1
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
2
|
Paredes-Moscosso SR, Nathwani AC. 10 years of BiTE immunotherapy: an overview with a focus on pancreatic cancer. Front Oncol 2024; 14:1429330. [PMID: 39759138 PMCID: PMC11696039 DOI: 10.3389/fonc.2024.1429330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Various therapeutic strategies have been developed to treat Pancreatic Cancer (PaCa). Unfortunately, most efforts have proved unfruitful, as the poor prognosis observed in this disease has only attained little improvement in the past 40 years. Recently, deeper understanding of the immune system and its interaction with malignant tumors have allowed significant advances in immunotherapy. Consistent with this, some of the most promising approaches are those that involve T-cell redirection to the tumor site, such as bispecific T-cell engagers (BiTEs). These recombinant antibodies bridge cytotoxic T-cells to tumor cells, inducing target cell-dependent polyclonal T-cell activation/proliferation, which in turn results in elimination of bound tumor cells. Blinatumomab, an anti-CD19 BiTE, received FDA approval in 2014 for Precursor B-cell Acute Lymphoblastic Leukemia. In the past decade, it has demonstrated impressive clinical benefit in patients with B-cell leukemias; and other T-cell engagers have been FDA-approved for hematological malignancies and other diseases, yet limited effect has been observed with other BiTEs against solid cancers, including PaCa. Nevertheless, on May 2024, Tarlatamab, an anti-DLL3 BiTE was approved by the FDA for extensive small cell lung cancer, becoming the first BiTE for solid tumors. In this review, the generation of BiTEs, therapeutic features, manufacturing issues as well as the remaining challenges and novel strategies of BiTE therapy in the context of PaCa, including the lessons we can learn from the use of BiTEs on other types of cancer will be explored.
Collapse
Affiliation(s)
- Solange R. Paredes-Moscosso
- Centro de Genética y Biología Molecular, Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Amit C. Nathwani
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2024; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
4
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
6
|
Jahanafrooz Z, Oroojalian F, Mokhtarzadeh A, Rahdar A, Díez-Pascual AM. Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res 2024; 85:e22244. [PMID: 39138855 DOI: 10.1002/ddr.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnurd, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingenieria Química, Alcalá de Henares, Spain
| |
Collapse
|
7
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
8
|
Chen Y, Xu S, Ren S, Zhang J, Xu J, Song Y, Peng J, Zhang S, Du Q, Chen Y. Design of a targeted dual drug delivery system for boosting the efficacy of photoimmunotherapy against melanoma proliferation and metastasis. J Adv Res 2024:S2090-1232(24)00207-8. [PMID: 38768811 DOI: 10.1016/j.jare.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The combination of a photosensitizer and indoleamine-2,3 dioxygenase (IDO) inhibitor provides a promising photoimmunotherapy (PIT) strategy for melanoma treatment. A dual drug delivery system offers a potential approach for optimizing the inhibitory effects of PIT on melanoma proliferation and metastasis. OBJECTIVE To develop a dual drug delivery system based on PIT and to study its efficacy in inhibiting melanoma proliferation and metastasis. METHODS We constructed a multifunctional nano-porphyrin material (P18-APBA-HA) using the photosensitizer-purpurin 18 (P18), hyaluronic acid (HA), and 4-(aminomethyl) phenylboronic acid (APBA). The resulting P18-APBA-HA was inserted into a phospholipid membrane and the IDO inhibitor epacadostat (EPA) was loaded into the internal phase to prepare a dual drug delivery system (Lip\EPA\P18-APBA-HA). Moreover, we also investigated its physicochemical properties, targeting, anti-tumor immunity, and anti-tumor proliferation and metastasis effects. RESULTS The designed system utilized the pH sensitivity of borate ester to realize an enhanced-targeting strategy to facilitate the drug distribution in tumor lesions and efficient receptor-mediated cellular endocytosis. The intracellular release of EPA from Lip\EPA\P18-APBA-HA was triggered by thermal radiation, thereby inhibiting IDO activity in the tumor microenvironment, and promoting activation of the immune response. Intravenous administration of Lip\EPA\P18-APBA-HA effectively induced anti-tumor immunity by promoting dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression, and regulating cytokine secretion, to inhibit the proliferation of melanoma and lung metastasis. CONCLUSION The proposed nano-drug delivery system holds promise as offers a promising strategy to enhance the inhibitory effects of the combination of EPA and P18 on melanoma proliferation and metastasis.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuang Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinzhuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
9
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
10
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sci 2024; 338:122387. [PMID: 38154609 DOI: 10.1016/j.lfs.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) are genetically engineered cells to express tumor-specific antigens revolutionizing the treatment of hematologic malignancies. The hostile tumor microenvironment (TME) remains a challenge for CAR-T cell therapy in solid tumors. As a solution, combinational therapy with immune checkpoint inhibitors (ICIs) is shown to improve the safety and efficacy of CAR-T cell therapy. To avoid side effects related to the application of ICIs in combinational therapy, engineering CARs to express tumor-specific antigens may help improvement of clinical outcomes. Those CARs expressing single chain variable fragments (scFvs) or nanobodies against immune checkpoint stimulatory or inhibitory molecules, such as the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis are being extensively studied in various clinical trials. In this review, we discuss the significance of anti-PD-(L)1 scFv-expressing CAR-T cells in the treatment of human cancers, describing current challenges and potential strategies to overcome such predicaments in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
13
|
Hikmet F, Rassy M, Backman M, Méar L, Mattsson JSM, Djureinovic D, Botling J, Brunnström H, Micke P, Lindskog C. Expression of cancer-testis antigens in the immune microenvironment of non-small cell lung cancer. Mol Oncol 2023; 17:2603-2617. [PMID: 37341056 DOI: 10.1002/1878-0261.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
The antigenic repertoire of tumors is critical for successful anti-cancer immune response and the efficacy of immunotherapy. Cancer-testis antigens (CTAs) are targets of humoral and cellular immune reactions. We aimed to characterize CTA expression in non-small cell lung cancer (NSCLC) in the context of the immune microenvironment. Of 90 CTAs validated by RNA sequencing, eight CTAs (DPEP3, EZHIP, MAGEA4, MAGEB2, MAGEC2, PAGE1, PRAME, and TKTL1) were selected for immunohistochemical profiling in cancer tissues from 328 NSCLC patients. CTA expression was compared with immune cell densities in the tumor environment and with genomic, transcriptomic, and clinical data. Most NSCLC cases (79%) expressed at least one of the analyzed CTAs, and CTA protein expression correlated generally with RNA expression. CTA profiles were associated with immune profiles: high MAGEA4 expression was related to M2 macrophages (CD163) and regulatory T cells (FOXP3), low MAGEA4 was associated with T cells (CD3), and high EZHIP was associated with plasma cell infiltration (adj. P-value < 0.05). None of the CTAs correlated with clinical outcomes. The current study provides a comprehensive evaluation of CTAs and suggests that their association with immune cells may indicate in situ immunogenic effects. The findings support the rationale to harness CTAs as targets for immunotherapy.
