R273H stabilization via transcriptionally activated uPA which may contribute to chemoresistance to gemcitabine. Notably, upregulation of uPA by gemcitabine treatment may lead to the failure of CP-31398; thus, a novel strategy for modulating mutant p53 function needs to be developed.
Collapse
|
22
|
The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol 2017; 19:921-930. [DOI: 10.1007/s12094-017-1625-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
|
23
|
Su R, Nan H, Guo H, Ruan Z, Jiang L, Song Y, Nan K. Associations of components of PTEN/AKT/mTOR pathway with cancer stem cell markers and prognostic value of these biomarkers in hepatocellular carcinoma. Hepatol Res 2016; 46:1380-1391. [PMID: 26932478 DOI: 10.1111/hepr.12687] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
AIM We aimed to investigate the associations between components of the phosphatase and tensin homolog deleted on chromosome 10/protein kinase B/mammalian target of rapamycin (PTEN/AKT/mTOR) pathway and liver cancer stem cell (LCSC) markers, including CD133, CD90, CD44, and epithelial cell adhesion molecule (EpCAM), and to further evaluate the predictive values of these biomarkers for recurrence and survival in hepatocellular carcinoma (HCC). METHOD Protein expressions and mRNA levels of PTEN and LCSC markers were determined in 110 HCC tissues and 98 adjacent non-tumor tissues. Protein expressions of phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) were detected to evaluate the activation of the PTEN/AKT/mTOR pathway by using immunohistochemistry. Prognostic significance was analyzed by univariate and multivariate analysis. RESULTS Loss of PTEN expression was negatively correlated with positive expression of CD133, CD90, and EpCAM (P < 0.05). Positive expression of p-AKT and p-mTOR were positively associated with positive expression for CD133, CD90, and EpCAM (P < 0.05). By univariate and multivariate analysis, a higher level of α-fetoprotein, loss of PTEN expression, and CD133-positive, p-AKT-positive, p-mTOR-positive, and EpCAM-positive signals were predictors for HCC recurrence, whereas advanced TNM stage, loss of PTEN expression, and positive expression of p-AKT, p-mTOR, and CD133 were predictors for survival. Patients with PTEN- /CD133+ or PTEN- /EpCAM+ HCC had shorter recurrence-free survival and overall survival times. CONCLUSION The PTEN/AKT/mTOR pathway might play a crucial role in driving recurrence and influencing prognosis in HCC. There could be a potential repressive relationship between components of the PTEN/AKT/mTOR pathway and LCSCs. The combination of PTEN with CD133 or EpCAM expression may serve as a screening tool to monitor recurrence and predict prognosis.
Collapse
Affiliation(s)
- Rujuan Su
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Haocheng Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Lili Jiang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Song
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Kejun Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
García-Santos EP, Padilla-Valverde D, Villarejo-Campos P, Murillo-Lázaro C, Fernández-Grande E, Palomino-Muñoz T, Rodríguez-Martínez M, Amo-Salas M, Nuñez-Guerrero P, Sánchez-García S, Puerto-Puerto A, Martín-Fernández J. The utility of hyperthermic intra-abdominal chemotherapy with gemcitabine for the inhibition of tumor progression in an experimental model of pancreatic peritoneal carcinomatosis, in relation to their behavior with pancreatic cancer stem cells CD133+ CXCR4. Pancreatology 2016; 16:632-9. [PMID: 27289344 DOI: 10.1016/j.pan.2016.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The origin of pancreatic cancer has been identified as a population of malignant pancreatic stem cells CD133+ CXCR4+ immunophenotype. These cells have high capacity for early locoregional invasion, being responsible for early recurrence and high mortality rates of pancreatic cancer. We propose a study for decreasing tumor progression of pancreatic cancer by reducing the volume and neoplastic subpopulation of pancreatic cancer stem cells CD133+ CXCR4+. Therefore, we develop a new therapeutic model, characterized by the application of HIPEC (Hyperthermic Intraperitoneal Chemotherapy) with gemcitabine. DESIGN Pancreatic tumor cell line: human cell line BxPC-3. The animal model involved 18 immunosuppressed rats 5 weeks weighing 150-200 gr. The implantation of 13 × 10(6) cells/mL was performed with homogeneous distribution in the 13 abdominopelvic quadrants according to the peritoneal carcinomatosis index (PCI) and were randomized into three treatment groups. Group I (4 rats) received intravenous saline. Group II (6 rats) received intravenous gemcitabine. Group III (8 rats) received HIPEC at 41 °C for 30 min with gemcitabine + gemcitabine IV. A histological study confirmed pancreatic cancer and immunohistochemical quantification of pancreatic cancer stem cells CD133+ CXCR4+ tumor cells. RESULTS There was a population decline of pancreatic cancer stem cells CD133+ CXCR4+ in the HIPEC group with respect to the other two groups (p < 0.001). There was a decrease in PCI between treatment groups (p < 0.05). CONCLUSION The initial results are encouraging since there is a declining population of cancer stem cells CD133+ CXCR4+ in the HIPEC group and decreased tumor volume compared to the other two treatment groups. All the conclusions are only valid for BxPC3 cell line, and the effects HIPEC on Kras-driven pancreatic tumors remain to be determined.
