1
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Mitrovský O, Myslivcová D, Macháčková-Lopotová T, Obr A, Čermáková K, Ransdorfová Š, Březinová J, Klamová H, Žáčková M. Inhibition of casein kinase 2 induces cell death in tyrosine kinase inhibitor resistant chronic myelogenous leukemia cells. PLoS One 2023; 18:e0284876. [PMID: 37141212 PMCID: PMC10159124 DOI: 10.1371/journal.pone.0284876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disease characterized by the BCR-ABL oncogene. Despite the high performance of treatment with tyrosine kinase inhibitors (TKI), about 30% of patients develop resistance to the therapy. To improve the outcomes, identification of new targets of treatment is needed. Here, we explored the Casein Kinase 2 (CK2) as a potential target for CML therapy. Previously, we detected increased phosphorylation of HSP90β Serine 226 in patients non-responding to TKIs imatinib and dasatinib. This site is known to be phosphorylated by CK2, which was also linked to CML resistance to imatinib. In the present work, we established six novel imatinib- and dasatinib-resistant CML cell lines, all of which had increased CK2 activation. A CK2 inhibitor, CX-4945, induced cell death of CML cells in both parental and resistant cell lines. In some cases, CK2 inhibition also potentiated the effects of TKI on the cell metabolic activity. No effects of CK2 inhibition were observed in normal mononuclear blood cells from healthy donors and BCR-ABL negative HL60 cell line. Our data indicate that CK2 kinase supports CML cell viability even in cells with different mechanisms of resistance to TKI, and thus represents a potential target for treatment.
Collapse
Affiliation(s)
- Ondřej Mitrovský
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Denisa Myslivcová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | | | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Kamila Čermáková
- Laboratory of PCR Diagnostics of Leukemias, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Jana Březinová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Hana Klamová
- Clinical Division, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Markéta Žáčková
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
3
|
Nipun VB, Amin KA. Recent Advances in Protein Kinase CK2, a Potential Therapeutic Target in Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:919-931. [DOI: 10.1134/s1068162022050144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- V. B. Nipun
- Cancer Research Center, Shantou University Medical Collage, Shantou, Guangdong, 515041, PR China
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - K. A. Amin
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
4
|
Targeting CK2 in cancer: a valuable strategy or a waste of time? Cell Death Discov 2021; 7:325. [PMID: 34716311 PMCID: PMC8555718 DOI: 10.1038/s41420-021-00717-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
CK2 is a protein kinase involved in several human diseases (ranging from neurological and cardiovascular diseases to autoimmune disorders, diabetes, and infections, including COVID-19), but its best-known implications are in cancer, where it is considered a pharmacological target. Several CK2 inhibitors are available and clinical trials are underway in different cancer types. Recently, the suitability of CK2 as a broad anticancer target has been questioned by the finding that a newly developed compound, named SGC-CK2-1, which is more selective than any other known CK2 inhibitor, is poorly effective in reducing cell growth in different cancer lines, prompting the conclusion that the anticancer efficacy of CX-4945, the commonly used clinical-grade CK2 inhibitor, is to be attributed to its off-target effects. Here we perform a detailed scrutiny of published studies on CK2 targeting and a more in-depth analysis of the available data on SGC-CK2-1 vs. CX-4945 efficacy, providing a different perspective about the actual reliance of cancer cells on CK2. Collectively taken, our arguments would indicate that the pretended dispensability of CK2 in cancer is far from having been proved and warn against premature conclusions, which could discourage ongoing investigations on a potentially valuable drug target.