Collapse
Affiliation(s)
- Feria Hikmet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Marc Rassy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Loren Méar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | | | - Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| |
Collapse
|
14
|
An D, He P, Liu H, Wang R, Yu X, Chen N, Guo X, Li X, Feng M. Enhanced chemoimmunotherapy of breast cancer in mice by apolipoprotein A1-modified doxorubicin liposomes combined with interleukin-21. J Drug Target 2023; 31:1098-1110. [PMID: 37909691 DOI: 10.1080/1061186x.2023.2276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.
Collapse
Affiliation(s)
- Duopeng An
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hongchuan Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaochen Yu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Nanye Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaohan Guo
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
15
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
16
|
Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7530794. [PMID: 36778203 PMCID: PMC9911251 DOI: 10.1155/2023/7530794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has drawn much attention because it can restart the recognition and killing function of the immune system to normalize the antitumor immune response. However, the role of radiotherapy and chemotherapy in cancer treatment cannot be ignored. Due to cancer heterogeneity, combined therapy has become a new trend, and its efficacy has been confirmed in many studies. This review discussed the clinical implications and the underlying mechanisms of cancer immunotherapy in combination with radiotherapy or chemotherapy, offering an outline for clinicians as well as inspiration for future research.
Collapse
|
17
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
18
|
Coghi P, Yaremenko I, Prommana P, Wu JN, Zhang RL, Ng JPL, Belyakova YY, Law BYK, Radulov PS, Uthaipibull C, Wong VKW, Terent'ev AO. Antimalarial and anticancer activity evaluation of bridged ozonides, aminoperoxides and tetraoxanes. ChemMedChem 2022; 17:e202200328. [PMID: 36045616 DOI: 10.1002/cmdc.202200328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Bridged aminoperoxides, for the first time, were investigated for the in vitro antimalarial activity against the chloroquine-resistant Plasmodium falciparum strain K1 and for their cytotoxic activities against immortalized human normal liver (LO2) and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer cell lines. Aminoperoxides exhibit good cytotoxicity against lung A549 cancer cells line. Synthetic ozonides were shown to have high activity against the chloroquine-resistant P. falciparum . A cyclic voltammetry study of peroxides was performed, and most of the compounds did not show a direct correlation in oxidative capacity-activity. Peroxides were analyzed for ROS production to understand their mechanism of action. However, none of the compounds has an impact on ROS generation, suggesting that ozonides induce apoptosis in HepG2 cells through ROS - independent dysfunction pathway.
Collapse
Affiliation(s)
- Paolo Coghi
- Macau University of Science and Technology, State Key Laboratory of Quality Research in Chinese Medicines, Avenida wai long, N/A, macau, MACAU
| | - Ivan Yaremenko
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Department of Chemistry, RUSSIAN FEDERATION
| | - Parichat Prommana
- Biotec: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), THAILAND
| | - Jia Ning Wu
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Rui Long Zhang
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Jerome P L Ng
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Yulia Yu Belyakova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Betty Yuen Kwan Law
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Peter S Radulov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Chairat Uthaipibull
- Biotec: National Center for Genetic Engineering and Biotechnology, ), National Science and Technology Development Agency (NSTDA), THAILAND
| | - Vincent K W Wong
- Macau University of Science and Technology, SKL, avenida wai long, n/a, Macau, MACAU
| | - Alexander O Terent'ev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| |
Collapse
|
19
|
Borówka M, Łącki-Zynzeling S, Nicze M, Kozak S, Chudek J. Adverse Renal Effects of Anticancer Immunotherapy: A Review. Cancers (Basel) 2022; 14:4086. [PMID: 36077623 PMCID: PMC9454552 DOI: 10.3390/cancers14174086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Modern oncological therapy utilizes various types of immunotherapy. Immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cells (CAR-T) therapy, cancer vaccines, tumor-targeting monoclonal antibodies (TT-mAbs), bispecific antibodies and cytokine therapy improve patients' outcomes. However, stimulation of the immune system, beneficial in terms of fighting against cancer, generates the risk of harm to other cells in a patient's body. Kidney damage belongs to the relatively rare adverse events (AEs). Best described, but still, superficially, are renal AEs in patients treated with ICIs. International guidelines issued by the European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) cover the management of immune-related adverse events (irAEs) during ICI therapy. There are fewer data concerning real occurrence and possible presentations of renal adverse drug reactions of other immunotherapeutic methods. This implies the need for the collection of safety data during ongoing clinical trials and in the real-life world to characterize the hazard related to the use of new immunotherapies and management of irAEs.
Collapse
Affiliation(s)
| | - Stanisław Łącki-Zynzeling
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Reymonta 8, 40-027 Katowice, Poland
| | | | | | | |
Collapse
|
20
|
Immunotherapy: an alternative promising therapeutic approach against cancers. Mol Biol Rep 2022; 49:9903-9913. [PMID: 35759082 PMCID: PMC9244230 DOI: 10.1007/s11033-022-07525-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/26/2022] [Indexed: 10/26/2022]
Abstract
The immune system interacts with cancer cells in multiple intricate ways that can shield the host against hyper-proliferation but can also contribute to malignancy. Understanding the protective roles of the immune system in its interaction with cancer cells can help device new and alternate therapeutic strategies. Many immunotherapeutic methodologies, including adaptive cancer therapy, cancer peptide vaccines, monoclonal antibodies, and immune checkpoint treatment, have transformed the traditional cancer treatment landscape. However, many questions remain unaddressed. The development of personalized combination therapy and neoantigen-based cancer vaccines would be the avant-garde approach to cancer treatment. Desirable chemotherapy should be durable, safe, and target-specific. Managing both tumor (intrinsic factors) and its microenvironment (extrinsic factors) are critical for successful immunotherapy. This review describes current approaches and their advancement related to monoclonal antibody-related clinical trials, new cytokine therapy, a checkpoint inhibitor, adoptive T cell therapy, cancer vaccine, and oncolytic virus.