Collapse
Affiliation(s)
- Esther Pilar García-Santos
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - David Padilla-Valverde
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Pedro Villarejo-Campos
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Cristina Murillo-Lázaro
- Servicio de Anatomía Patológica, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Esther Fernández-Grande
- Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Teodoro Palomino-Muñoz
- Servicio de Análisis Clínicos, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Mariano Amo-Salas
- Facultad de Medicina de Ciudad Real, Universidad de Castilla La Mancha, Spain
| | - Paloma Nuñez-Guerrero
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Susana Sánchez-García
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Alejandro Puerto-Puerto
- Servicio de Urología, Hospital General La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - Jesús Martín-Fernández
- Servicio de Cirugía General y de Aparato Digestivo, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
25
|
Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 2016; 16:489-96. [PMID: 27161173 DOI: 10.1016/j.pan.2016.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Over the past decade, the cancer stem cell (CSC) concept in solid tumors has gained enormous momentum as an attractive model to explain tumor heterogeneity. The model proposes that tumors contain a subpopulation of rare cancer cells with stem-like properties that maintain the hierarchy of the tumor and drive tumor initiation, progression, metastasis, and chemoresistance. The identification and subsequent isolation of CSCs in pancreatic ductal adenocarcinoma (PDAC) in 2007 provided enormous insight into this extremely metastatic and chemoresistant tumor and renewed hope for developing more specific therapies against this disease. Unfortunately, we have made only marginal advances in applying the knowledge learned to the development of new and more effective treatments for pancreatic cancer. The latter has been partly due to the lack of adequate in vitro and in vivo systems compounded by the use of markers that do not reproducibly nor exclusively select for an enriched CSC population. Thus, attempts to define a pancreatic CSC-specific genetic, epigenetic or proteomic signature has been challenging. Fortunately recent advances in the CSC field have overcome many of these challenges and have opened up new opportunities for developing therapies that target the CSC population. In this review, we discuss these current advances, specifically new methods for the identification and isolation of pancreatic CSCs, new insights into the metabolic profile of CSCs at the level of mitochondrial respiration, and the utility of genetically engineered mouse models as surrogate systems to both study CSC biology and evaluate CSC-specific targeted therapies in vivo.
Collapse
Affiliation(s)
- Patricia Sancho
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, UK
| | - Sonia Alcala
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
26
|
Herrera VL, Colby AH, Tan GA, Moran AM, O'Brien MJ, Colson YL, Ruiz-Opazo N, Grinstaff MW. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine (Lond) 2016; 11:1001-15. [PMID: 27078118 DOI: 10.2217/nnm-2015-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. METHODS & MATERIALS A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. RESULTS The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. CONCLUSION eNPs are a promising tool for the detection and treatment of PPC.
Collapse
Affiliation(s)
- Victoria Lm Herrera
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron H Colby
- Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| | - Glaiza Al Tan
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ann M Moran
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J O'Brien
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Nelson Ruiz-Opazo
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark W Grinstaff
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.,Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
27
|
IOANNOU NIKOLAOS, SEDDON ALANM, DALGLEISH ANGUS, MACKINTOSH DAVID, SOLCA FLAVIO, MODJTAHEDI HELMOUT. Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition. Int J Oncol 2016; 48:908-18. [PMID: 26781210 PMCID: PMC4750538 DOI: 10.3892/ijo.2016.3320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants. In addition, treatment with a combination of afatinib with either c-MET inhibitor Crizotinib or Stattic resulted in an additive or synergistic growth inhibition in all three variants. Our results suggest that activation of STAT3 may play an important role in the acquisition of resistance to gemcitabine and HER inhibitors in pancreatic cancer and warrant further studies on the therapeutic potential of STAT3 inhibitors in such a setting.