Collapse
|
5
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
6
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
7
|
D'Amore C, Borgo C, Sarno S, Salvi M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell Oncol (Dordr) 2020; 43:1003-1016. [PMID: 33052585 PMCID: PMC7717057 DOI: 10.1007/s13402-020-00566-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Perera Y, Melão A, Ramón AC, Vázquez D, Ribeiro D, Perea SE, Barata JT. Clinical-Grade Peptide-Based Inhibition of CK2 Blocks Viability and Proliferation of T-ALL Cells and Counteracts IL-7 Stimulation and Stromal Support. Cancers (Basel) 2020; 12:cancers12061377. [PMID: 32471246 PMCID: PMC7352628 DOI: 10.3390/cancers12061377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Ailyn C. Ramón
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Dania Vázquez
- Pharmacogenomics Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Silvio E. Perea
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
- Correspondence:
| |
Collapse
|
9
|
Alcaraz E, Vilardell J, Borgo C, Sarró E, Plana M, Marin O, Pinna LA, Bayascas JR, Meseguer A, Salvi M, Itarte E, Ruzzene M. Effects of CK2β subunit down-regulation on Akt signalling in HK-2 renal cells. PLoS One 2020; 15:e0227340. [PMID: 31910234 PMCID: PMC6946142 DOI: 10.1371/journal.pone.0227340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
The PI3K/Akt pathway is interconnected to protein kinase CK2, which directly phosphorylates Akt1 at S129. We have previously found that, in HK-2 renal cells, downregulation of the CK2 regulatory subunit β (shCK2β cells) reduces S129 Akt phosphorylation. Here, we investigated in more details how the different CK2 isoforms impact on Akt and other signaling pathways. We found that all CK2 isoforms phosphorylate S129 in vitro, independently of CK2β. However, in HK-2 cells the dependence on CK2β was confirmed by rescue experiments (CK2β re-expression in shCK2β HK-2 cells), suggesting the presence of additional components that drive Akt recognition by CK2 in cells. We also found that CK2β downregulation altered the phosphorylation ratio between the two canonical Akt activation sites (pT308 strongly reduced, pS473 slightly increased) in HK-2 cells. Similar results were found in other cell lines where CK2β was stably knocked out by CRISPR-Cas9 technology. The phosphorylation of rpS6 S235/S236, a downstream effector of Akt, was strongly reduced in shCK2β HK-2 cells, while the phosphorylation of two Akt direct targets, PRAS40 T246 and GSK3β S9, was increased. Differently to what observed in response to CK2β down-regulation, the chemical inhibition of CK2 activity by cell treatment with the specific inhibitor CX-4945 reduced both the Akt canonical sites, pT308 and pS473. In CX-4945-treated cells, the changes in rpS6 pS235/S236 and GSK3β pS9 mirrored those induced by CK2β knock-down (reduction and slight increase, respectively); on the contrary, the effect on PRAS40 pT246 phosphorylation was sharply different, being strongly reduced by CK2 inhibition; this suggests that this Akt target might be dependent on Akt pS473 status in HK-2 cells. Since PI3K/Akt and ERK1/2/p90rsk pathways are known to be interconnected and both modulated by CK2, with GSK3β pS9 representing a convergent point, we investigated if ERK1/2/p90rsk signaling was affected by CK2β knock-down and CX-4945 treatment in HK-2 cells. We found that p90rsk was insensitive to any kind of CK2 targeting; therefore, the observation that, similarly, GSK3β pS9 was not reduced by CK2 blockade suggests that GSK3β phosphorylation is mainly under the control of p90rsk in these cells. However, we found that the PI3K inhibitor LY294002 reduced GSK3β pS9, and concomitantly decreased Snail1 levels (a GSK3β target and Epithelial-to-Mesenchymal transition marker). The effects of LY294002 were observed also in CK2β-downregulated cells, suggesting that reducing GSK3β pS9 could be a strategy to control Snail1 levels in any situation where CK2β is defective, as possibly occurring in cancer cells.