Collapse
|
21
|
Khatami F, Aghamir ZS, Jahanshahi F, Feiz-Abadi SA, Birang F, Khoshchehreh M, Namazi Shabestari A, Aghamir SMK. The Gene Manipulation and Cellular Immunotherapy Combination in the Treatment of Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3094. [PMID: 36337063 PMCID: PMC9583824 DOI: 10.30498/ijb.2022.294933.3094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CONTEXT The immune system is directly linked to the tumors, from tumor formation to the tumor's development and metastasis. So, the interest of scientists over the protective immunological mechanisms has increased and shown gifted strategy in cancer treatment. EVIDENCE ACQUISITION Genetic engineering and cellular immunotherapy are two different advanced molecular mechanisms to modify the immune responses and genome. Gene manipulation is the bioengineering technology that allows vectors to transfer new genetic information into the target cells. Cellular immunotherapy is an excellent strategy that connects the body's immune system to fight cancer. RESULTS & CONCLUSIONS This review described that combination of genetic engineering and cellular immunotherapy has brought the novel antitumor repressive molecules stopping the tumor tissue immune tolerance and significantly expanding cancer therapy's effectiveness. Usually, cell immunotherapy and genetic engineering are considered two independent processes, and, in this review, we believe them in combinations. Here, we review these two novel approaches, and they are both combinations in terms of technological advances and clinical experience.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Birang
- Department of Medical Laboratory Sciences, Allied Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Namazi Shabestari
- Department of Geriatric Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Jafarzadeh A, Saffari F. Development of anti-rituximab antibodies in rituximab-treated patients: Related parameters & consequences. Indian J Med Res 2022; 155:335-346. [DOI: 10.4103/ijmr.ijmr_312_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Fathi M, Vakili K, Jazi K, Sadeghi MA, Hajiesmaeili M, Mohamadkhani A, Rezaei-Tavirani M, Tavasol A. Challenges of cancer immunotherapy and chemotherapy during the COVID-19 pandemic. TUMORI JOURNAL 2021; 108:407-419. [PMID: 34918602 DOI: 10.1177/03008916211063939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
People at high risk of morbidity and mortality from coronavirus disease 2019 (COVID-19), including patients dealing with malignancies and patients on immunosuppressive anticancer therapies, need to be followed carefully as the pandemic continues. Challenges in continuing cancer management and patient monitoring are of concern given the importance of timing in cancer therapy. Alternative treatment decisions and priorities are also important considerations. The efficacy and safety of various cancer treatments in patients with COVID-19 are other important considerations. In this systematic review, we summarize the potential risks and benefits of cancer treatments applied to patients with COVID-19 and malignant tumors. Using the PubMed and Scopus databases, we reviewed studies involving cancer therapy and COVID-19 to address the recent discoveries and related challenges of cancer therapy in patients with COVID-19 and cancer.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | | | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102492. [PMID: 34775062 DOI: 10.1016/j.nano.2021.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has recently emerged as a rising star due to its ability to activate patients' immune systems to fight tumors and prevent relapse. Conversely, the interest in cancer nanomedicine has seemingly waned due to its lackluster clinical translation. Despite being hailed as a game-changer in oncology, cancer immunotherapy still faces numerous challenges. Combining both entities together has thus been one among several solutions proposed to circumvent these challenges. This solution has since gained traction and has also led to a renaissance of cancer nanomedicine. While most combinations are currently experimental at best, some have progressed on to clinical trials. This review thus seeks to examine the advantages and disadvantages of integrating both modalities as a cancer treatment. The opportunities, challenges and future directions of this emerging field will also be explored with the hope that such a combination will lead to a paradigm shift in cancer treatments.
Collapse
|
25
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
26
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
27
|
Hoteit M, Oneissi Z, Reda R, Wakim F, Zaidan A, Farran M, Abi-Khalil E, El-Sibai M. Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncol Lett 2021; 22:655. [PMID: 34386077 DOI: 10.3892/ol.2021.12916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer treatments such as chemotherapy and radiation therapy have reached their therapeutic potential, leaving a gap for developing more effective cancer therapeutics. Cancer cells evade the immune system using various mechanisms of immune tolerance, underlying the potential impact of immunotherapy in the treatment of cancer. Immunotherapy includes several approaches such as activating the immune system in a cytokine-dependent manner, manipulating the feedback mechanisms involved in the immune response, enhancing the immune response via lymphocyte expansion and using cancer vaccines to elicit long-lasting, robust responses. These techniques can be used as monotherapies or combination therapies. The present review describes the immune-based mechanisms involved in tumor cell proliferation and maintenance and the rationale underlying various treatment methods. In addition, the present review provides insight into the potential of immunotherapy used alone or in combination with various types of therapeutics.
Collapse
Affiliation(s)
- Mira Hoteit
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Zeina Oneissi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ranim Reda
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Fadi Wakim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Amar Zaidan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mohammad Farran
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Elie Abi-Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
28
|
Bahrololoumi Shapourabadi M, Momburg F, Roohvand F, Jarahian M, Mohajel N, Arashkia A, Hajari Taheri F, Abbasalipour M, Azadmanesh K. Bi/tri-specific antibodies (HN-Fc-CD16 and HN-Fc-IL-15-CD16) cross-linking natural killer (NK)-CD16 and Newcastle Disease Virus (NDV)-HN, enhanced NK activation for cancer immunotherapy. Int Immunopharmacol 2021; 96:107762. [PMID: 34162140 DOI: 10.1016/j.intimp.2021.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Cancer/tumor cells infected with the "avian paramyxovirus Newcastle Disease Virus (TC-NDV)" express the viral hemagglutinin-neuraminidase (HN) on the cell surface that is used as both the danger signal and anchor for bi/tri-specific antibodies (bs/tsAbs).We constructed a bs-Ab (HN-Fc-CD16) that bindsto HN and natural killer (NK)-CD16 receptor (FcgRIII)and a ts-Ab (HN-Fc-IL15-CD16) harbouring NK-activating cytokine "IL-15" within the bs-Ab.In silicoand computational predictions indicated proper exposure of both Abs in bs/tsAbs.Properbinding of thebi/tsAbstoHN on surface of TC-NDVandCD16+-cells was demonstrated by flow cytometry.The bi/tsAbstriggeredspecificcytotoxicity of NK cells againstTC-NDVand elicited substantial IFN-γproduction by activated NK cells(higher for ts-Ab) that sound promising for cancer immunotherapy purposes.
