1
|
Chowdhury A, Kumar AYN, Kumar R, Maurya VK, Mahesh MS, Singh AK, Yadav PK, Ghosh M. Optimization of microwave parameters to enhance phytochemicals, antioxidants and metabolite profile of de-oiled rice bran. Sci Rep 2024; 14:23959. [PMID: 39397141 PMCID: PMC11471765 DOI: 10.1038/s41598-024-74738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
The current study explores the effects of microwave treatment at varying wattage and durations on the phytoconstituents, antioxidant status, anti-nutritional factors (ANFs), and metabolite profiles of de-oiled rice bran. The total phenolics and flavonoids showed both increases and decreases depending on specific microwave parameters, while flavonol content consistently increased across all treated groups compared to the control. The DPPH and ABTS free radical scavenging activity, total antioxidant capacity, FRAP, CUPRAC, metal chelating activity, and ascorbic acid content were enhanced in most of the microwaved samples; however, longer microwave exposure at higher wattage led to their reduction. A treatment-specific decrease in ANFs, including condensed tannins, oxalates, and phytates, was observed. HRMS-based untargeted metabolomics identified a diverse range of primary and secondary metabolites, which clustered in a group-specific manner, indicating notable group-wise metabolite variations. Analysis of discriminating metabolites revealed no significant differences in the overall levels of phenolics, flavonoids, vitamins and cofactors, sugars, amino acids, terpenoids, fatty acids, and their derivatives among the treated groups compared to the control; however, several individual metabolites within these metabolite classes differed significantly. These findings suggest that optimized microwaving of de-oiled rice bran can enhance phytochemicals and antioxidants while improving the metabolite profile.
Collapse
Affiliation(s)
- Alonkrita Chowdhury
- Department of Plant Biotechnology, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India
| | - Alla Yaswanth Naveen Kumar
- Department of Plant Biotechnology, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Vivek Kumar Maurya
- High-Resolution Mass Spectrometry Lab, Sophisticated Analytical & Technical Help Institute (SATHI), Central Discovery Center, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - M S Mahesh
- Livestock Farm Complex, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India
| | - Abhishek Kumar Singh
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India
| | - Pavan Kumar Yadav
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Barkachha, Mirzapur, U.P., 231001, India.
| |
Collapse
|
2
|
Islam MF, Yamatani H, Takami T, Kusaba M, Sakamoto W. Characterization of organelle DNA degradation mediated by DPD1 exonuclease in the rice genome-edited line. PLANT MOLECULAR BIOLOGY 2024; 114:71. [PMID: 38856917 PMCID: PMC11164812 DOI: 10.1007/s11103-024-01452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024]
Abstract
Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.
Collapse
Affiliation(s)
- Md Faridul Islam
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Hiroshi Yamatani
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233, Watanuki, Takasaki, Gunma, 370-1292, Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
3
|
Shi H, Zhu Y, Wu X, Jiang T, Li X, Liu J, Di Y, Chen F, Gao J, Xu X, Xiao N, Feng X, Zhang P, Wu Y, La Q, Li A, Chen P, Li X. CropMetabolome: a comprehensive metabolome database for major crops cross eight categories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38818975 DOI: 10.1111/tpj.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Chemical compositions of crops are of great agronomical importance, as crops serve as resources for nutrition, energy, and medicines for human and livestock. For crop metabolomics research, the lack of crop reference metabolome and high-quality reference compound mass spectra, as well as utilities for metabolic profiling, has hindered the discovery and functional study of phytochemicals in crops. To meet these challenging needs, we have developed the Crop Metabolome database (abbreviated as CropMetabolome) that is dedicated to the construction of crop reference metabolome, repository, and dissemination of crop metabolomic data, and profiling and analytic tools for metabolomics research. CropMetabolome contains a metabolomics database for more than 50 crops (belonging to eight categories) that integrated self-generated raw mass spectral data and public-source datasets. The reference metabolome for 59 crop species was constructed, which have functions that parallel those of reference genome in genomic studies. CropMetabolome also contains 'Standard compound mass spectral library', 'Flavonoids library', 'Pesticide library', and a set of related analytical tools that enable metabolic profiling based on a reference metabolome (CropRefMetaBlast), annotation and identification of new metabolites (CompoundLibBlast), deducing the structure of novel flavonoid derivatives (FlavoDiscover), and detecting possible residual pesticides in crop samples (PesticiDiscover). In addition, CropMetabolome is a repository to share and disseminate metabolomics data and a platform to promote collaborations to develop reference metabolome for more crop species. CropMetabolome is a comprehensive platform that offers important functions in crop metabolomics research and contributes to improve crop breeding, nutrition, and safety. CropMetabolome is freely available at https://www.cropmetabolome.com/.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Jiang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuetong Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
| | - Ye Di
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiaoyan Xu
- Core Facility Center, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiong La
- Department of Life Science, Research Institute of Biodiversity and Geobiology, Tibet University, Lhasa, 850000, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225007, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Peng B, Zhang Q, Liu Y, Zhao Q, Zhao J, Zhang Z, Sun X, Peng J, Sun Y, Song X, Guo G, Huang Y, Pang R, Zhou W, Wang Q. OsAAP8 mutation leads to significant improvement in the nutritional quality and appearance of rice grains. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:34. [PMID: 38725797 PMCID: PMC11076445 DOI: 10.1007/s11032-024-01473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Members of the permease gene family are responsible for important biological functions in the growth and development of rice. Here, we show that OsAAP8 is a constitutive expression gene, and its translated protein is localized on the cell membrane. Mutation of the OsAAP8 can promote the expression of genes related to protein and amylopectin synthesis, and also promote the enlargement of protein bodies in its endosperm, leading to an increase in the protein, amylopectin, and total amino acid content of grains in OsAAP8 mutants. Seeds produced by the OsAAP8 mutant were larger, and the chalkiness traits of the OsAAP8 mutants were significantly reduced, thereby improving the nutritional quality and appearance of rice grains. The OsAAP8 protein is involved in the transport of various amino acids; OsAAP8 mutation significantly enhanced the root absorption of a range of amino acids and might affect the distribution of various amino acids. Therefore, OsAAP8 is an important quality trait gene with multiple biological functions, which provides important clues for the molecular design of breeding strategies for developing new high-quality varieties of rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01473-w.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Qingxi Zhang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Yan Liu
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Qiang Zhao
- Henan Scientific Research Platform Service Center, Zhengzhou, 450003 China
| | - Jinhui Zhao
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Zhiguo Zhang
- Henan Lingrui Pharmaceutical Company Limited, Xinyang, 464000 China
| | - Xiaoyu Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Juan Peng
- Xinyang Station of Plant Protection and Inspection, Xinyang, 464000 China
| | - Yanfang Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiaohua Song
- Xinyang Academy of Agricultural Science, Xinyang, 464000 China
| | - Guiying Guo
- Xinyang Academy of Agricultural Science, Xinyang, 464000 China
| | - Yaqin Huang
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Ruihua Pang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wei Zhou
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Quanxiu Wang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
5
|
Kubo T, Yamagata Y, Matsusaka H, Toyoda A, Sato Y, Kumamaru T. MiRiQ Database: A Platform for In Silico Rice Mutant Screening. PLANT & CELL PHYSIOLOGY 2024; 65:169-174. [PMID: 37930817 PMCID: PMC10799713 DOI: 10.1093/pcp/pcad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Genetic studies using mutant resources have significantly contributed to elucidating plant gene function. Massive mutant libraries sequenced by next-generation sequencing technology facilitate mutant identification and functional analysis of genes of interest. Here, we report the creation and release of an open-access database (https://miriq.agr.kyushu-u.ac.jp/index.php), called Mutation-induced Rice in Kyushu University (MiRiQ), designed for in silico mutant screening based on a whole-genome-sequenced mutant library. This database allows any user to easily find mutants of interest without laborious efforts such as large-scale screening by PCR. The initial version of the MiRiQ database (version 1.0) harbors a total of 1.6 million single-nucleotide variants (SNVs) and InDels of 721 M1 plants that were mutagenized by N-methyl-N-nitrosourea treatment of the rice cultivar Nipponbare (Oryza sativa ssp. japonica). The SNVs were distributed among 87% of all 35,630 annotated protein-coding genes of the Nipponbare genome and were predicted to induce missense and nonsense mutations. The MiRiQ database provides built-in tools, such as a search tool by keywords and JBrowse for mutation searches. Users can request mutant seeds in the M2 or M3 generations from a request form linked to this database. We believe that the availability of a wide range of gene mutations in this database will benefit the plant science community and breeders worldwide by accelerating functional genomic research and crop improvement.