Collapse
Affiliation(s)
- Estefania Alcaraz
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
| | - Jordi Vilardell
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Eduard Sarró
- Fisiopatología Renal, CIBBIM-Nanomedicine, VHIR, Barcelona, Spain
| | - Maria Plana
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Barcelona, Spain
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
| | - José R. Bayascas
- Departament de Bioquimica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Meseguer
- Fisiopatología Renal, CIBBIM-Nanomedicine, VHIR, Barcelona, Spain
- Departament de Bioquimica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emilio Itarte
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
10
|
Carrà G, Cartellà A, Maffeo B, Morotti A. Strategies For Targeting Chronic Myeloid Leukaemia Stem Cells. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2019; 9:45-52. [PMID: 31807112 PMCID: PMC6842740 DOI: 10.2147/blctt.s228815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Chronic Myeloid Leukaemia is a myeloproliferative disorder driven by the t(9;22) chromosomal translocation coding for the chimeric protein BCR-ABL. CML treatment represents the paradigm of molecular therapy of cancer. Since the development of the tyrosine kinase inhibitor of the BCR-ABL kinase, the clinical approach to CML has dramatically changed, with a stunning improvement in the quality of life and response rates of patients. However, it remains clear that tyrosine kinase inhibitors (TKIs) are unable to target the most immature cellular component of CML, the CML stem cell. This review summarizes new insights into the mechanisms of resistance to TKIs.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Antonio Cartellà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Beatrice Maffeo
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Alessandro Morotti
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| |
Collapse
|
11
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
12
|
Kawai H, Matsushita H, Suzuki R, Kitamura Y, Ogawa Y, Kawada H, Ando K. Overcoming Tyrosine Kinase Inhibitor Resistance in Transformed Cell Harboring SEPT9-ABL1 Chimeric Fusion Protein. Neoplasia 2019; 21:788-801. [PMID: 31276931 PMCID: PMC6611969 DOI: 10.1016/j.neo.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Hematological malignancies harboring various ABL1 fusions are expected to be sensitive to tyrosine kinase inhibitors (TKIs), similar to those with BCR-ABL1. However, SEPT9-ABL1 exhibits TKI resistance both in vitro and in vivo. SEPT9-ABL1 has the same ABL1 region as seen in BCR-ABL1 but no point mutation in its kinase domain, which is one of the main mechanisms underlying TKI resistance in the leukemic cells harboring BCR-ABL1. The purpose of this study was to reveal the mechanism underlying TKI resistance induced by SEPT9-ABL1. We focused on the TP53 status because TKI-induced apoptosis in BCR-ABL1–positive cells is achieved through TP53. Mouse TP53 homologue TRP53 was downregulated and less phosphorylated in the cells expressing SEPT9-ABL1 than in those with BCR-ABL1, resulting in the prevention of apoptosis induced by TKIs. The CRM1 inhibitor KPT-330 accumulated nuclear TRP53 and NFKB1A (also known as IκBα), which is thought to capture TRP53 in the cytoplasm, and induced apoptosis in the hematopoietic cells expressing SEPT9-ABL1. In addition, the combination treatment of KPT-330 and imatinib, which induced the marked nuclear accumulation of PP2A and SET, reactivated PP2A through its dephosphorylation and inhibited SET expression, resulting in the effective induction of the apoptosis in the cells expressing SEPT9-ABL1. The combination treatment with KPT-330 and imatinib successfully reduced the subcutaneous masses expressing SEPT9-ABL1 and extended the survival of the mice intraperitoneally transplanted with SEPT9-ABL1–expressing cells. These results show that therapy with CRM1 inhibitors may be effective for overcoming TKI resistance induced by SEPT9-ABL1.
Collapse
Affiliation(s)
- Hidetsugu Kawai
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiromichi Matsushita
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.