Collapse
Affiliation(s)
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mostafa Jarahian
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Maryam Abbasalipour
- Department of Molecular Medicine, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Liu C, Seeram NP, Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int 2021; 21:239. [PMID: 33906641 PMCID: PMC8077906 DOI: 10.1186/s12935-021-01946-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death-1/programmed death ligand-1 (PD-1/PD-L1) based immunotherapy is a revolutionary cancer therapy with great clinical success. The majority of clinically used PD-1/PD-L1 inhibitors are monoclonal antibodies but their applications are limited due to their poor oral bioavailability and immune-related adverse effects (irAEs). In contrast, several small molecule inhibitors against PD-1/PD-L1 immune checkpoints show promising blockage effects on PD-1/PD-L1 interactions without irAEs. However, proper analytical methods and bioassays are required to effectively screen small molecule derived PD-1/PD-L1 inhibitors. Herein, we summarize the biophysical and biochemical assays currently employed for the measurements of binding capacities, molecular interactions, and blocking effects of small molecule inhibitors on PD-1/PD-L1. In addition, the discovery of natural products based PD-1/PD-L1 antagonists utilizing these screening assays are reviewed. Potential pitfalls for obtaining false leading compounds as PD-1/PD-L1 inhibitors by using certain binding bioassays are also discussed in this review.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| |
Collapse
|
30
|
Shan CK, Du YB, Zhai XT, Wang YX, Li Y, Gong JH, Ge ZJ, Liu XJ, Zhen YS. Pingyangmycin enhances the antitumor efficacy of anti-PD-1 therapy associated with tumor-infiltrating CD8 + T cell augmentation. Cancer Chemother Pharmacol 2021; 87:425-436. [PMID: 33388950 DOI: 10.1007/s00280-020-04209-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the antitumor efficacy of pingyangmycin (PYM) in combination with anti-PD-1 antibody and determine the capability of PYM to induce immunogenic cell death (ICD) in cancer cells. METHODS The murine 4T1 breast cancer and B16 melanoma models were used for evaluation of therapeutic efficacy of the combination of PYM with anti-PD-1 antibody. The ELISA kits were used to quantify the ICD related ATP and HMGB1 levels. The Transwell assay was conducted to determine the chemotaxis ability of THP-1 cell in vitro. The flow cytometry was used to measure reactive oxygen species level and analyze the ratio of immune cell subsets. RESULTS PYM induced ICD in murine 4T1 breast cancer and B16 melanoma cells and increased the release of nucleic acid fragments that may further promote the monocytic chemotaxis. In the 4T1 murine breast cancer model, PYM alone, anti-PD-1 antibody alone, and their combination suppressed tumor growth by 66.3%, 16.1% and 77.6%, respectively. PYM markedly enhanced the therapeutic efficacy of anti-PD-1 antibody against 4T1 breast cancer. The calculated CDI (coefficient of drug interaction) indicated synergistic effect. Evaluated by graphic analysis, the nucleated cells intensity in the femur bone marrow remained unchanged. Histopathological observations revealed no noticeable toxico-pathological changes in the lung and various organs, indicating that the PYM and anti-PD-1 antibody combination exerted enhanced efficacy at well-tolerated dosage level. By the combination treatment, a panel of immunological changes emerged. The ratio of CD3+ cells, NK cells and NKT cells increased and Tregs decreased in peripheral blood. The DCs increased in the spleen. Prominent changes occurred in tumor infiltrating lymphocytes. The ratio of CD8+ cells increased, while that of CD4+ cells decreased; however, the ratio of CD3+ cells remained unchanged, implying that certain immunological responses emerged in the tumor microenvironment. PYM alone could also increase CD8+ cells and reduce CD4+ cells in tumor infiltrating lymphocytes. CONCLUSIONS The studies indicate that PYM, as an ICD inducer with mild myelosuppression effect, may enhance the therapeutic efficacy of anti-PD-1 antibody in association with tumor infiltrating CD8+ T cell augmentation.