Collapse
Affiliation(s)
- NIKOLAOS IOANNOU
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ALAN M. SEDDON
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ANGUS DALGLEISH
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | - DAVID MACKINTOSH
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - FLAVIO SOLCA
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - HELMOUT MODJTAHEDI
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| |
Collapse
|
28
|
Regel I, Hausmann S, Benitz S, Esposito I, Kleeff J. Pathobiology of pancreatic cancer: implications on therapy. Expert Rev Anticancer Ther 2015; 16:219-27. [PMID: 26652651 DOI: 10.1586/14737140.2016.1129276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the concept of tumor heterogeneity was established several decades ago, the interest in this topic is still unbroken. With the identification of inter- and intratumoral genomic rearrangements and the detection of cancer stem cells (CSCs) through phenotypic variations of cancer cells there are increasing options for pancreatic cancer therapy. Indeed, some pre-clinical studies have shown promising results in the treatment of drug-resistant CSCs, whereby a few strategies were already tested in clinical trials. Basically, CSCs are influenced by the tumor microenvironment and an epigenetic reprogramming to gain stem cell-like characteristics. Targeting options inhibiting the epithelial-mesenchymal crosstalk or promoting epigenetic-driven differentiation of CSCs to a less aggressive phenotype raised the possibilities of further therapeutic applications, which will be discussed in this review.
Collapse
Affiliation(s)
- Ivonne Regel
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Simone Hausmann
- b Department of Surgery , Technical University , Munich , Germany
| | - Simone Benitz
- b Department of Surgery , Technical University , Munich , Germany
| | - Irene Esposito
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Jörg Kleeff
- c Department of Surgery , The Royal Liverpool and Broadgreen University Hospitals , Liverpool , UK.,d Department of Surgery , Heinrich-Heine-University , Duesseldorf , Germany
| |
Collapse
|
29
|
Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Rep 2015; 48:68-80. [PMID: 25413305 PMCID: PMC4352616 DOI: 10.5483/bmbrep.2015.48.2.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Sangsu Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - BongWoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Jin-hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
30
|
Raj D, Aicher A, Heeschen C. Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. Stem Cells 2015. [PMID: 26202953 DOI: 10.1002/stem.2114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.
Collapse
Affiliation(s)
- Deepak Raj
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alexandra Aicher
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Christopher Heeschen
- Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Song IS, Jeong JY, Jeong SH, Kim HK, Ko KS, Rhee BD, Kim N, Han J. Mitochondria as therapeutic targets for cancer stem cells. World J Stem Cells 2015; 7:418-427. [PMID: 25815125 PMCID: PMC4369497 DOI: 10.4252/wjsc.v7.i2.418] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/25/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are maintained by their somatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondria-targeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondria-targeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.
Collapse
|
32
|
Zhan HX, Xu JW, Wu D, Zhang TP, Hu SY. Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett 2015; 357:429-37. [PMID: 25499079 DOI: 10.1016/j.canlet.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Resistance to conventional therapy and early distant metastasis contribute to the unsatisfactory prognosis of patients with pancreatic cancer. The concept of cancer stem cells (CSCs) brings new insights into cancer biology and therapy. Many studies have confirmed the important role of these stem cells in carcinogenesis and the development of hematopoietic and solid cancers. Recent studies have shown that CSCs regulate aggressive behavior, recurrence, and drug resistance in pancreatic cancer. Here, we review recent advances in pancreatic cancer stem cells (PCSCs) research. Particular attention is paid to the regulation mechanisms of pancreatic cancer stem cell functions, such as stemness-related signaling pathways, microRNAs, the epithelial-mesenchymal transition (EMT), and the tumor microenvironment, and the development of novel PCSCs targeted therapy. We seek to further understand PCSCs and explore potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Han-xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jian-wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Dong Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Tai-ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - San-yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
33
|
Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M, Giese NA, Kalthoff H, Becker T, Büchler MW, Zöller M. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 2014; 136:2616-27. [PMID: 25388097 DOI: 10.1002/ijc.29324] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Late diagnosis contributes to pancreatic cancer (PaCa) dismal prognosis, urging for reliable, early detection. Serum-exosome protein and/or miRNA markers might be suitable candidates, which we controlled for patients with PaCa. Protein markers were selected according to expression in exosomes of PaCa cell line culture supernatants, but not healthy donors' serum-exosomes. miRNA was selected according to abundant recovery in microarrays of patients with PaCa, but not healthy donors' serum-exosomes and exosome-depleted serum. According to these preselections, serum-exosomes were tested by flow cytometry for the PaCa-initiating cell (PaCIC) markers CD44v6, Tspan8, EpCAM, MET and CD104. Serum-exosomes and exosome-depleted serum was tested for miR-1246, miR-4644, miR-3976 and miR-4306 recovery by qRT-PCR. The majority (95%) of patients with PaCa (131) and patients with nonPa-malignancies reacted with a panel of anti-CD44v6, -Tspan8, -EpCAM and -CD104. Serum-exosomes of healthy donors' and patients with nonmalignant diseases were not reactive. Recovery was tumor grading and staging independent including early stages. The selected miR-1246, miR-4644, miR-3976 and miR-4306 were significantly upregulated in 83% of PaCa serum-exosomes, but rarely in control groups. These miRNA were also elevated in exosome-depleted serum of patients with PaCa, but at a low level. Concomitant evaluation of PaCIC and miRNA serum-exosome marker panels significantly improved sensitivity (1.00, CI: 0.95-1) with a specificity of 0.80 (CI: 0.67-0.90) for PaCa versus all others groups and of 0.93 (CI: 0.81-0.98) excluding nonPa-malignancies. Thus, the concomitant evaluation of PaCIC and PaCa-related miRNA marker panels awaits retrospective analyses of larger cohorts, as it should allow for a highly sensitive, minimally-invasive PaCa diagnostics.