| | - Rikio Suzuki
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuka Kitamura
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
13
|
Rabalski AJ, Gyenis L, Litchfield DW. Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells. Clin Cancer Res 2018; 22:2840-7. [PMID: 27306791 DOI: 10.1158/1078-0432.ccr-15-1314] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
Protein kinase CK2 (designated CSNK2) is a constitutively active protein kinase with a vast repertoire of putative substrates that has been implicated in several human cancers, including cancer of the breast, lung, colon, and prostate, as well as hematologic malignancies. On the basis of these observations, CSNK2 has emerged as a candidate for targeted therapy, with two CSNK2 inhibitors in ongoing clinical trials. CX-4945 is a bioavailable small-molecule ATP-competitive inhibitor targeting its active site, and CIGB-300 is a cell-permeable cyclic peptide that prevents phosphorylation of the E7 protein of HPV16 by CSNK2. In preclinical models, either of these inhibitors exhibit antitumor efficacy. Furthermore, in combinations with chemotherapeutics such as cisplatin or gemcitabine, either CX-4945 or CIGB-300 promote synergistic induction of apoptosis. While CSNK2 is a regulatory participant in many processes related to cancer, its potential to modulate caspase action may be particularly pertinent to its emergence as a therapeutic target. Because the substrate recognition motifs for CSNK2 and caspases are remarkably similar, CSNK2 can block the cleavage of many caspase substrates through the phosphorylation of sites adjacent to cleavage sites. Phosphoproteomic strategies have also revealed previously underappreciated roles for CSNK2 in the phosphorylation of several key constituents of DNA damage and DNA repair pathways. Going forward, applications of proteomic strategies to interrogate responses to CSNK2 inhibitors are expected to reveal signatures for CSNK2 inhibition and molecular insights to guide new strategies to interfere with its potential to inhibit caspase action or enhance the susceptibility of cancer cells to DNA damage. Clin Cancer Res; 22(12); 2840-7. ©2016 AACR.
Collapse
Affiliation(s)
- Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
14
|
CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci Rep 2017; 7:17569. [PMID: 29242563 PMCID: PMC5730587 DOI: 10.1038/s41598-017-17809-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
Insulin plays a major role in glucose metabolism and insulin-signaling defects are present in obesity and diabetes. CK2 is a pleiotropic protein kinase implicated in fundamental cellular pathways and abnormally elevated in tumors. Here we report that in human and murine adipocytes CK2-inhibition decreases the insulin-induced glucose-uptake by counteracting Akt-signaling and GLUT4-translocation to the plasma membrane. In mice CK2 acts on insulin-signaling in adipose tissue, liver and skeletal muscle and its acute inhibition impairs glucose tolerance. Notably, CK2 protein-level and activity are greatly up-regulated in white adipose tissue from ob/ob and db/db mice as well as from obese patients, regardless the severity of their insulin-resistance and the presence of pre-diabetes or overt type 2 diabetes. Weight loss obtained by both bariatric surgery or hypocaloric diet reverts CK2 hyper-activation to normal level. Our data suggest a central role of CK2 in insulin-sensitivity, glucose homeostasis and adipose tissue remodeling. CK2 up-regulation is identified as a hallmark of adipose tissue pathological expansion, suggesting a new potential therapeutic target for human obesity.
Collapse
|
15
|
Buontempo F, McCubrey JA, Orsini E, Ruzzene M, Cappellini A, Lonetti A, Evangelisti C, Chiarini F, Evangelisti C, Barata JT, Martelli AM. Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 2017; 32:1-10. [PMID: 28951560 PMCID: PMC5770594 DOI: 10.1038/leu.2017.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
Abstract
CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - C Evangelisti
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Chiarini
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Okumu DO, East MP, Levine M, Herring LE, Zhang R, Gilbert TSK, Litchfield DW, Zhang Y, Graves LM. BIRC6 mediates imatinib resistance independently of Mcl-1. PLoS One 2017; 12:e0177871. [PMID: 28520795 PMCID: PMC5433768 DOI: 10.1371/journal.pone.0177871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Baculoviral IAP repeat containing 6 (BIRC6) is a member of the inhibitors of apoptosis proteins (IAPs), a family of functionally and structurally related proteins that inhibit apoptosis. BIRC6 has been implicated in drug resistance in several different human cancers, however mechanisms regulating BIRC6 have not been extensively explored. Our phosphoproteomic analysis of an imatinib-resistant chronic myelogenous leukemia (CML) cell line (MYL-R) identified increased amounts of a BIRC6 peptide phosphorylated at S480, S482, and S486 compared to imatinib-sensitive CML cells (MYL). Thus we investigated the role of BIRC6 in mediating imatinib resistance and compared it to the well-characterized anti-apoptotic protein, Mcl-1. Both BIRC6 and Mcl-1 were elevated in MYL-R compared to MYL cells. Lentiviral shRNA knockdown of BIRC6 in MYL-R cells increased imatinib-stimulated caspase activation and resulted in a ~20-25-fold increase in imatinib sensitivity, without affecting Mcl-1. Treating MYL-R cells with CDK9 inhibitors decreased BIRC6 mRNA, but not BIRC6 protein levels. By contrast, while CDK9 inhibitors reduced Mcl-1 mRNA and protein, they did not affect imatinib sensitivity. Since the Src family kinase Lyn is highly expressed and active in MYL-R cells, we tested the effects of Lyn inhibition on BIRC6 and Mcl-1. RNAi-mediated knockdown or inhibition of Lyn (dasatinib/ponatinib) reduced BIRC6 protein stability and increased caspase activation. Inhibition of Lyn also increased formation of an N-terminal BIRC6 fragment in parallel with reduced amount of the BIRC6 phosphopeptide, suggesting that Lyn may regulate BIRC6 phosphorylation and stability. In summary, our data show that BIRC6 stability is dependent on Lyn, and that BIRC6 mediates imatinib sensitivity independently of Mcl-1 or CDK9. Hence, BIRC6 may be a novel target for the treatment of drug-resistant CML where Mcl-1 or CDK9 inhibitors have failed.
Collapse
Affiliation(s)
- Denis O. Okumu
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Merlin Levine
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura E. Herring
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Raymond Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thomas S. K. Gilbert
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yanping Zhang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC Michael Hooker Proteomics Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
17
|
Ruzzene M, Bertacchini J, Toker A, Marmiroli S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv Biol Regul 2017; 64:1-8. [PMID: 28373060 DOI: 10.1016/j.jbior.2017.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Indexed: 01/13/2023]
Abstract
CK2 and AKT display a high degree of cross-regulation of their respective functions, both directly, through physical interaction and phosphorylation, and indirectly, through an intense cross-talk of key downstream effectors, ultimately leading to sustained AKT activation. Being CK2 and AKT attractive targets for therapeutic intervention, here we would like to emphasize how AKT and CK2 might influence cell fate through their complex isoform-specific and contextual-dependent cross-talk, to the extent that such functional interplay should be considered when devising therapies that target one or both these key signaling kinases.
Collapse
Affiliation(s)
- Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Jessika Bertacchini
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sandra Marmiroli
- Cell Signaling Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
18
|
Salizzato V, Borgo C, Cesaro L, Pinna LA, Donella-Deana A. Inhibition of protein kinase CK2 by CX-5011 counteracts imatinib-resistance preventing rpS6 phosphorylation in chronic myeloid leukaemia cells: new combined therapeutic strategies. Oncotarget 2017; 7:18204-18. [PMID: 26919095 PMCID: PMC4951282 DOI: 10.18632/oncotarget.7569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder promoted by the constitutive tyrosine kinase activity of Bcr-Abl oncoprotein. Although treatment with the Bcr-Abl-inhibitor imatinib represents the first-line therapy against CML, almost 20-30% of patients develop chemotherapeutic resistance and require alternative therapy. Here we show that a strong hyper-phosphorylation/activation of ERK1/2, Akt Ser473, and 40S ribosomal protein S6 (rpS6) is detectable in imatinib-resistant KCL22 and K562 CML cells as compared to the -sensitive cell variants. In imatinib-resistant CML cells, high concentration of imatinib is required to strongly inhibit Bcr-Abl, ERK1/2 and Akt Ser473 phosphorylation, but under these conditions the phosphorylation of rpS6, a common downstream effector of MEK/ERK1/2 and PI3K/Akt/mTOR pathways is only slightly reduced. By contrast, down-regulation of the protein kinase CK2 by the inhibitor CX-5011 or by silencing the CK2 subunits does not affect the activation state of MEK/ERK1/2 or PI3K/Akt/mTOR signalling, but causes a drop in rpS6 phosphorylation in parallel with reduced protein synthesis. CK2-inhibition by CX-5011 induces cell death by apoptosis and acts synergistically with imatinib or the MEK-inhibitor U0126 in reducing the viability of imatinib-resistant CML cells. The ternary mixture containing CX-5011, imatinib and U0126 represents the most effective synergistic combination to counteract CML cell viability. These results disclose a novel CK2-mediated mechanism of acquired imatinib-resistance resulting in hyper-phosphorylation of rpS6. We suggest that co-targeting CK2 and MEK protein kinases is a promising strategy to restore responsiveness of resistant CML cells to imatinib.