Collapse
Affiliation(s)
- Chuan-Kun Shan
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Bo Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Xuan Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Hua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Juan Ge
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiu-Jun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020; 13:167. [PMID: 33287858 PMCID: PMC7720594 DOI: 10.1186/s13045-020-00996-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Despite considerable progress has been achieved in the treatment of acute myeloid leukemia over the past decades, relapse remains a major problem. Novel therapeutic options aimed at attaining minimal residual disease-negative complete remission are expected to reduce the incidence of relapse and prolong survival. Natural killer cell-based immunotherapy is put forward as an option to tackle the unmet clinical needs. There have been an increasing number of therapeutic dimensions ranging from adoptive NK cell transfer, chimeric antigen receptor-modified NK cells, antibodies, cytokines to immunomodulatory drugs. In this review, we will summarize different forms of NK cell-based immunotherapy for AML based on preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Mohammadian Haftcheshmeh S, Zamani P, Mashreghi M, Nikpoor AR, Tavakkol-Afshari J, Jaafari MR. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer. Biotechnol Prog 2020; 37:e3095. [PMID: 33118322 DOI: 10.1002/btpr.3095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023]
Abstract
LAG3-Ig as an immune adjuvant has elicited potent anti-tumor immune responses in several preclinical and clinical studies, but the full potential immunostimulatory of LAG3-Ig has yet to be achieved. We hypothesized that by anchoring LAG3-Ig to the surface of liposomes, the adjuvant activity of LAG3-Ig could be improved. We also investigated the immunotherapy by co-delivery of liposome-coupled LAG3-Ig and P5 tumor antigen in mice model of TUBO breast cancer. We prepared and characterized novel PEGylated liposomes bearing surface conjugated LAG3-Ig and P5. Consistent with our hypothesis, liposomes-conjugated LAG3-Ig via multivalent binding to MHC class II molecules exerted immunostimulatory of LAG3-Ig and markedly induced maturation of dendritic cells more efficiently than free LAG3-Ig. LAG3-Ig-P5-immunoliposomes effectively elicited protective anti-tumor responses more than locally injected soluble LAG3-Ig + P5. The higher percentage of CD4+ and CD8+ T cells in the spleen and more rapid and pronounced infiltration of these effector cells into the site of the tumor were seen following immunoliposome therapy. Finally, anti-tumor immunity induced by LAG3-Ig-P5-immunoliposomes translated into the more tumor regression and prolonged survival of treated mice, compared to soluble immunotherapy. Taken together, our findings suggest that LAG3-Ig-P5-immunoliposomes can be considered as a valuable candidate for developing a liposome-based therapeutic cancer vaccine in treating HER2/ neu+ breast cancer patients.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Washah HN, Salifu EY, Soremekun O, Elrashedy AA, Munsamy G, Olotu FA, Soliman ME. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives. Comb Chem High Throughput Screen 2020; 23:687-698. [PMID: 32338212 DOI: 10.2174/1386207323666200427113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
For the past few decades, the mechanisms of immune responses to cancer have been
exploited extensively and significant attention has been given into utilizing the therapeutic
potential of the immune system. Cancer immunotherapy has been established as a promising
innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through
various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer
therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet
to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help
transform the treatment paradigm of several tumors by providing a therapeutically efficient method of
cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the
application of immunotherapy. Herein, we gave an insightful overview of the types of
immunotherapy techniques used currently, their mechanisms of action, and discussed some
bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides
some future perspectives in the use of bioinformatics tools for immunotherapy.
Collapse
Affiliation(s)
- Houda N. Washah
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ahmed A. Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
34
|
Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020; 8:5516-5537. [PMID: 33049007 PMCID: PMC7837217 DOI: 10.1039/d0bm01183e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-β, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.
Collapse
|
35
|
Sinha D, Smith C, Khanna R. Joining Forces: Improving Clinical Response to Cellular Immunotherapies with Small-Molecule Inhibitors. Trends Mol Med 2020; 27:75-90. [PMID: 33011081 DOI: 10.1016/j.molmed.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Adoptive T cell therapy (ACT) has emerged as a powerful therapeutic tool against both hematological and virus-associated cancers. However, extension of this success to solid cancers has been challenging owing to intratumoral mechanisms that induce a hostile immunosuppressive tumor microenvironment (TME). Delineating the impact of tumor-intrinsic adaptive resistance mechanisms on immune-based therapies is essential to improve long-term efficacy. We discuss the different tumor-intrinsic factors that lead to resistance to ACT. We highlight the potential of repurposing molecular targeted therapies to modulate immune responses and override intratumor resistance to ACT. Finally, we discuss the potential of combining targeted therapy and ACT as a new paradigm to improve the clinical efficacy of cancer therapeutics.
Collapse
Affiliation(s)
- Debottam Sinha
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
36
|
Amôr NG, Buzo RF, Ortiz RC, Lopes NM, Saito LM, Mackenzie IC, Rodini CO. In vitro and in vivo characterization of cancer stem cell subpopulations in oral squamous cell carcinoma. J Oral Pathol Med 2020; 50:52-59. [PMID: 32816395 DOI: 10.1111/jop.13101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Despite advances in cancer diagnosis and therapeutics, the overall 5-year survival rate of oral squamous cell carcinoma (OSCC) remains low. Tumor formation, progression, recurrence, and chemo-resistance are associated with the presence of cancer stem cells (CSC) that show phenotypic heterogeneity, but how they influence tumor behavior remains poorly understood. We aimed to describe how two CSC phenotypes from an OSCC cell line, CD44High ESAHigh (Epi-CSC) and CD44High ESALow (EMT-CSC), behave in vitro and in vivo. METHODS In vitro behavior of FACS-sorted Epi-CSC and EMT-CSC from OSCC cells was characterized by their ability to form colonies, migrate, proliferate, and to invade a solid matrix. In vivo experiments were conducted in immunodeficient (NOD/SCID) mice by orthotopic xenografting of FACS-sorted OSCC subpopulations. RESULTS In vitro, the Epi-CSC phenotype was more proliferative and generated more holoclones than the EMT phenotype. On the other hand, EMT-CSC migrate and invaded more than Epi-CSC cells in 3D culture, suggesting the CSC phenotype affects tumor cell behavior. When inoculated orthotopically into the tongues of immunodeficient mice, both subpopulations generated OSCC, but EMT-CSC formed fewer and smaller tumors. CONCLUSIONS Our results suggest that while cells in the Epi-CSC form the subpopulation that enables tumor growth, the EMT-CSC are related to migration and invasion. Clinically, this may reflect the importance of Epi-CSC for tumorigenesis and of the EMT-CSC for metastasis and highlights that variation in the proportion of CSC phenotypes from patient to patient may be relevant to the design of individual treatment protocols.
Collapse
Affiliation(s)
- Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ian Campbell Mackenzie
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
37
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
38
|
Thiramanas R, Li M, Jiang S, Landfester K, Mailänder V. Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells 2020; 9:cells9092043. [PMID: 32906726 PMCID: PMC7565787 DOI: 10.3390/cells9092043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
T-cells are a type of lymphocyte (a subtype of white blood cells) that play a central role in cell-mediated immunity. Currently, adoptive T-cell immunotherapy is being developed to destroy cancer cells. In this therapy, T-cells are harvested from a patient’s blood. After several weeks of growth in culture, tumor-specific T-cells can be reinfused into the same cancer patient. This technique has proved highly efficient in cancer treatment. However, there are several biological processes that can suppress the anti-cancer responses of T-cells, leading to a loss of their functionality and a reduction of their viability. Therefore, strategies are needed to improve T-cell survival and their functions. Here, a small interfering RNA (siRNA)-loaded nanocarrier was used to knockdown PD-L1, one of the most important proteins causing a loss in the functionality of T-cells. The biocompatibility and the cellular uptake of siRNA-loaded silica nanocapsules (SiNCs) were investigated in CD8+ T-cells. Then, the PD-L1 expression at protein and at mRNA levels of the treated cells were evaluated. Furthermore, the effect of the PD-L1 knockdown was observed in terms of cell proliferation and the expression of specific biomarkers CD25, CD69 and CD71, which are indicators of T-cell functions. The results suggest that this siRNA-loaded nanocarrier showed a significant potential in the delivery of siRNA into T-cells. This in turn resulted in enhanced T-cell survival by decreasing the expression of the inhibitory protein PD-L1. Such nanocarriers could, therefore, be applied in adoptive T-cell immunotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Raweewan Thiramanas
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Mengyi Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Shuai Jiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
- Correspondence: (K.L.); (V.M.)