Collapse
Affiliation(s)
- Bindhu Madhavan
- Tumor Cell Biology, General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Błogowski W, Deskur A, Budkowska M, Sałata D, Madej-Michniewicz A, Dąbkowski K, Dołęgowska B, Starzyńska T. Selected cytokines in patients with pancreatic cancer: a preliminary report. PLoS One 2014; 9:e97613. [PMID: 24849506 PMCID: PMC4029741 DOI: 10.1371/journal.pone.0097613] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS Recent experimental studies have suggested that various cytokines may be important players in the development and progression of pancreatic cancer. However, these findings have not yet been verified in a clinical setting. METHODS In this study, we examined the levels of a broad panel of cytokines, including interleukin (IL)-1, IL-6, IL-8, IL-10, IL-12, IL-17, and IL-23, as well as tumor necrosis factor alpha (TNFα) and granulocyte-colony stimulating factor (G-CSF) in patients with pancreatic adenocarcinoma (n=43), other pancreatic malignancies (neuroendocrine [n=10] and solid pseudopapillary tumors [n=3]), and healthy individuals (n=41). RESULTS We found that there were higher levels of IL-6, IL-8, IL-10 and TNFα in patients with pancreatic cancer compared to healthy controls (for all, at least p<0.03). Cancer patients had lower IL-23 concentrations than healthy individuals and patients diagnosed with other types of malignancies (for both, p=0.002). Levels of IL-6, IL-8, IL-10, and IL-23 were significantly associated with the direct number of circulating bone marrow (BM)-derived mesenchymal or very small embryonic/epiblast-like stem cells (SCs) in patients with pancreatic cancer. Moreover, our study identified a potential ability of IL-6, IL-8, IL-10, IL-23, and TNFα levels to enable discrimination of pancreatic cancer from other pancreatic tumors and diseases, including acute and chronic pancreatitis and post-pancreatitis cysts (with sensitivity and specificity ranging between 70%-82%). CONCLUSIONS Our study i) supports the significance of selected cytokines in the clinical presentation of pancreatic cancer, ii) highlights numerous associations between selected interleukins and intensified BMSCs trafficking in patients with pancreatic cancer, and iii) preliminarily characterizes the diagnostic potential of several cytokines as potential novel clinical markers of pancreatic cancer in humans.
Collapse
Affiliation(s)
- Wojciech Błogowski
- Department of Public Health, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Daria Sałata
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Madej-Michniewicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
35
|
The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 2014; 35:866-78. [DOI: 10.1016/j.biomaterials.2013.10.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022]
|
36
|
Lee JY, Song SY, Park JY. Notch pathway activation is associated with pancreatic cancer treatment failure. Pancreatology 2013; 14:48-53. [PMID: 24555978 DOI: 10.1016/j.pan.2013.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/23/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is resistant to conventional treatment. The aim of the study was to confirm the hypothesis that changes in cancer stem cells (CSCs) and developmental pathway after treatment was responsible for treatment failure in pancreatic cancer. METHODS After recovery from a gemcitabine treatment, the percentage of pancreatic cancer CSCs and Notch pathway in BxPC3 and HPAC pancreatic cancer cell lines were analyzed by FACS (CD24 and CD44) and western blot (Notch1, Hes1, β-catenin, and pAKT). The effect of DAPT, a gamma-secretase inhibitor, was similarly investigated. The association between immunohistochemical expression of Hes1 and survival was analyzed. RESULTS The percentage of CD24(+)CD44(+) cells was higher in gemcitabine-treated BxPC3 and HPAC cells than at pre-treatment. CD24(+)CD44(+) cells sorted from the gemcitabine-treated cell lines showed higher migration and invasion ability than CD24(-)CD44(-) or CD24(-)CD44(+) cells from the same cell lines. Western blot analysis showed an increased expression of Notch1 and Hes1 in gemcitabine-treated cell lines. The overall survival of pancreatic cancer patients with strong expression of Hes1 was shorter than that in patients with no or weak expression (11.1 vs. 21.6 months, P = 0.036). Treatment with DAPT reversed the increase in Hes1, β-catenin, and pAKT expression and the proportion of CD24(+)CD44(+) cells in gemcitabine-treated cell lines. The treatment also decreased migration and invasion ability. CONCLUSION Our data suggested that an increase in CSCs and activation of the Notch pathway might contribute to the failure of treatment in pancreatic cancer. Notch pathway can be a potential target to overcome treatment failure.