Collapse
Affiliation(s)
- Takahiko Kubo
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yoshiyuki Yamagata
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroaki Matsusaka
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Atsushi Toyoda
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Yutaka Sato
- National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
6
|
Shi H, Wu X, Zhu Y, Jiang T, Wang Z, Li X, Liu J, Zhang Y, Chen F, Gao J, Xu X, Zhang G, Xiao N, Feng X, Zhang P, Wu Y, Li A, Chen P, Li X. RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Res 2024; 52:D1614-D1628. [PMID: 37953341 PMCID: PMC10767953 DOI: 10.1093/nar/gkad980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plants are unique with tremendous chemical diversity and metabolic complexity, which is highlighted by estimates that green plants collectively produce metabolites numbering in the millions. Plant metabolites play crucial roles in all aspects of plant biology, like growth, development, stress responses, etc. However, the lack of a reference metabolome for plants, and paucity of high-quality standard compound spectral libraries and related analytical tools, have hindered the discovery and functional study of phytochemicals in plants. Here, by leveraging an advanced LC-MS platform, we generated untargeted mass spectral data from >150 plant species collected across the five major phyla. Using a self-developed computation protocol, we constructed reference metabolome for 153 plant species. A 'Reference Metabolome Database for Plants' (RefMetaPlant) was built to encompass the reference metabolome, integrated standard compound mass spectral libraries for annotation, and related query and analytical tools like 'LC-MS/MS Query', 'RefMetaBlast' and 'CompoundLibBlast' for searches and profiling of plant metabolome and metabolite identification. Analogous to a reference genome in genomic research, RefMetaPlant provides a powerful platform to support plant genome-scale metabolite analysis to promote knowledge/data sharing and collaboration in the field of metabolomics. RefMetaPlant is freely available at https://www.biosino.org/RefMetaDB/.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Jiang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Xuetong Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | | | - Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyan Xu
- Core Facility Center, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Peng Zhang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongrui Wu
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Brunet-Loredo A, López-Belchí MD, Cordero-Lara K, Noriega F, Cabeza RA, Fischer S, Careaga P, Garriga M. Assessing Grain Quality Changes in White and Black Rice under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:4091. [PMID: 38140418 PMCID: PMC10748231 DOI: 10.3390/plants12244091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Rice is an essential diet component for a significant portion of the population worldwide. Due to the high water demand associated with rice production, improving water use efficiency and grain quality is critical to increasing the sustainability of the crop. This species includes rice varieties with diverse pigmentation patterns. Grain quality, including industrial, nutritional, and functional quality traits, of two black rice genotypes and a commercial white rice cultivar were evaluated in different locations and under different water regimes. Flooding produced higher grain weight compared to alternate wetting and drying irrigation. A high correlation was found between grain color, total phenolic content (TPC), and antioxidant activity. The black rice genotypes showed higher TPC levels and antioxidant capacity, mainly due to higher levels of cyanidin 3-O-glucoside. The phenolic profile varied between whole and polished grains, while mineral composition was influenced by location and irrigation regime. In turn, the environment influenced grain quality in terms of industrial and nutritional characteristics, with significant differences in quality between whole and polished grains. This study provides valuable information on the genotype-environment relationship in rice and its effect on grain quality, which could contribute to selecting genotypes for an appropriate environment.
Collapse
Affiliation(s)
- Aloysha Brunet-Loredo
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - María Dolores López-Belchí
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Karla Cordero-Lara
- Institute of Agricultural Research, Regional Research Center Quilamapu, Avenida Vicente Mendez, 515, Chillán 3780000, Chile;
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Ricardo A. Cabeza
- Plant Nutrition Laboratory, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Avenida Lircay s/n, Talca 3460000, Chile;
| | - Susana Fischer
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Paula Careaga
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| | - Miguel Garriga
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez, 595, Chillán 3780000, Chile; (A.B.-L.); (M.D.L.-B.); (F.N.); (S.F.); (P.C.)