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.L.); (S.J.)
- Correspondence: (K.L.); (V.M.)
| |
Collapse
|
39
|
Thiramanas R, Jiang S, Simon J, Landfester K, Mailänder V. Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells. Int J Nanomedicine 2020; 15:6069-6084. [PMID: 32884263 PMCID: PMC7439283 DOI: 10.2147/ijn.s246322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Adoptive T-cell immunotherapy emerged as a powerful and promising cancer therapy, as the problem regarding the immuno-reaction between different donors and recipients can be avoided. However, this approach is challenging. After long cultivation and expansion under laboratory media conditions, T-cells are losing their viability and function due to immune checkpoint proteins, leading to decreased efficiency in killing cancer cells. Therefore, a new strategy to improve T-cell survival and function is needed. With the advantages of nanotechnology and the biocompatibility of silica-based material, silica nanocapsules (SiNCs) provide an ideal delivery system to transport therapeutic biomolecules to T-cells. Up to now, there is a lack of cellular uptake studies of nanocarriers towards T-cells. Methods We systematically studied the influence of various physicochemical properties such as sizes, core hydrophobicities, surface charges, and surface functionalities of SiNC for their impact on cellular uptake and toxicity in CD8+ T-cells by flow cytometry and confocal laser scanning microscopy. Cytokine secretion assay was performed using the enzyme-linked immunosorbent assay. To identify suitable uptake conditions for SiNCs into CD8+ T-cells, the impact of human serum in cell culture medium was also investigated. Results The major impact on cellular uptake and toxicity was found to be size- and dose-dependent. Smaller sizes of SiNCs than 100 nm caused significant toxicity to the cells. It was found that the formed protein corona reduced the toxicity of the SiNCs. However, it also inhibited their uptake. Conclusion Overall, we present a set of different criteria for a suitable design of nanocarriers and cell culture conditions, which need to be carefully considered for T-cell immunotherapy in vitro to facilitate uptake while avoiding toxicity.
Collapse
Affiliation(s)
- Raweewan Thiramanas
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Shuai Jiang
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany.,Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| |
Collapse
|
40
|
Taefehshokr N, Baradaran B, Baghbanzadeh A, Taefehshokr S. Promising approaches in cancer immunotherapy. Immunobiology 2020; 225:151875. [DOI: 10.1016/j.imbio.2019.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
41
|
Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, Hamblin MR. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today 2020; 25:552-560. [PMID: 31843577 PMCID: PMC7080609 DOI: 10.1016/j.drudis.2019.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Nucleic acid vaccines (NAVs) have recently been tested as a cancer therapy. DNA and mRNA vaccines deliver genetic information encoding tumor antigens (TAs) to the host, which then produces immune responses against cancer cells that express the TAs. Although NAVs are easy, safe, and simple to manufacture, they have not so far been considered viable alternatives to peptide vaccines. Choosing the right TAs, insufficient immunogenicity, and the immunosuppressive nature of cancer are some challenges to this approach. In this review, we discuss approaches that been used to improve the efficiency of anticancer NAVs.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
42
|
Maass K, Kim M. A Markov decision process approach to optimizing cancer therapy using multiple modalities. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 37:22-39. [PMID: 30863847 DOI: 10.1093/imammb/dqz004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023]
Abstract
There are several different modalities, e.g. surgery, chemotherapy and radiotherapy, that are currently used to treat cancer. It is common practice to use a combination of these modalities to maximize clinical outcomes, which are often measured by a balance between maximizing tumor damage and minimizing normal tissue side effects due to treatment. However, multi-modality treatment policies are mostly empirical in current practice and are therefore subject to individual clinicians' experiences and intuition. We present a novel formulation of optimal multi-modality cancer management using a finite-horizon Markov decision process approach. Specifically, at each decision epoch, the clinician chooses an optimal treatment modality based on the patient's observed state, which we define as a combination of tumor progression and normal tissue side effect. Treatment modalities are categorized as (1) type 1, which has a high risk and high reward, but is restricted in the frequency of administration during a treatment course; (2) type 2, which has a lower risk and lower reward than type 1, but may be repeated without restriction; and (3) type 3, no treatment (surveillance), which has the possibility of reducing normal tissue side effect at the risk of worsening tumor progression. Numerical simulations using various intuitive, concave reward functions show the structural insights of optimal policies and demonstrate the potential applications of using a rigorous approach to optimizing multi-modality cancer management.
Collapse
Affiliation(s)
- Kelsey Maass
- Department of Applied Mathematics, University of Washington, Seattle WA, USA
| | - Minsun Kim
- Department of Radiation Oncology, University of Washington, Seattle WA, USA
| |
Collapse
|
43
|
High CD3 and ICOS and low TIM-3 expression predict favourable survival in resected oesophageal squamous cell carcinoma. Sci Rep 2019; 9:20197. [PMID: 31882943 PMCID: PMC6934772 DOI: 10.1038/s41598-019-56828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
With the increasing oncological potential of immunotherapy, several immune checkpoint modulators are being investigated. The value of immune markers, including programmed cell death ligand-1, programmed cell death-1 (PD-1), inducible co-stimulator (ICOS), lymphocyte activation gene-3, T-cell immunoglobulin, and mucin-dominant containing-3 (TIM-3), is not well known. Using tissue microarrays of 396 patients who underwent surgery for oesophageal squamous cell carcinoma (ESCC), infiltrated T-cell subsets (CD3, CD8, and Foxp3) and checkpoint protein expression were scored. With a median follow-up of 24.8 months, CD3+ TIL subsets (50.0%) had longer median recurrence-free survival (RFS, 55.0 vs 21.4 months) and overall survival (OS, 77.7 vs 35.8 months). Patients with high ICOS expression (46.5%) had longer median RFS (53.9 vs 25.3 months) and OS (88.8 vs 36.9 months). For PD-1, RFS (hazard ratio [HR] 0.67) and OS (HR 0.66) were significantly longer in the high-expression group (45.2%). In the multivariate analysis, high TIM-3 expression (50.8%) had a significant relationship with shorter RFS (HR = 1.52) and OS (HR = 1.60). High CD3+ TIL and T-cell ICOS expression were associated with favourable prognosis, whereas high TIM-3 expression suggested a poor prognosis. Our findings may confer new insights to improve ESCC outcomes beyond the application of PD-1 blockade.