Collapse
Affiliation(s)
- Valentina Salizzato
- Department of Biomedical Sciences and CNR Institute of NeuroSciences, University of Padova, 35131 Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences and CNR Institute of NeuroSciences, University of Padova, 35131 Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences and CNR Institute of NeuroSciences, University of Padova, 35131 Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences and CNR Institute of NeuroSciences, University of Padova, 35131 Padova, Italy
| | - Arianna Donella-Deana
- Department of Biomedical Sciences and CNR Institute of NeuroSciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem 2016; 291:17804-15. [PMID: 27226552 DOI: 10.1074/jbc.m115.712885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/06/2022] Open
Abstract
The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.
Collapse
Affiliation(s)
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Channing J Der
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and
| | - Adrienne D Cox
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
20
|
Structure-activity relationship study of 4-(thiazol-5-yl)benzoic acid derivatives as potent protein kinase CK2 inhibitors. Bioorg Med Chem 2016; 24:1136-41. [PMID: 26850376 DOI: 10.1016/j.bmc.2016.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Two classes of modified analogs of 4-(thiazol-5-yl)benzoic acid-type CK2 inhibitors were designed. The azabenzene analogs, pyridine- and pyridazine-carboxylic acid derivatives, showed potent protein kinase CK2 inhibitory activities [IC50 (CK2α)=0.014-0.017μM; IC50 (CK2α')=0.0046-0.010μM]. Introduction of a 2-halo- or 2-methoxy-benzyloxy group at the 3-position of the benzoic acid moiety maintained the potent CK2 inhibitory activities [IC50 (CK2α)=0.014-0.016μM; IC50 (CK2α')=0.0088-0.014μM] and led to antiproliferative activities [CC50 (A549)=1.5-3.3μM] three to six times higher than those of the parent compound.
Collapse
|
21
|
Protein Kinase CK2: A Targetable BCR-ABL Partner in Philadelphia Positive Leukemias. Adv Hematol 2015; 2015:612567. [PMID: 26843864 PMCID: PMC4710905 DOI: 10.1155/2015/612567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022] Open
Abstract
BCR-ABL-mediated leukemias, either Chronic Myeloid Leukemia (CML) or Philadelphia positive Acute Lymphoblastic Leukemia (ALL), are the paradigm of targeted molecular therapy of cancer due to the impressive clinical responses obtained with BCR-ABL specific tyrosine kinase inhibitors (TKIs). However, BCR-ABL TKIs do not allow completely eradicating both CML and ALL. Furthermore, ALL therapy is associated with much worse responses to TKIs than those observed in CML. The identification of additional pathways that mediate BCR-ABL leukemogenesis is indeed mandatory to achieve synthetic lethality together with TKI. Here, we review the role of BCR-ABL/protein kinase CK2 interaction in BCR-ABL leukemias, with potentially relevant implications for therapy.