| |
Collapse
|
8
|
Zhao Y, Hu J, Zhang Y, Tao H, Li L, He Y, Zhang X, Zhang C, Hong G. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging. Food Res Int 2023; 174:113578. [PMID: 37986446 DOI: 10.1016/j.foodres.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Rice (Oryza sativa) seeds contain a variety of metabolites, which not only provide energy for their own growth and development, but also are an important source of nutrition for humans. It is crucial to study the distribution of metabolites in rice seeds, but the spatial metabolome of rice seeds is rarely investigated. In this study, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) imaging was used to reveal the spatial distribution of free soluble sugars (glucose, fructose, sucrose, and maltose), amino acids (9 essential amino acids and 2 amino acids affecting rice eating quality: L-aspartic acid and L-glutamic acid), and 4 metabolites in the flavonoids synthesis pathway (cinnamic acid, naringenin chalcone, naringenin, and dihydrokaempferol) in rice seed at the dough stage. It was found that the 4 free soluble sugars present similar spatial distribution, mainly distributed in the seed cortex and embryo with high abundance. The majority of amino acids are also concentrated in the rice cortex and embryo, while the others are abundant in the whole seed. Besides cinnamic acid distributed in the seed cortex and embryo, the naringenin chalcone, naringenin, and dihydrokaempferol were also found in the endosperm and had lower content. Furthermore, a colocalization phylogenetic tree according to the spatial distribution imaging of each metabolite was constructed. This study revealed the distribution diversity of metabolites in different segmentations of rice seed at the dough stage, providing clues for the nutritional differences between brown rice and white rice, and serving as a reference for people to target a healthy diet.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jitao Hu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilin Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
9
|
Wang X, Xie L, Fang J, Pang Y, Xu J, Li Z. Identification of Candidate Genes that Affect the Contents of 17 Amino Acids in the Rice Grain Using a Genome-Wide Haplotype Association Study. RICE (NEW YORK, N.Y.) 2023; 16:40. [PMID: 37713042 PMCID: PMC10504229 DOI: 10.1186/s12284-023-00658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The amino acid content (AAC) of the rice grain is one of the most important determinants of nutritional quality in rice. Understanding the genetic basis of grain AAC and mining favorable alleles of target genes for AAC are important for developing new cultivars with improved nutritional quality. RESULTS Using a diverse panel of 164 accessions genotyped by 32 M SNPs derived from 3 K Rice Genome Project, we extracted 1,123,603 high quality SNPs in 44,248 genes and used them to construct haplotypes. We measured the contents of the 17 amino acids that included seven essential amino acids and 10 dispensable amino acids. Through a genome-wide haplotype association study, 261 gene-trait associations containing 174 genes for the 17 components of AAC were detected, and 34 of these genes were associated with at least two components. Furthermore, the associated SNPs in genes were also identified by a traditional genome-wide association study to identify the key natural variations in the specific genes. CONCLUSIONS The genome-wide haplotype association study allowed us to detected candidate genes directly and to identify key natural genetic variation as well. In the present study, twelve genes have been cloned, and 34 genes were associated with at least two components, suggesting that the genome-wide haplotype association study approach used in the current study is an efficient way to identify candidate genes for target traits. The identified candidate genes, favorable haplotypes, and key natural variations affecting AAC provide valuable resources for further functional characterization and genetic improvement of rice nutritional quality.
Collapse
Affiliation(s)
- Xiaoqian Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China
| | - Jiachuang Fang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China
| | - Yunlong Pang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, China.
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, Guangdong, China.
| | - Zhikang Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| |
Collapse
|
10
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
11
|
Sehar S, Adil MF, Ma Z, Karim MF, Faizan M, Zaidi SSA, Siddiqui MH, Alamri S, Zhou F, Shamsi IH. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114866. [PMID: 37023649 DOI: 10.1016/j.ecoenv.2023.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Fazal Karim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Syed Shujaat Ali Zaidi
- Center for Innovation in Brain Science, Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Mori T, Rai A, Tsugawa H, Yamada Y, Saito K. A liquid chromatography-mass spectrometry-based metabolomics strategy to explore plant metabolic diversity. Methods Enzymol 2023; 680:247-273. [PMID: 36710013 DOI: 10.1016/bs.mie.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are expert chemists producing millions of metabolites, only a fraction of which are known to date. Plant metabolomics explores the rationale for highly diverse metabolites evolved and synthesized by plants. Over two-thirds of modern medicines are somehow inspired and/or derived from plants, making the identification of phytochemicals a means of discovering new medicines to challenge existing and emerging diseases. This chapter introduces our established liquid chromatography-tandem mass spectrometry-based untargeted metabolomics approach centered around discovering specialized metabolites (so-called secondary metabolites) across broad lineages of nonmodel plant species. Detecting hundreds to thousands of metabolite peaks, including assigning chemical identity, makes metabolomics data generation and analysis a very complex process. Various mass spectrometry techniques are currently being developed to approach the comprehensive metabolome. Among them, untargeted metabolomics can provide new biological insights by simultaneously and unbiasedly measuring and analyzing all detected metabolites. We have provided a hands-on modular account for untargeted plant metabolomics, from preparing plant biological samples to data analysis and processing using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The methods described here offer a foundation and expert opinion on plant metabolome analysis.
Collapse
Affiliation(s)
- Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan.
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan; Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan; RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan; Plant Molecular Science Center, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Lv M, Wang Y, Chen X, Qin W, Shi W, Song W, Chen J, Xu C. The moderate substitution of Astragalus sinicus returning for chemical fertilizer improves the N cycle function of key ecological bacterial clusters in soil. Front Microbiol 2023; 13:1067939. [PMID: 36687600 PMCID: PMC9850295 DOI: 10.3389/fmicb.2022.1067939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Astragalus sinicus (Chinese milk vetch) is a well-established resource of organic fertilizer widely used in paddy soil to partially replace chemical fertilizers. However, the influence of returning A. sinicus to fields on the soil bacterial community remains poorly understood. Here, we used different amounts of A. sinicus partially replacing chemical fertilizers and investigated the changes in soil physicochemical factors and the soil bacterial community structure responses. Returning A. sinicus to the field significantly increased the soil total nitrogen and available phosphorus content (p < 0.05). Weighted gene correlation network analysis (WGCNA) was applied to detect significant associations between the soil microbiome data and physicochemical factors. Two key ecological bacterial clusters (MEturquoise and MEgreen), mainly containing Acidobacteria, Proteobacteria, and Chloroflexi, were significantly correlated with soil nitrogen (N) levels. A. sinicus partially replacing chemical fertilizers reduced the normalized stochasticity ratio (NST) of rare amplicon sequence variants (ASVs), abundant ASVs, MEturquoise, and MEgreen (p < 0.05). Our results further indicated that a moderate amount of A. sinicus returned to the soil effectively mitigated the trend of reduced relative abundance of N fixation function of key ecological clusters caused by chemical fertilizer. However, a large amount of A. sinicus led to a significant increase in relative abundance of denitrification function and a significant decrease in relative abundance of N fixation function of key ecological clusters. This implies that the moderate substitution of A. sinicus returning for chemical fertilizer improves the N cycling function of key ecological bacterial clusters in soil. From the perspective of the bacterial community in paddy soil, this study provides new insight and a reference on how to find a good balance between the amount of A. sinicus returned to the soil and ecological safety.