Collapse
|
44
|
Shaw SM, Middleton J, Wigglesworth K, Charlemagne A, Schulz O, Glossop MS, Whalen GF, Old R, Westby M, Pickford C, Tabakman R, Carmi-Levy I, Vainstein A, Sorani E, Zur AA, Kristian SA. AGI-134: a fully synthetic α-Gal glycolipid that converts tumors into in situ autologous vaccines, induces anti-tumor immunity and is synergistic with an anti-PD-1 antibody in mouse melanoma models. Cancer Cell Int 2019; 19:346. [PMID: 31889898 PMCID: PMC6923872 DOI: 10.1186/s12935-019-1059-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023] Open
Abstract
Background Treatments that generate T cell-mediated immunity to a patient’s unique neoantigens are the current holy grail of cancer immunotherapy. In particular, treatments that do not require cumbersome and individualized ex vivo processing or manufacturing processes are especially sought after. Here we report that AGI-134, a glycolipid-like small molecule, can be used for coating tumor cells with the xenoantigen Galα1-3Galβ1-4GlcNAc (α-Gal) in situ leading to opsonization with pre-existing natural anti-α-Gal antibodies (in short anti-Gal), which triggers immune cascades resulting in T cell mediated anti-tumor immunity. Methods Various immunological effects of coating tumor cells with α-Gal via AGI-134 in vitro were measured by flow cytometry: (1) opsonization with anti-Gal and complement, (2) antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells, and (3) phagocytosis and antigen cross-presentation by antigen presenting cells (APCs). A viability kit was used to test AGI-134 mediated complement dependent cytotoxicity (CDC) in cancer cells. The anti-tumoral activity of AGI-134 alone or in combination with an anti-programmed death-1 (anti-PD-1) antibody was tested in melanoma models in anti-Gal expressing galactosyltransferase knockout (α1,3GT−/−) mice. CDC and phagocytosis data were analyzed by one-way ANOVA, ADCC results by paired t-test, distal tumor growth by Mantel–Cox test, C5a data by Mann–Whitney test, and single tumor regression by repeated measures analysis. Results In vitro, α-Gal labelling of tumor cells via AGI-134 incorporation into the cell membrane leads to anti-Gal binding and complement activation. Through the effects of complement and ADCC, tumor cells are lysed and tumor antigen uptake by APCs increased. Antigen associated with lysed cells is cross-presented by CD8α+ dendritic cells leading to activation of antigen-specific CD8+ T cells. In B16-F10 or JB/RH melanoma models in α1,3GT−/− mice, intratumoral AGI-134 administration leads to primary tumor regression and has a robust abscopal effect, i.e., it protects from the development of distal, uninjected lesions. Combinations of AGI-134 and anti-PD-1 antibody shows a synergistic benefit in protection from secondary tumor growth. Conclusions We have identified AGI-134 as an immunotherapeutic drug candidate, which could be an excellent combination partner for anti-PD-1 therapy, by facilitating tumor antigen processing and increasing the repertoire of tumor-specific T cells prior to anti-PD-1 treatment.
Collapse
Affiliation(s)
- Stephen M Shaw
- Agalimmune Ltd., Sandwich, Kent, UK.,BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Jenny Middleton
- Agalimmune Ltd., Sandwich, Kent, UK.,BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Kim Wigglesworth
- 3Department of Surgery, University of Massachusetts Medical School, Worcester, MA USA
| | | | - Oliver Schulz
- 4Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Giles F Whalen
- 3Department of Surgery, University of Massachusetts Medical School, Worcester, MA USA.,5Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert Old
- 6Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | | | | | | | | | | | - Ella Sorani
- BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Arik A Zur
- BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | | |
Collapse
|
45
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
46
|
Wu M, Zhang Y, Zhang Y, Liu Y, Wu M, Ye Z. Imaging-based Biomarkers for Predicting and Evaluating Cancer Immunotherapy Response. Radiol Imaging Cancer 2019; 1:e190031. [PMID: 33778682 DOI: 10.1148/rycan.2019190031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Proper patient selection for immunotherapy is critical, as certain tumor microenvironments are more permissible to therapy than others. Currently, the use of programmed cell death ligand-1 (PD-L1) and microsatellite instability high and/or mismatch repair deficiency are used as biomarkers for immunotherapy response. To improve tumor characterization, methodologies are being developed to combine imaging with tumor immune environment characterization. Imaging of tumors from immunotherapy responders and nonresponders with various imaging modalities has led to the development of criteria that could predict patient response to immunotherapy. Additionally, radiomics-based artificial intelligence methods are being used to characterize tumor microenvironments to predict and evaluate immunotherapy responses, as well as to predict risk of immune-related adverse events. Molecular imaging techniques are also being developed for various modalities to observe tumor expression of immunotherapy targets, such as PD-L1 and, to confirm the target is being expressed on resident tumors. In all, the advancements of imaging techniques to define tumor immunologic characteristics will help to stratify patients who are more likely to respond to immunotherapies. Keywords: Computer Aided Diagnosis (CAD), Computer Applications-Virtual Imaging, Efficacy Studies, MR-Imaging, Molecular Imaging-Cancer, Molecular Imaging-Immunotherapy, Molecular Imaging-Nanoparticles, Molecular Imaging-Probe Development, Molecular Imaging-Target Development, SPECT/CT © RSNA, 2019.