Collapse
Affiliation(s)
- Jin Young Lee
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, College of Medicine Yonsei University, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, College of Medicine Yonsei University, South Korea; Brain Korea 21 Project for Medical Science, Seoul, South Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, College of Medicine Yonsei University, South Korea.
| |
Collapse
|
37
|
Zöller M. Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 2013; 4:74-90. [PMID: 24340225 PMCID: PMC3858795 DOI: 10.4291/wjgp.v4.i4.74] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/01/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic adenocarcinoma (PaCa) have a dismal prognosis. This is in part due to late diagnosis prohibiting surgical intervention, which provides the only curative option as PaCa are mostly chemo- and radiation resistance. Hope is raised on a reliable non-invasive/minimally invasive diagnosis that is still missing. Recently two diagnostic options are discussed, serum MicroRNA (miRNA) and serum exosomes. Serum miRNA can be free or vesicle-, particularly, exosomes-enclosed. This review will provide an overview on the current state of the diagnostic trials on free serum miRNA and proceed with an introduction of exosomes that use as a diagnostic tool in serum and other body fluids has not received sufficient attention, although serum exosome miRNA in combination with protein marker expression likely will increase the diagnostic and prognostic power. By their crosstalk with host cells, which includes binding-initiated signal transduction, as well as reprogramming target cells via the transfer of proteins, mRNA and miRNA exosomes are suggested to become a most powerful therapeutics. I will discuss which hurdles have still to be taken as well as the different modalities, which can be envisaged to make therapeutic use of exosomes. PaCa are known to most intensely crosstalk with the host as apparent by desmoplasia and frequent paraneoplastic syndromes. Thus, there is hope that the therapeutic application of exosomes brings about a major breakthrough.
Collapse
|
38
|
Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, Young MR, Klarmann KD, Keller JR, Farrar WL. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells 2013; 31:1454-66. [PMID: 23592398 PMCID: PMC3775871 DOI: 10.1002/stem.1394] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 03/10/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related mortality in the world. Pancreatic cancer can be localized, locally advanced, or metastatic. The median 1- and 5-year survival rates are 25% and 6%, respectively. Epigenetic modifications such as DNA methylation play a significant role during both normal human development and cancer progression. To investigate epigenetic regulation of genes in the tumor-initiating population of pancreatic cancer cells, which are also termed cancer stem cells (CSCs), we conducted epigenetic arrays in PANC1 and HPAC pancreatic cancer cell lines and compared the global DNA methylation status of CpG promoters in invasive cells, demonstrated to be CSCs, to their noninvasive counterparts, or non-CSCs. Our results suggested that the NF-κB pathway is one of the most activated pathways in pancreatic CSCs. In agreement with this, we determined that upon treatment with NF-κB pathway inhibitors, the stem cell-like properties of cells are significantly disrupted. Moreover, SOX9, demethylated in CSCs, is shown to play a crucial role in the invasion process. Additionally, we found a potential NF-κB binding site located in the SOX9 promoter and determined that the NF-κB subunit p65 positively regulates SOX9 expression by binding to its promoter directly. This interaction can be efficiently blocked by NF-κB inhibitors. Thus, our work establishes a link between the classic NF-κB signaling transduction pathway and the invasiveness of pancreatic CSCs, which may result in the identification of novel signals and molecules that function at an epigenetic level, and could potentially be targeted for pharmaceutical investigations and clinical trials.