Collapse
Affiliation(s)
- Minghao Lv
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Yongdong Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xiaofen Chen
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Wenjing Qin
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Wencong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Weifeng Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Jingrui Chen
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Changxu Xu
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
14
|
Zhu J, Li A, Sun C, Zhang J, Hu J, Wang S, Zhou N, Xiong Q. Rice Quality-Related Metabolites and the Regulatory Roles of Key Metabolites in Metabolic Pathways of High-Quality Semi-Glutinous japonica Rice Varieties. Foods 2022; 11:foods11223676. [PMID: 36429268 PMCID: PMC9689214 DOI: 10.3390/foods11223676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
We explored the related metabolites produced by different quality semi-glutinous japonica rice varieties and the modulatory role of key metabolites in metabolic mechanisms. In this study, three high-quality edible semi-glutinous rice varieties were employed as investigational materials, the metabolites of the three varieties were detected using LC-MS metabolomics technology, and the rice quality traits of the three rice varieties were determined. The taste value (TV) of Yangnongxiang 28 (YNX28H) was substantially higher than that of Hongyang 5 hao (HY5H) and Nanjing 5718 (NJ5718), and the hardness (HA) of YNX28H was significantly lower than that of HY5H and NJ5718. The HA was significantly negatively correlated with the TV. The highest chalkiness rate (CR) and chalkiness degree (CD) were observed for NJ5718, and the lowest CR and CD were observed for HY5H. HY5H had a substantially lower protein content (PC) than YNX28H and NJ5718 and a markedly higher amylose content (AC) than those two varieties. Overall, 188 differential metabolites (DMs) were recognized between HY5H and NJ5718. A total of 136 DMs were detected between YNX28H and NJ5718, and 198 DMs were recognized between HY5H and YNX28H. The metabolites with a strong correlation with rice quality were mainly associated with amino acid metabolism, lipid metabolism and the citrate cycle. The key metabolites in the metabolic pathway include lipid metabolites (sagittariol, glycerophosphocholine, gamma-eudesmol rhamnoside, goshonoside F1, diosbulbinoside F, and corchorifatty acid F), amino acid metabolites (pantothenic acid, L-serine, L-proline, L-aspartic acid, L-glutamate, L-asparagine, and glutathione) and carbohydrate metabolites (sucrose, levan, D-maltose, and amylose). These key metabolites play important regulatory roles in metabolic mechanisms, providing a theoretical basis for breeding new high-quality edible rice varieties.
Collapse
Affiliation(s)
- Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jinlong Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nianbing Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
15
|
Combined Hybridization and Evaluation of High-Lysine Rice: Nutritional and Physicochemical Qualities and Field Performance. Int J Mol Sci 2022; 23:ijms232012166. [PMID: 36293019 PMCID: PMC9603072 DOI: 10.3390/ijms232012166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Rice, as a major food crop, provides necessary energy and nutrition for humans and livestock. However, its nutritional value is affected by lysine. Using point mutation, we previously obtained AK2 (aspartokinase) and DHDPS1 (dihydrodipicolinate synthase) genes insensitive to lysine feedback inhibition and constructed transgenic lines AK2-52 and DHDPS1-22, which show increased lysine synthesis, as well as Ri-12, which shows decreased lysine degradation by inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) activity. In this study, further transgenic lines were hybridized and evaluated. The lysine content of mature seeds from pyramid lines PRD and PRA increased 32.5- and 29.8-fold, respectively, compared with the wild-type, while the three-gene pyramiding line PRDA had a moderate lysine content. The total lysine, total free lysine, and total protein contents of PRD and PRA also increased and had no obvious impact on the physical and chemical quality, seed appearance, and main agronomic traits. Meanwhile, comparative analysis with polygenic polymeric lines GR containing bacterial AK (lysC) and DHDPS (dapA) genes revealed differences in the way bacterial and endogenous rice AK and DHDPS regulate lysine biosynthesis. These results provide a reference for further evaluation and commercialization of high-lysine transgenic rice.
Collapse
|
16
|
Insight into the dynamic variation and retention of major aroma volatile compounds during the milling of Suxiang japonica rice. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Metabolomics and biochemical analyses revealed metabolites important for the antioxidant properties of purple glutinous rice. Food Chem 2022; 389:133080. [DOI: 10.1016/j.foodchem.2022.133080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023]
|
18
|
Li X, Zhou H, Xiao N, Wu X, Shan Y, Chen L, Wang C, Wang Z, Huang J, Li A, Li X. Expanding the Coverage of Metabolic Landscape in Cultivated Rice with Integrated Computational Approaches. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:702-714. [PMID: 33631426 PMCID: PMC9880819 DOI: 10.1016/j.gpb.2020.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/06/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
Genome-scale metabolomics analysis is increasingly used for pathway and function discovery in the post-genomics era. The great potential offered by developed mass spectrometry (MS)-based technologies has been hindered, since only a small portion of detected metabolites were identifiable so far. To address the critical issue of low identification coverage in metabolomics, we adopted a deep metabolomics analysis strategy by integrating advanced algorithms and expanded reference databases. The experimental reference spectra and in silico reference spectra were adopted to facilitate the structural annotation. To further characterize the structure of metabolites, two approaches were incorporated into our strategy, i.e., structural motif search combined with neutral loss scanning and metabolite association network. Untargeted metabolomics analysis was performed on 150 rice cultivars using ultra-performance liquid chromatography coupled with quadrupole-Orbitrap MS. Consequently, a total of 1939 out of 4491 metabolite features in the MS/MS spectral tag (MS2T) library were annotated, representing an extension of annotation coverage by an order of magnitude in rice. The differential accumulation patterns of flavonoids between indica and japonica cultivars were revealed, especially O-sulfated flavonoids. A series of closely-related flavonolignans were characterized, adding further evidence for the crucial role of tricin-oligolignols in lignification. Our study provides an important protocol for exploring phytochemical diversity in other plant species.
Collapse
Affiliation(s)
- Xuetong Li
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Zhou
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Xueting Wu
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanhong Shan
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longxian Chen
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuiting Wang
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zixuan Wang
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China,Corresponding authors.
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China,Corresponding authors.
| | - Xuan Li
- CAS Key Laboratory of Synthetic Biology / National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| |
Collapse
|
19
|
Wang Q, Zhang D, Zhao L, Liu J, Shang B, Yang W, Duan X, Sun H. Metabolomic Analysis Reveals Insights into Deterioration of Rice Quality during Storage. Foods 2022; 11:foods11121729. [PMID: 35741928 PMCID: PMC9222621 DOI: 10.3390/foods11121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
To determine the changes in the quality of rice during storage, this study investigated the comprehensive metabolomic profiles of Nanjing 9108 (typical japonica rice) and Jianzhen 2 (typical indica rice) varieties in China, using metabolomics. A total of 13 categories of 593 metabolites including lipids (134 species), phenolic acids (78 species), flavonoids (70 species), alkaloids (67 species), organic acids (64 species), amino acids and derivatives (64 species), saccharides and alcohols (44 species), nucleotides and derivatives (37 species), vitamins (14 species), lignans and coumarins (9 species), tannins (2 species), terpenoids (2 species), and others (8 species) were identified in both varieties. The result showed significant changes in 204 metabolites in Nanjing 9108, while only 26 were altered in Jianzhen 2 during storage. These metabolites involved 46 metabolic pathways. The TCA cycle, linoleic, and α-linolenic acid metabolic pathways were unique in Nanjing 9108. Finally, the results of quantitative mass spectrometry of 11 metabolites provided insight into biomarkers associated with quality deterioration of rice. This study provides insights into the mechanism of deterioration in the quality of rice during storage.