Collapse
|
22
|
Morotti A, Panuzzo C, Crivellaro S, Carrà G, Fava C, Guerrasio A, Pandolfi PP, Saglio G. BCR-ABL inactivates cytosolic PTEN through Casein Kinase II mediated tail phosphorylation. Cell Cycle 2015; 14:973-9. [PMID: 25608112 DOI: 10.1080/15384101.2015.1006970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The tumor suppressive function of PTEN is exerted within 2 different cellular compartments. In the cytosol-membrane, it negatively regulates PI3K-AKT pathway through the de-phosphorylation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), therefore blocking one of the major signaling transduction pathways in tumorigenesis. In the nucleus, PTEN controls genomic stability and cellular proliferation through phosphatase independent mechanisms. Importantly, impairments in PTEN cellular compartmentalization, changes in protein levels and post-transductional modifications affect PTEN tumor suppressive functions. Targeting mechanisms that inactivate PTEN promotes apoptosis induction of cancer cells, without affecting normal cells, with appealing therapeutic implications. Recently, we have shown that BCR-ABL promotes PTEN nuclear exclusion by favoring HAUSP mediated PTEN de-ubiquitination in Chronic Myeloid Leukemia. Here, we show that nuclear exclusion of PTEN is associated with PTEN inactivation in the cytoplasm of CML cells. In particular, BCR-ABL promotes Casein Kinase II-mediated PTEN tail phosphorylation with consequent inhibition of the phosphatase activity toward PIP3. Targeting Casein Kinase II promotes PTEN reactivation with apoptosis induction. We therefore propose a novel BCR-ABL/CKII/PTEN pathway as a potential target to achieve synthetic lethality with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Alessandro Morotti
- a Department of Clinical and Biological Sciences; San Luigi Hospital ; Orbassano - Turin University ; Turin , Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
24
|
Song C, Gowda C, Pan X, Ding Y, Tong Y, Tan BH, Wang H, Muthusami S, Ge Z, Sachdev M, Amin SG, Desai D, Gowda K, Gowda R, Robertson GP, Schjerven H, Muschen M, Payne KJ, Dovat S. Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood 2015; 126:1813-22. [PMID: 26219304 PMCID: PMC4600018 DOI: 10.1182/blood-2015-06-651505] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022] Open
Abstract
Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.
Collapse
Affiliation(s)
- Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Xiaokang Pan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yongqing Tong
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Bi-Hua Tan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Haijun Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Sunil Muthusami
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Zheng Ge
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mansi Sachdev
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Shantu G Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Raghavendra Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Markus Muschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Kimberly J Payne
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
25
|
Borgo C, Franchin C, Salizzato V, Cesaro L, Arrigoni G, Matricardi L, Pinna LA, Donella-Deana A. Protein kinase CK2 potentiates translation efficiency by phosphorylating eIF3j at Ser127. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1693-701. [PMID: 25887626 DOI: 10.1016/j.bbamcr.2015.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotic protein synthesis the translation initiation factor 3 (eIF3) is a key player in the recruitment and assembly of the translation initiation machinery. Mammalian eIF3 consists of 13 subunits, including the loosely associated eIF3j subunit that plays a stabilizing role in the eIF3 complex formation and interaction with the 40S ribosomal subunit. By means of both co-immunoprecipitation and mass spectrometry analyses we demonstrate that the protein kinase CK2 interacts with and phosphorylates eIF3j at Ser127. Inhibition of CK2 activity by CX-4945 or down-regulation of the expression of CK2 catalytic subunit by siRNA cause the dissociation of j-subunit from the eIF3 complex as judged from glycerol gradient sedimentation. This finding proves that CK2-phosphorylation of eIF3j is a prerequisite for its association with the eIF3 complex. Expression of Ser127Ala-eIF3j mutant impairs both the interaction of mutated j-subunit with the other eIF3 subunits and the overall protein synthesis. Taken together our data demonstrate that CK2-phosphorylation of eIF3j at Ser127 promotes the assembly of the eIF3 complex, a crucial step in the activation of the translation initiation machinery.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Cinzia Franchin
- Proteomic Center of Padova University, Via G. Orus B2, 35129 Padova, Italy
| | - Valentina Salizzato
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Proteomic Center of Padova University, Via G. Orus B2, 35129 Padova, Italy
| | - Laura Matricardi
- Venitian Institute of Oncology (IOV-IRCCS), Via Gattamelata 64, 35128 Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| | - Arianna Donella-Deana
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy; CNR Institute of NeuroSciences, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy.