Collapse
Affiliation(s)
- Lei Sun
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Asuthkar S, Stepanova V, Lebedeva T, Holterman AL, Estes N, Cines DB, Rao JS, Gondi CS. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer. Mol Biol Cell 2013; 24:2620-32. [PMID: 23864708 PMCID: PMC3756915 DOI: 10.1091/mbc.e12-04-0306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cabarcas SM, Sun L, Mathews L, Thomas S, Zhang X, Farrar WL. The differentiation of pancreatic tumor-initiating cells by vitronectin can be blocked by cilengitide. Pancreas 2013; 42:861-70. [PMID: 23462327 PMCID: PMC3676482 DOI: 10.1097/mpa.0b013e318279d568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pancreatic cancer is a leading cancer type and its molecular pathology is poorly understood. The only potentially curative therapeutic option available is complete surgical resection; however, this is inadequate as most of the patients are diagnosed at an advanced or metastatic stage. Tumor-initiating cells (TICs) constitute a subpopulation of cells within a solid tumor that sustain tumor growth, metastasis, and chemo/radioresistance. Within pancreatic cancer, TICs have been identified based on the expression of specific cell surface markers. METHODS We use a sphere formation assay to enrich putative TICs and use human serum as a driver of differentiation. We demonstrate by using specific blocking reagents that we can inhibit the differentiation process and maintain TIC-associated markers and genes. RESULTS We can induce differentiation of pancreatospheres with the addition of human serum, and we identified vitronectin as an inducer of differentiation. We inhibit differentiation by human serum using an arginine-glycine-aspartate-specific peptide, which is Cilengitide; hence, demonstrating this differentiation is mediated via specific integrin receptors. CONCLUSIONS Overall, our studies further the definition of pancreatic TICs and provide further insight into both the maintenance and differentiation of this lethal population.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hermann PC, Trabulo SM, Sainz B, Balic A, Garcia E, Hahn SA, Vandana M, Sahoo SK, Tunici P, Bakker A, Hidalgo M, Heeschen C. Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts. PLoS One 2013; 8:e66371. [PMID: 23825539 PMCID: PMC3688976 DOI: 10.1371/journal.pone.0066371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Purpose In spite of intense research efforts, pancreatic ductal adenocarcinoma remains one of the most deadly malignancies in the world. We and others have previously identified a subpopulation of pancreatic cancer stem cells within the tumor as a critical therapeutic target and additionally shown that the tumor stroma represents not only a restrictive barrier for successful drug delivery, but also serves as a paracrine niche for cancer stem cells. Therefore, we embarked on a large-scale investigation on the effects of combining chemotherapy, hedgehog pathway inhibition, and mTOR inhibition in a preclinical mouse model of pancreatic cancer. Experimental Design Prospective and randomized testing in a set of almost 200 subcutaneous and orthotopic implanted whole-tissue primary human tumor xenografts. Results The combined targeting of highly chemoresistant cancer stem cells as well as their more differentiated progenies, together with abrogation of the tumor microenvironment by targeting the stroma and enhancing tissue penetration of the chemotherapeutic agent translated into significantly prolonged survival in preclinical models of human pancreatic cancer. Most pronounced therapeutic effects were observed in gemcitabine-resistant patient-derived tumors. Intriguingly, the proposed triple therapy approach could be further enhanced by using a PEGylated formulation of gemcitabine, which significantly increased its bioavailability and tissue penetration, resulting in a further improved overall outcome. Conclusions This multimodal therapeutic strategy should be further explored in the clinical setting as its success may eventually improve the poor prognosis of patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Patrick C. Hermann
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara M. Trabulo
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Sainz
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anamaria Balic
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Garcia
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stephan A. Hahn
- Department of Molecular GI-Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Mallaredy Vandana
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Sanjeeb K. Sahoo
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | - Annette Bakker
- Children’s Tumor Foundation, New York, New York, United States of America
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Vives M, Ginestà MM, Gracova K, Graupera M, Casanovas O, Capellà G, Serrano T, Laquente B, Viñals F. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 2013; 133:2464-72. [PMID: 23649709 DOI: 10.1002/ijc.28259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022]
Abstract
In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.
Collapse
Affiliation(s)
- Marta Vives
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Starzyńska T, Dąbkowski K, Błogowski W, Zuba-Surma E, Budkowska M, Sałata D, Dołęgowska B, Marlicz W, Lubikowski J, Ratajczak MZ. An intensified systemic trafficking of bone marrow-derived stem/progenitor cells in patients with pancreatic cancer. J Cell Mol Med 2013; 17:792-9. [PMID: 23672538 PMCID: PMC3823183 DOI: 10.1111/jcmm.12065] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/19/2013] [Indexed: 12/20/2022] Open
Abstract