Collapse
|
20
|
Liu T, Zhou Y, Wu D, Chen Q, Shu X. Germinated high‐resistant starch rice: A potential novel functional food. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tian Liu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310029 China
| | - Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310029 China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310029 China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District, Sanya 572025 China
| | - Qihe Chen
- Department of Food Science and Nutrition Zhejiang University Hangzhou China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Laboratory of the Ministry of Agriculture for the Nuclear‐Agricultural Sciences Zhejiang University Hangzhou 310029 China
- Hainan Institute of Zhejiang University Yazhou Bay Science and Technology City Yazhou District, Sanya 572025 China
| |
Collapse
|
21
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
22
|
Analysis of Related Metabolites Affecting Taste Values in Rice under Different Nitrogen Fertilizer Amounts and Planting Densities. Foods 2022; 11:foods11101508. [PMID: 35627078 PMCID: PMC9141971 DOI: 10.3390/foods11101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to explore the differences in metabolites related to rice quality formation under different nitrogen (N) fertilizers and planting densities. In this study, Yangnongxiang 28 was used as the experimental material with the following conditions: high nitrogen and low density (HNLD; high nitrogen: 360 kg·hm−2, low density: the row spacing of rice plants was 16 cm × 30 cm), medium nitrogen and medium density (MNMD; medium nitrogen: 270 kg·hm−2, medium density: the row spacing of rice plants was 13 cm × 30 cm), and low nitrogen and high density (LNHD; low nitrogen: 270 kg·hm−2, high density: the row spacing of rice plants was 10 cm × 30 cm). The rice quality indexes, including the processing quality, amylose content, and taste value, were compared under different treatments, and we analyzed their relationship with the metabolites. The results show that the milled rice rate of HNLD was 13.85% and was 1.89% higher than that of LNHD and MNMD, respectively. The head milled rice rate of HNLD was 32.45% and 6.39% higher than that of LNHD and MNMD, respectively. The milled rice rate and head milled rice rate of HNLD and MNMD were significantly higher than those of LNHD. This study identified 22 differential metabolites (DMs) in HNLD and LNHD, 38 DMs in HNLD and MNMD, and 23 DMs in LNHD and MNMD. Most of the identified differential metabolites were lipid metabolites, which were mainly enriched in the lipid metabolic pathways and amino acid metabolic pathways. The correlation analysis showed that the lipid metabolite physapubescin was significantly negatively correlated with the taste value. The lipid metabolites 2-undecen-1-ol, lucidenic acid F, and 8-deoxy-11,13-dihydroxygrosheimin were significantly positively correlated with the taste value. Lipids may be important substances that lead to differences in taste under different nitrogen fertilizer and density treatments.
Collapse
|
23
|
Adverse Effects of Arsenic Uptake in Rice Metabolome and Lipidome Revealed by Untargeted Liquid Chromatography Coupled to Mass Spectrometry (LC-MS) and Regions of Interest Multivariate Curve Resolution. SEPARATIONS 2022. [DOI: 10.3390/separations9030079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rice crops are especially vulnerable to arsenic exposure compared to other cereal crops because flooding growing conditions facilitates its uptake. Besides, there are still many unknown questions about arsenic’s mode of action in rice. Here, we apply two untargeted approaches using liquid chromatography coupled to mass spectrometry (LC-MS) to unravel the effects on rice lipidome and metabolome in the early stages of growth. The exposure is evaluated through two different treatments, watering with arsenic-contaminated water and soil containing arsenic. The combination of regions of interest (ROI) and multivariate curve resolution (MCR) strategies in the ROIMCR data analyses workflow is proposed and complemented with other multivariate analyses such as partial least square discriminant analysis (PLS-DA) for the identification of potential markers of arsenic exposure and toxicity effects. The results of this study showed that rice metabolome (and lipidome) in root tissues seemed to be more affected by the watering and soil treatment. In contrast, aerial tissues alterations were accentuated by the arsenic dose, rather than with the watering and soil treatment itself. Up to a hundred lipids and 40 metabolites were significantly altered due to arsenic exposure. Major metabolic alterations were found in glycerophospholipids, glycerolipids, and amino acid-related pathways.
Collapse
|
24
|
Munyai R, Raletsena MV, Modise DM. LC-MS Based Metabolomics Analysis of Potato ( Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites 2022; 12:221. [PMID: 35323664 PMCID: PMC8952287 DOI: 10.3390/metabo12030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In water-scarce areas, the reuse of (un)treated acid mine drainage (AMD) water for crop irrigation has become a requirement, but it also carries a wide range of contaminants that can elicit the synthesis of diverse metabolites necessary for the survival of the plants. There is still a paucity of studies on the impact of quicklime treated-AMD water on the metabolite synthesis of potatoes. This study examined the effect of the irrigation of two potato cultivars (Marykies and Royal cultivars) with quicklime-treated AMD water on their metabolite profiles. A greenhouse study was conducted with five experimental treatments with different solution ratios, replicated three times in a completely randomized design. A total of 40 and 36 metabolites from Marykies and Royal cultivars which include amino acids, organic acids, and aromatic amines were identified, respectively. The results revealed elevation in the abundance of metabolites under the irrigation with treated AMD water for both cultivars with subtle variations. This will provide information on the primary metabolite shifst in potato that enhance their survival and growth under AMD conditions. However, more specific data on toxicity due to AMD irrigation would be required for a refined risk assessment.
Collapse
Affiliation(s)
- Rabelani Munyai
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - Maropeng Vellry Raletsena
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - David Mxolisi Modise
- Faculty of Natural and Agricultural Sciences, Potchefstroom Campus, North West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| |
Collapse
|
25
|
Wu J, Gao T, Zhao L, Bao H, Yu C, Hu J, Ma F. Investigating Phragmites australis response to copper exposure using physiologic, Fourier Transform Infrared and metabolomic approaches. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:365-381. [PMID: 35290177 DOI: 10.1071/fp21258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Phragmites australis (Cav.) Trin. ex Steud is a landscape plant with resistance to heavy metals that has significance in phytoremediation. However, little is known about the metabolomic background of the heavy metal resistance mechanisms of Phragmites . We studied copper stress on Phragmites and monitored physiological indicators such as malondialdehyde (MDA) and electrolyte leakage (EL). In addition, Fourier Transform Infrared (FTIR) was used to study the related chemical composition in the roots, stems, and leaves under copper stress. Furthermore, LC-MS technology was used to analyse the plants metabolic profile. Results showed that increased copper concentration in Phragmites led to the accumulation of MDA and EL. FTIR spectrum detected the presence of O-H and C=O stretching. O-H stretching was related to the presence of flavonoids, while C=O stretching reflected the presence of protein amide I. The latter was related to the change of amino acid composition. Both flavonoids and amino acids are regarded as contributors to the antioxidant of Phragmites under copper stress. Metabolomics analysis revealed that arginine and ayarin were accumulated and Phragmites leaves responded to copper stress with changes in the pool size of arginine and ayarin. It is speculated that they could improve resistance. Arginine is accumulated through two pathways: the citrulline decomposition and conversion pathway; and the circular pathway composed of ornithine, citrulline, l -argininosuccinate and arginine. Ayarin is synthesised through the quercetin methylation pathway. This study elucidates the antioxidant mechanisms for enhancing its resistance to heavy metal stress, thus improving of phytoremediation efficiency.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hongxu Bao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
26
|
Zhang D, Zhao L, Wang W, Wang Q, Liu J, Wang Y, Liu H, Shang B, Duan X, Sun H. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Girija A, Yadav R, Corke F, Doonan J, Mur LAJ. Untargeted Metabolomic Profiling Reveals Variation in Metabolites Associated with Nutritional Values in Tef Accessions. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:536-539. [PMID: 34762229 PMCID: PMC8629858 DOI: 10.1007/s11130-021-00931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Tef (Eragrostis tef), is a gluten-free orphan cereal, crop of nutritional and economical significance. Here we used untargeted metabolomics to survey metabolite variation in 14 diverse tef accessions at 15-days post germination. Tef genotypes were classified into four metabolomic groups where variation was linked to flavones and flavonols. Further analysis on white seeded accessions shows variation related to sucrose and important vitamins, nicotinamides (vitamin B3) riboflavin (vitamin B2) and folate (vitamin B9). Coloured seeded accessions showed variation in metabolism related to amino acid and sugars. This study highlights the potential of metabolomics in exploring the nutritional traits in tef.