Collapse
Affiliation(s)
- Minghao Wu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| | - Yanyan Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| | - Ying Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| | - Mingjie Wu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Hexi District, Tianjin 300060, PR China (M.W., Y.Z., Y. Z., Y.L., Z.Y.); and Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Quebec, Canada (Mingjie Wu)
| |
Collapse
|
47
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
48
|
Abstract
This Account is the first comprehensive review article on the newly developed, photochemistry-based cancer therapy near-infrared (NIR) photoimmunotherapy (PIT). NIR-PIT is a molecularly targeted phototherapy for cancer that is based on injecting a conjugate of a near-infrared, water-soluble, silicon-phthalocyanine derivative, IRdye700DX (IR700), and a monoclonal antibody (mAb) that targets an expressed antigen on the cancer cell surface. Subsequent local exposure to NIR light turns on this photochemical "death" switch, resulting in the rapid and highly selective immunogenic cell death (ICD) of targeted cancer cells. ICD occurs as early as 1 min after exposure to NIR light and results in irreversible morphologic changes only in target-expressing cells based on the newly discovered photoinduced ligand release reaction that induces physical changes on conjugated antibody/antigen complex resulting in functional damage on cell membrane. Meanwhile, immediately adjacent receptor-negative cells are totally unharmed. Because of its highly targeted nature, NIR-PIT carries few side effects and healing is rapid. Evaluation of the tumor microenvironment reveals that ICD induced by NIR-PIT results in rapid maturation of immature dendritic cells adjacent to dying cancer cells initiating a host anticancer immune response, resulting in repriming of polyclonal CD8+T cells against various released cancer antigens, which amplifies the therapeutic effect of NIR-PIT. NIR-PIT can target and treat virtually any cell surface antigens including cancer stem cell markers, that is, CD44 and CD133. A first-in-human phase 1/2 clinical trial of NIR-PIT using cetuximab-IR700 (RM1929) targeting EGFR in inoperable recurrent head and neck cancer patients successfully concluded in 2017 and led to "fast tracking" by the FDA and a phase 3 trial ( https://clinicaltrials.gov/ct2/show/NCT03769506 ) that is currently underway in 3 countries in Asia, US/Canada, and 4 countries in EU. The next step for NIR-PIT is to further exploit the immune response. Preclinical research in animals with intact immune systems has shown that NIT-PIT targeting of immunosuppressor cells within the tumor, such as regulatory T-cells, can further enhance tumor-cell-selective systemic host-immunity leading to significant responses in distant metastatic tumors, which are not treated with light. By combining cancer-targeting NIR-PIT and immune-activating NIR-PIT or other cancer immunotherapies, NIR-PIT of a local tumor, could lead to responses in distant metastases and may also inhibit recurrences due to activation of systemic anticancer immunity and long-term immune memory without the systemic autoimmune adverse effects often associated with immune checkpoint inhibitors. Furthermore, NIR-PIT also enhances nanodrug delivery into tumors up to 24-fold superior to untreated tumors with conventional EPR effects by intensively damaging cancer cells behind tumor vessels. We conclude by describing future advances in this novel photochemical cancer therapy that are likely to further enhance the efficacy of NIR-PIT.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B3B69, MSC1088, Bethesda, Maryland 20892-1088, United States
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B3B69, MSC1088, Bethesda, Maryland 20892-1088, United States
| |
Collapse
|
49
|
Berzaghi R, Ahktar MA, Islam A, Pedersen BD, Hellevik T, Martinez-Zubiaurre I. Fibroblast-Mediated Immunoregulation of Macrophage Function Is Maintained after Irradiation. Cancers (Basel) 2019; 11:E689. [PMID: 31108906 PMCID: PMC6562631 DOI: 10.3390/cancers11050689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
The abilities of cancer-associated fibroblasts (CAFs) to regulate immune responses in the context of radiotherapy remain largely unknown. This study was undertaken to determine whether ionizing radiation alters the CAF-mediated immunoregulatory effects on macrophages. CAFs were isolated from freshly-resected non-small cell lung cancer tumors, while monocyte-derived macrophages were prepared from peripheral blood of healthy donors. Experimental settings included both (CAF-macrophage) co-cultures and incubations of M0 and M1-macrophages in the presence of CAF-conditioned medium (CAF-CM). Functional assays to study macrophage polarization/activation included the expression of cell surface markers, production of nitric oxide, secretion of inflammatory cytokines and migratory capacity. We show that CAFs promote changes in M0-macrophages that harmonize with both M1-and M2-phenotypes. Additionally, CAFs inhibit pro-inflammatory features of M1-macrophages by reducing nitric oxide production, pro-inflammatory cytokines, migration, and M1-surface markers expression. Radiation delivered as single-high dose or in fractioned regimens did not modify the immunoregulatory features exerted by CAFs over macrophages in vitro. Protein expression analyses of CAF supernatants showed that irradiated and non-irradiated CAFs produce approximately the same protein levels of immunoregulators. Thus, CAF-derived soluble factors mediate measurable changes on uncommitted macrophages and down-regulate pro-inflammatory features of M1-polarized macrophages. Notably, ionizing radiation does not curtail the CAF-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Muhammad Asad Ahktar
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Ashraful Islam
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Brede D Pedersen
- Department of Radiation Oncology, University Hospital of Northern Norway, 9038 Tromsø, Norway.
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, 9038 Tromsø, Norway.
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
50
|
Valand HA, Huda F, Tu RK. Chimeric Antigen Receptor T-Cell Therapy: What the Neuroradiologist Needs to Know. AJNR Am J Neuroradiol 2019; 40:766-768. [PMID: 31048298 PMCID: PMC7053909 DOI: 10.3174/ajnr.a6042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/06/2019] [Indexed: 11/07/2022]
Abstract
Chimeric antigen receptor T-cell therapy is an exciting and rapidly emerging "fifth pillar" treatment for hematologic cancers. Unique treatment-related toxicities and cost remain a major hindrance to its widespread application. The commonly faced challenges with this innovative therapy, its neurotoxicity, and manifestation on neuroimaging studies, are reviewed.
Collapse
Affiliation(s)
- H A Valand
- From the American University of Integrative Sciences (H.A.V.), Brampton, Ontario, Canada
| | - F Huda
- Department of Radiology (F.H.), George Washington University Hospital, Washington, DC
| | - R K Tu
- Progressive Radiology (R.K.T.), George Washington University, Washington, DC.
| |
Collapse
|