Various experimental studies indicate potential involvement of bone marrow (BM)-derived stem cells (SCs) in malignancy development and progression. In this study, we comprehensively analysed systemic trafficking of various populations of BM-derived SCs (BMSCs), i.e., mesenchymal, haematopoietic, endothelial stem/progenitor cells (MSCs, HSCs, EPCs respectively), and of recently discovered population of very small embryonic/epiblast-like SCs (VSELs) in pancreatic cancer patients. Circulating CD133+/Lin−/CD45−/CD34+ cells enriched for HSCs, CD105+/STRO-1+/CD45− cells enriched for MSCs, CD34+/KDR+/CD31+/CD45− cells enriched for EPCs and small CXCR4+CD34+CD133+ subsets of Lin−CD45− cells that correspond to VSELs were enumerated and sorted from blood samples derived from 29 patients with pancreatic cancer, and 19 healthy controls. In addition, plasma levels of stromal-derived factor-1 (SDF-1), growth/inhibitory factors and sphingosine-1-phosphate (S1P; chemoattractants for SCs), as well as, of complement cascade (CC) molecules (C3a, C5a and C5b-9/membrane attack complex – MAC) were measured. Higher numbers of circulating VSELs and MSCs were detected in pancreatic cancer patients (P < 0.05 and 0.01 respectively). This trafficking of BMSCs was associated with significantly elevated C5a (P < 0.05) and C5b-9/MAC (P < 0.005) levels together with S1P concentrations detected in plasma of cancer patients, and seemed to be executed in a SDF-1 independent manner. In conclusion, we demonstrated that in patients with pancreatic cancer, intensified peripheral trafficking of selected populations of BMSCs occurs. This phenomenon seems to correlate with systemic activation of the CC, hepatocyte growth factor and S1P levels. In contrast to previous studies, we demonstrate herein that systemic SDF-1 levels do not seem to be linked with increased mobilization of stem cells in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang H, Rana S, Giese N, Büchler MW, Zöller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer 2013; 133:416-26. [PMID: 23338841 DOI: 10.1002/ijc.28044] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/02/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PaCa) being the deadliest cancer is partly due to early metastatic spread. Thus, we searched for PaCa-initiating cell (PaCIC) markers with emphasis on markers contributing to metastatic progression. PaCIC were enriched from long-term and freshly established lines by repeated selection for spheroid or holoclone growth in advance of evaluating PaCIC markers. Sphere and holoclone formation steeply increased by recloning and remained stable thereafter. Cells not forming spheres or holoclones died on recloning. PaCIC enrichment in spheres and holoclones was accompanied by increased motility, anchorage independence and upregulated CXCR4 expression. After subcutaneous injection in NOD/SCID mice tumorigenicity and, impressively, recovery of metastasizing tumor cells in peripheral blood, spleen, bone marrow, lung and pancreas was strongly increased in spheres and holoclones. PaCIC enrichment in spheres and holoclones was accompanied, besides CXCR4, by upregulated CD44v6, alpha6beta4, weakly CD133 and tetraspanin Tspan8 expression. Notably, CD44v6, alpha6beta4, CXCR4 and Tspan8 expressing PaCa cells had a growth advantage in vivo and became dominating in migrating and in distant organs settled tumor cells. This is the first report showing that CD44v6, alpha6beta4, Tspan8 and CXCR4 are biomarkers in PaCIC allowing for long-term survival, expansion and migration in immunocompromised mice. The stability of the percentage of PaCIC in long-term and freshly established lines after a roughly 8-fold enrichment by cloning indicates PaCIC, though required for long-term survival, concomitantly depending on support by non-CIC.
Collapse
Affiliation(s)
- Haobin Wang
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Yee NS. Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:91-143. [PMID: 23288637 DOI: 10.1007/978-1-4614-6176-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to provide a critical review of the molecular alterations in pancreatic cancer that are clinically investigated as therapeutic targets and their potential impact on clinical outcomes. Adenocarcinoma of exocrine pancreas is generally associated with poor prognosis and the conventional therapies are marginally effective. Advances in understanding the genetic regulation of normal and neoplastic development of pancreas have led to development and clinical evaluation of new therapeutic strategies that target the signaling pathways and molecular alterations in pancreatic cancer. Applications have begun to utilize the genetic targets as biomarkers for prediction of therapeutic responses and selection of treatment options. The goal of accomplishing personalized tumor-specific therapy with tolerable side effects for patients with pancreatic cancer is hopefully within reach in the foreseeable future.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| |
Collapse
|
46
|
Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 2012; 31:733-51. [PMID: 22752409 DOI: 10.1007/s10555-012-9382-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.
Collapse
Affiliation(s)
- Darshni Vira
- Department of Surgery, VAGLAHS West Los Angeles, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
47
|
Development of new technologies for stem cell research. J Biomed Biotechnol 2012; 2012:741416. [PMID: 23251081 PMCID: PMC3518316 DOI: 10.1155/2012/741416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/27/2012] [Indexed: 01/15/2023] Open
Abstract
Since the 1960s, the stem cells have been extensively studied including embryonic stem cells, neural stem cells, bone marrow hematopoietic stem cells, and mesenchymal stem cells. In the recent years, several stem cells have been initially used in the treatment of diseases, such as in bone marrow transplant. At the same time, isolation and culture experimental technologies for stem cell research have been widely developed in recent years. In addition, molecular imaging technologies including optical molecular imaging, positron emission tomography, single-photon emission computed tomography, and computed tomography have been developed rapidly in recent the 10 years and have also been used in the research on disease mechanism and evaluation of treatment of disease related with stem cells. This paper will focus on recent typical isolation, culture, and observation techniques of stem cells followed by a concise introduction. Finally, the current challenges and the future applications of the new technologies in stem cells are given according to the understanding of the authors, and the paper is then concluded.