Collapse
Affiliation(s)
- Aiswarya Girija
- Institute of Biological, Environmental and Rural Studies (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, UK
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Studies (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, UK
| | - Fiona Corke
- Institute of Biological, Environmental and Rural Studies (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, UK
| | - John Doonan
- Institute of Biological, Environmental and Rural Studies (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Studies (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
28
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
29
|
Wang L, Goldberg EM, Taylor CG, Zahradka P, Aliani M. Analyses of serum and urinary metabolites in individuals with peripheral artery disease (PAD) consuming a bean-rich diet: Relationships with drug metabolites. Appl Physiol Nutr Metab 2021; 47:243-252. [PMID: 34699735 DOI: 10.1139/apnm-2021-0495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) has high morbidity and mortality rates. A metabolomics approach was employed to determine whether consumption of bean-rich diets for 8 weeks would impact the metabolomic profile of PAD individuals. Serum and urine, collected from 54 participants with clinical PAD at baseline and after 8 weeks on 0.3 cups beans/d (n=19), 0.6 cups beans/d (n= 20), or control (n=23) diet, and the beans were extracted and analyzed using LC-QTOF-MS. As a result, PGE2 p-acetamidophenyl ester, PGF2α diethyl amide and 5-L-glutamyl-L-alanine were significantly changed in the serum or urine of bean groups compared to control. Significant changes (P<0.05) in the profile and/or levels of 22 flavonoids present in bean extracts showed the potential importance of the mixture of beans used in this study. In a subset of participants taking metoprolol, after 8 weeks the bean-rich diets significantly elevated metoprolol in the serum while reducing it in urine compared to baseline. In addition, the diets significantly enhanced the urinary excretion of metformin. In conclusion, several biochemical pathways including prostaglandins and glutathione were affected by bean consumption. Significant changes in the metabolism of metoprolol and metformin with bean consumption suggested the presence of diet-drug interactions that may require adjustment of the prescribed dose. ClinicalTrials.gov Identifier: NCT01382056 Novelty: • Bean consumption by people with PAD alters the levels of certain metabolites in serum and urine • Different bean types (black, red kidney, pinto, navy) have unique flavonoid profiles • Metabolomics revealed potential diet-dug interactions as serum and/or urinary levels of metoprolol and metformin are modified by bean consumption.
Collapse
Affiliation(s)
- Le Wang
- University of Manitoba, 8664, Winnipeg, Manitoba, Canada;
| | | | - Carla G Taylor
- St. Boniface Hospital Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada.,University of Manitoba, Physiology, Winnipeg, Manitoba, Canada;
| | - Peter Zahradka
- St. Boniface Hospital Research Centre, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada.,University of Manitoba, Physiology, Winnipeg, Manitoba, Canada;
| | - Michel Aliani
- University of Manitoba, 8664, Winnipeg, Manitoba, Canada, R3T 2N2;
| |
Collapse
|
30
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
31
|
Twenty years of amino acid determination using capillary electrophoresis: A review. Anal Chim Acta 2021; 1174:338233. [DOI: 10.1016/j.aca.2021.338233] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022]
|
32
|
Kim HM, Kang JS. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021; 11:485. [PMID: 34436425 PMCID: PMC8402193 DOI: 10.3390/metabo11080485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental pollution causes significant toxicity to ecosystems. Thus, acquiring a deeper understanding of the concentration of environmental pollutants in ecosystems and, clarifying their potential toxicities is of great significance. Environmental metabolomics is a powerful technique in investigating the effects of pollutants on living organisms in the environment. In this review, we cover the different aspects of the environmental metabolomics approach, which allows the acquisition of reliable data. A step-by-step procedure from sample preparation to data interpretation is also discussed. Additionally, other factors, including model organisms and various types of emerging environmental toxicants are discussed. Moreover, we cover the considerations for successful environmental metabolomics as well as the identification of toxic effects based on data interpretation in combination with phenotype assays. Finally, the effects induced by various types of environmental toxicants in model organisms based on the application of environmental metabolomics are also discussed.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
33
|
Abstract
Lysine is the first limiting essential amino acid in rice because it is present in the lowest quantity compared to all the other amino acids. Amino acids are the building block of proteins and play an essential role in maintaining the human body’s healthy functioning. Rice is a staple food for more than half of the global population; thus, increasing the lysine content in rice will help improve global health. In this paper, we studied the lysine biosynthesis pathway in rice (Oryza sativa) to identify the regulators of the lysine reporter gene LYSA (LOC_Os02g24354). Genetically intervening at the regulators has the potential to increase the overall lysine content in rice. We modeled the lysine biosynthesis pathway in rice seedlings under normal and saline (NaCl) stress conditions using Bayesian networks. We estimated the model parameters using experimental data and identified the gene DAPF(LOC_Os12g37960) as a positive regulator of the lysine reporter gene LYSA under both normal and saline stress conditions. Based on this analysis, we conclude that the gene DAPF is a potent candidate for genetic intervention. Upregulating DAPF using methods such as CRISPR-Cas9 gene editing strategy has the potential to upregulate the lysine reporter gene LYSA and increase the overall lysine content in rice.