| |
Collapse
|
26
|
Chon HJ, Bae KJ, Lee Y, Kim J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front Pharmacol 2015; 6:70. [PMID: 25873900 PMCID: PMC4379896 DOI: 10.3389/fphar.2015.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Hae J Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Kyoung J Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| |
Collapse
|
27
|
Jabor Gozzi G, Bouaziz Z, Winter E, Daflon-Yunes N, Aichele D, Nacereddine A, Marminon C, Valdameri G, Zeinyeh W, Bollacke A, Guillon J, Lacoudre A, Pinaud N, Cadena SM, Jose J, Le Borgne M, Di Pietro A. Converting potent indeno[1,2-b]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2. J Med Chem 2014; 58:265-77. [PMID: 25272055 DOI: 10.1021/jm500943z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2014, BMSSI UMR 5086 CNRS/Université Lyon 1, IBCP, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The term 'casein kinase' has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term 'casein kinase' is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40-50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.
Collapse
|
29
|
Buontempo F, Orsini E, Martins LR, Antunes I, Lonetti A, Chiarini F, Tabellini G, Evangelisti C, Evangelisti C, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Cappellini A, Barata JT, Martelli AM. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 2013; 28:543-53. [PMID: 24253024 DOI: 10.1038/leu.2013.349] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945-a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - L R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - I Antunes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - F Chiarini
- 1] Institute of Molecular Genetics, National Research Council, Pavia, Italy [2] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - G Tabellini
- Division of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - C Evangelisti
- 1] Institute of Molecular Genetics, National Research Council, Pavia, Italy [2] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - F Melchionda
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - A Pession
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - A Bertaina
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - F Locatelli
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - A Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- 1] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy [2] Institute of Molecular Genetics, National Research Council, Pavia, Italy [3] Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| |
Collapse
|
30
|
Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives. Mol Oncol 2013; 7:1103-15. [PMID: 24012109 DOI: 10.1016/j.molonc.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is driven by the fusion protein Bcr-Abl, a constitutively active tyrosine kinase playing a crucial role in initiation and maintenance of CML phenotype. Despite the great efficacy of the Bcr-Abl-specific inhibitor imatinib, resistance to this drug is recognized as a major problem in CML treatment. We found that in LAMA84 cells, characterized by imatinib-resistance caused by BCR-ABL1 gene amplification, the pro-survival protein kinase CK2 is up-regulated as compared to the sensitive cells. CK2 exhibits a higher protein-level and a parallel enhancement of catalytic activity. Consistently, CK2-catalysed phosphorylation of Akt-Ser129 is increased. CK2 co-localizes with Bcr-Abl in the cytoplasmic fraction as judged by subcellular fractionation and fluorescence immunolocalization. CK2 and Bcr-Abl are members of the same multi-protein complex(es) in imatinib-resistant cells as demonstrated by co-immunoprecipitation and co-sedimentation in glycerol gradients. Cell treatment with CX-4945, a CK2 inhibitor currently in clinical trials, counteracts CK2/Bcr-Abl interaction and causes cell death by apoptosis. Interestingly, combination of CX-4945 with imatinib displays a synergistic effect in reducing cell viability. Consistently, knockdown of CK2α expression by siRNA restores the sensitivity of resistant LAMA84 cells to low imatinib concentrations. Remarkably, the CK2/Bcr-Abl interaction and the sensitization towards imatinib obtained by CK2-inhibition in LAMA84 is observable also in other imatinib-resistant CML cell lines. These results demonstrate that CK2 contributes to strengthen the imatinib-resistance phenotype of CML cells conferring survival advantage against imatinib. We suggest that CK2 inhibition might be a promising tool for combined strategies in CML therapy.
Collapse
|