Collapse
|
48
|
Palagani V, El Khatib M, Kossatz U, Bozko P, Müller MR, Manns MP, Krech T, Malek NP, Plentz RR. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX. PLoS One 2012; 7:e46514. [PMID: 23094026 PMCID: PMC3477166 DOI: 10.1371/journal.pone.0046514] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high rate of metastasis. Recent studies have indicated that the Notch signalling pathway is important in PDAC initiation and maintenance, although the specific cell biological roles of the pathway remain to be established. Here we sought to examine this question in established pancreatic cancer cell lines using the γ-secretase inhibitor IX (GSI IX) to inactivate Notch. Based on the known roles of Notch in development and stem cell biology, we focused on effects on epithelial mesenchymal transition (EMT) and on pancreatic tumor initiating CD44+/EpCAM+ cells. We analyzed the effect of the GSI IX on growth and epithelial plasticity of human pancreatic cancer cell lines, and on the tumorigenicity of pancreatic tumor initiating CD44+/EpCAM+ cells. Notably, apoptosis was induced after GSI IX treatment and EMT markers were selectively targeted. Furthermore, under GSI IX treatment, decline in the growth of pancreatic tumor initiating CD44+/EpCAM+ cells was observed in vitro and in a xenograft mouse model. This study demonstrates a central role of Notch signalling pathway in pancreatic cancer pathogenesis and identifies an effective approach to inhibit selectively EMT and suppress tumorigenesis by eliminating pancreatic tumor initiating CD44+/EpCAM+ cells.
Collapse
Affiliation(s)
- Vindhya Palagani
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Mona El Khatib
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Uta Kossatz
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Martin R. Müller
- Department of Internal Medicine II, Medical University Hospital, Tuebingen, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Till Krech
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Nisar P. Malek
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | - Ruben R. Plentz
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| |
Collapse
|
49
|
Herreros-Villanueva M, Zubia-Olascoaga A, Bujanda L. c-Met in pancreatic cancer stem cells: Therapeutic implications. World J Gastroenterol 2012; 18:5321-3. [PMID: 23082047 PMCID: PMC3471099 DOI: 10.3748/wjg.v18.i38.5321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the deadliest solid cancer and currently the fourth most frequent cause of cancer-related deaths. Emerging evidence suggests that cancer stem cells (CSCs) play a crucial role in the development and progression of this disease. The identification of CSC markers could lead to the development of new therapeutic targets. In this study, the authors explore the functional role of c-Met in pancreatic CSCs, by analyzing self-renewal with sphere assays and tumorigenicity capacity in NOD SCID mice. They concluded that c-Met is a novel marker for identifying pancreatic CSCs and c-Methigh in a higher tumorigenic cancer cell population. Inhibition of c-Met with XL184 blocks self-renewal capacity in pancreatic CSCs. In pancreatic tumors established in NOD SCID mice, c-Met inhibition slowed tumor growth and reduced the population of CSCs, along with preventing the development of metastases.
Collapse
|
50
|
Kim HS, Yoo SY, Kim KT, Park JT, Kim HJ, Kim JC. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:754-761. [PMID: 23071857 PMCID: PMC3466976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND To evaluate the prognostic implication of cancer stem cell markers in pancreac ductal adenocarcinoma (PDAC), the expression of CD133 and nestin were investigated in a series of PDAC patients in relation to the survival rate. METHODS This series included 42 cases of PDAC patients and evaluated the stem cell markers CD133 and nestin expression detected by immunohistochemistry. The presence of immunopositive tumor cells considering intensity and area was evaluated and interpreted in comparison to the patients' clinicopathological and survival data. RESULTS Twenty eight cases (66.7%) showed high CD133 expression. The CD133 expression was mainly identified in the apical border of the tumor cell, but aberrant expression in the cytoplasmic or perinuclear location was also noted. High nestin expression in tumor cells were found in only 2 cases, but high nestin expression along perinuerial or stromal region was found in 15 cases (35.7%). There was no correlation between CD133, nestin expression and gemcitabine resistance. Statistically significant difference was found in patient survival in N stage (p=0.007), and CD133 expression (p= 0.014) in univariate analysis. Nestin expression wan not statistically significant, but it was helpful to identify the perineurial invasion. In Cox-regression hazard model stratified by age and sex for multivariable analysis, AJCC stage and CD133 were independent prognostic factors for overall survival. CONCLUSIONS CD133 expression is upregulated in PDAC that is related to poor prognosis, and treatment targeted the CD133 positive cancer/cancer stem cells might be a promising therapeutic strategy for this patients.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School Gwangju, South Korea.
| | | | | | | | | | | |
Collapse
|