Collapse
|
34
|
Li X, Wang H, Wang Y, Zhang L, Wang Y. Comparison of Metabolic Profiling of Arabidopsis Inflorescences Between Landsberg erecta and Columbia, and Meiosis-Defective Mutants by 1H-NMR Spectroscopy. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:73-89. [PMID: 36939799 PMCID: PMC9590573 DOI: 10.1007/s43657-021-00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED With the rapid development of omics technologies during the last several decades, genomics, transcriptomics, and proteomics have been extensively used to characterize gene or protein functions in many organisms at the cell or tissue level. However, metabolomics has not been conducted in reproductive organs, with a focus on meiosis in plants. In this study, we adopted a nuclear magnetic resonance (NMR)-based metabolomics approach to reveal the metabolic profile of inflorescences from two Arabidopsis accessions, Columbia (Col) and Landsberg erecta (Ler), and several sterile mutants caused by meiosis defects. We identified 68 dominant metabolites in the samples. Col and Ler displayed distinct metabolite profiles. Interestingly, mutants with similar meiotic defects, such as Atrad51-3, Atrfc1-2, and Atpol2a-2, exhibited similar alterations in metabolites, including upregulation of energy metabolites and promotion of compounds related to maintenance of genomic stability, cytoplasmic homeostasis, and membrane integrity. The collective data reveal distinct changes in metabolites in Arabidopsis inflorescences between the Col and Ler wild type accessions. NMR-based metabolomics could be an effective tool for molecular phenotyping in studies of aspects of plant reproductive development such as meiosis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43657-021-00012-3.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Wuhan, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Brotman Y, Llorente-Wiegand C, Oyong G, Badoni S, Misra G, Anacleto R, Parween S, Pasion E, Tiozon RN, Anonuevo JJ, deGuzman MK, Alseekh S, Mbanjo EGN, Boyd LA, Fernie AR, Sreenivasulu N. The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:507-525. [PMID: 33529453 DOI: 10.1111/tpj.15182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Brown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites. The metabolite genome-wide association study (mGWAS) detected genetic variants influencing diverse metabolic targets in developing and mature seeds. We further interlinked genetic variants on chromosome 7 (6.06-6.43 Mb region) with complex epistatic genetic interactions impacting multi-dimensional nutritional targets, including complex carbohydrate starch quality, the glycemic index, antioxidant catechin, and rice grain color. Through this nutrigenomics approach rare gene bank accessions possessing genetic variants in bHLH and IPT5 genes were identified through haplotype enrichment. These variants were associated with a low glycemic index, higher catechin levels, elevated total flavonoid contents, and heightened antioxidant activity in the whole grain with elevated anti-cancer properties being confirmed in cancer cell lines. This multi-disciplinary nutrigenomics approach thus allowed us to discover the genetic basis of human health-conferring diversity in the metabolome of brown rice.
Collapse
Affiliation(s)
- Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Glenn Oyong
- Molecular Science Unit Laboratory - Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila, 1004, Philippines
| | - Saurabh Badoni
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Gopal Misra
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Roslen Anacleto
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sabiha Parween
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Erstelle Pasion
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Rhowell N Tiozon
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Joanne J Anonuevo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria K deGuzman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Edwige G N Mbanjo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Lesley A Boyd
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Nese Sreenivasulu
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
36
|
Norvienyeku J, Lin L, Waheed A, Chen X, Bao J, Aliyu SR, Lin L, Shabbir A, Batool W, Zhong Z, Zhou J, Lu G, Wang Z. Bayogenin 3-O-cellobioside confers non-cultivar-specific defence against the rice blast fungus Pyricularia oryzae. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:589-601. [PMID: 33043566 PMCID: PMC7955875 DOI: 10.1111/pbi.13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/27/2020] [Indexed: 05/06/2023]
Abstract
Rice cultivars from japonica and indica lineage possess differential resistance against blast fungus as a result of genetic divergence. Whether different rice cultivars also show distinct metabolomic changes in response to P. oryzae, and their role in host resistance, are poorly understood. Here, we examine the responses of six different rice cultivars from japonica and indica lineage challenged with P. oryzae. Both susceptible and resistant rice cultivars expressed several metabolites exclusively during P. oryzae infection, including the saponin Bayogenin 3-O-cellobioside. Bayogenin 3-O-cellobioside level in infected rice directly correlated with their resistant attributes. These findings reveal, for the first time to our knowledge that besides oat, other grass plants including rice produces protective saponins. Our study provides insight into the role of pathogen-mediated metabolomics reprogramming in host immunity. The correlation between Bayogenin 3-O-Cellobioside levels and blast resistance suggests that engineering saponin expression in cereal crops represents attractive and sustainable disease management.
Collapse
Affiliation(s)
- Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Abdul Waheed
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sami Rukaiya Aliyu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ammarah Shabbir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wajjiha Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| |
Collapse
|
37
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
38
|
Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran LSP. Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches. Cells 2020; 9:E2492. [PMID: 33212751 PMCID: PMC7697626 DOI: 10.3390/cells9112492] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress. Both primary and secondary metabolites can significantly contribute to survival and the maintenance of growth and development of plants on saline soils. Existing studies have suggested that seed/plant-priming with exogenous metabolites is a promising approach to increase crop tolerance to salt stress without manipulation of the genome. Recent advancements have also been made in genetic engineering of various metabolic genes involved in regulation of plant responses and protection of the cells during salinity, which have therefore resulted in many more basic and applied studies in both model and crop plants. In this review, we discuss the recent findings of metabolic reprogramming, exogenous treatments with metabolites and genetic engineering of metabolic genes for the improvement of plant salt tolerance.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China;
- Joint International Laboratory for Multi-Omics Research, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - David J. Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand;
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
39
|
Wu X, Liu Y, Yin S, Xiao K, Xiong Q, Bian S, Liang S, Hou H, Hu J, Yang J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115159. [PMID: 32663678 DOI: 10.1016/j.envpol.2020.115159] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 05/23/2023]
Abstract
Large amounts of microplastics accumulate in the agricultural soil. Microplastics would stress the crops but the underlying mechanism remains unclear. Herein, a laboratory exposure and field trials were carried out to investigate the response of rice (Oryza sativa L. II You. 900) to stress induced by polystyrene microplastics (PS-MPs) using a metabolomic approach. After laboratory exposure for 21 days, the decreases in shoot biomass of rice exposed to low, medium and high doses of PS-MPs were 13.1% (CV = 4.1%), 18.8% (CV = 3.7%), and 40.3% (CV = 9.2%), respectively, while the antioxidant enzymes showed an inverted upper-U shape when exposed to PS-MPs. A total of 24 samples from three exposure dose levels were included in the metabolic analysis. The metabolites of 12 amino acids, 16 saccharides, 26 organic acids and 17 others (lipids and polyols) in leaves decreased after the exposure to both 50 mg L-1 and 250 mg L-1 PS-MPs doses with hydroponically-cultured. The inhibition of perturbed biological pathway causes the biosynthesis of amino acids, nucleic acids, fatty acids and some secondary metabolites decreased which indicate that the energy expenditure exceeded the substance accumulation. In order to further validate the effects of PS-MPs on rice leaves obtained from the laboratory-scale experiments, a field-trial experiment was conducted. After 142 days of cultivation in farmland, the results with a maximum of 25.9% lower biomass in the crops exposed with PS-MPs. As such, the presence of PS-MPs may affect rice production by altering the metabolic systems of rice. Long-term exposure of PS-MPs to rice might be a potential risk to rice safety and quality.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Shanshan Yin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Qiao Xiong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
40
|
Haq SU, Kumari D, Dhingra P, Kothari SL, Kachhwaha S. Variant biochemical responses: intrinsic and adaptive system for ecologically different rice varieties. JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY 2020; 24:279-292. [PMID: 33024519 PMCID: PMC7530552 DOI: 10.1007/s12892-020-00076-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
India has a diverse range of agro-ecological conditions which support the cultivation of different rice varieties differing in the adaptation which is so important for sustainable development of rice crop. Specific ecotypes of rice adapted to diverse conditions have divergence in their morphology, physiology, biochemistry, molecular function, agronomy, and stress response. In the present study, 12 different rice varieties viz., PB-1, PB-1509, Pusa-RH-10, CSR-30, HKR-47, PR-126, Govind, Sharbati, ADT-37, ADT-39, ADT-45, White Ponni, were selected for the study of intrinsic biochemical behaviour and these varieties belong to different Agro-ecological zones and basmati or non-basmati rice varieties. Amongst intrinsic biochemicals activity, the differential response of radical scavenging, superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POX) activities, were observed in the selected rice varieties at 14 days old seedling stage, developed under controlled growth conditions. Comparatively, North India region rice varieties displayed an enhanced intrinsic biochemical response than south India region rice varieties. Similarly, basmati rice varieties showed increased biochemical response compared to non-basmati rice varieties. Thus, the differential biochemical responses (radical scavenging, SOD, CAT, and POX activities) observed creates a significant difference between rice varieties and provides valuable information about rice ecotype-biochemical interaction for sustainable adaptive value under different ecological conditions.
Collapse
Affiliation(s)
- Shamshad Ul Haq
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - Deepa Kumari
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - Prerna Dhingra
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - S. L. Kothari
- Institute of Biotechnology, Amity University Rajasthan, Jaipur, 302006 India
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan 302004 India
| |
Collapse
|
41
|
Li K, Wang D, Gong L, Lyu Y, Guo H, Chen W, Jin C, Liu X, Fang C, Luo J. Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:908-922. [PMID: 31355982 PMCID: PMC6899760 DOI: 10.1111/tpj.14482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the metabolic shifting across developmental stages. Taking advantage of the ultra-high-density genetic map of a population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identified 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of metabolite accumulation was closely related to developmental stage. Using in silico analyses, we characterized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and l-asparagine content variation across populations, respectively. Metabolite-agronomic trait association and colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the metabolite-agronomic trait relationship and the corresponding genetic basis.
Collapse
Affiliation(s)
- Kang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Dehong Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Liang Gong
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Yuanyuan Lyu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Wei Chen
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Xianqing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| | - Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| |
Collapse
|
42
|
Discovery of Functional SNPs via Genome-Wide Exploration of Malaysian Pigmented Rice Varieties. Int J Genomics 2019; 2019:4168045. [PMID: 31687375 PMCID: PMC6811786 DOI: 10.1155/2019/4168045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Collapse
|
43
|
Uawisetwathana U, Karoonuthaisiri N. Metabolomics for rice quality and traceability: feasibility and future aspects. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics. Food Chem 2019; 288:297-305. [DOI: 10.1016/j.foodchem.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
|
45
|
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res 2019; 52:39. [PMID: 31358053 PMCID: PMC6661828 DOI: 10.1186/s40659-019-0246-3] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, School of Chemical and Life Sciences, Hamdard University, New Delhi, 110 062, India.
| |
Collapse
|
46
|
High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry. Anal Bioanal Chem 2019; 411:4839-4848. [PMID: 30879116 DOI: 10.1007/s00216-019-01658-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Plant development, growth, and adaptation to stress are regulated by phytohormones, which can influence physiology even at low concentrations. Phytohormones are chemically grouped according to both structure and function as auxins, cytokinins, abscisic acid, jasmonates, salicylates, gibberellins, and brassinosteroids, among others. This chemical diversity and requirement for highly sensitive detection in complex matrices create unique challenges for comprehensive phytohormone analysis. Here, we present a robust and efficient quantitative UPLC-MS/MS assay for 17 phytohormones, including jasmonates, salicylates, abscisic acid, gibberellins, cytokinins, and auxins. Using this assay, 12 phytohormones were detected and quantified in sorghum plant tissue without the need for solid phase extraction (SPE) or liquid-liquid extraction. Variation of phytohormone profiles was explored in both root and leaf tissues between three genotypes, harvested at two different developmental time points. The results highlight the importance of tissue type, sampling time, and genetic factors when designing experiments that involve phytohormone analysis of sorghum. This research lays the groundwork for future studies, which can combine phytohormone profiling with other datasets such as transcriptome, soil microbiome, genome, and metabolome data, to provide important functional information about adaptation to stress and other environmental variables.
Collapse
|
47
|
Wang W, Li Y, Dang P, Zhao S, Lai D, Zhou L. Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation. Molecules 2018; 23:E3098. [PMID: 30486426 PMCID: PMC6320963 DOI: 10.3390/molecules23123098] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rice (Oryza sativa L.) is an important food crop providing energy and nutrients for more than half of the world population. It produces vast amounts of secondary metabolites. At least 276 secondary metabolites from rice have been identified in the past 50 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, alkaloids, and their derivatives. These metabolites exhibit many physiological functions, such as regulatory effects on rice growth and development, disease-resistance promotion, anti-insect activity, and allelopathic effects, as well as various kinds of biological activities such as antimicrobial, antioxidant, cytotoxic, and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological functions and activities, biosynthesis, and metabolic regulation of rice secondary metabolites. Some considerations about cheminformatics, metabolomics, genetic transformation, production, and applications related to the secondary metabolites from rice are also discussed.
Collapse
Affiliation(s)
- Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Pengqin Dang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Alseekh S, Bermudez L, de Haro LA, Fernie AR, Carrari F. Crop metabolomics: from diagnostics to assisted breeding. Metabolomics 2018; 14:148. [PMID: 30830402 DOI: 10.1007/s11306-018-1446-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding. AIM OF REVIEW We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality. KEY SCIENTIFIC CONCEPTS OF REVIEW Translational metabolomics applied to crop breeding programs.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Alejandro de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina.
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach. Mol Biotechnol 2018; 60:636-650. [PMID: 29943149 DOI: 10.1007/s12033-018-0100-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are continually facing biotic and abiotic stresses, and hence, they need to respond and adapt to survive. Plant response during multiple and combined biotic and abiotic stresses is highly complex and varied than the individual stress. These stresses resulted alteration of plant behavior through regulating the levels of microRNA, heat shock proteins, epigenetic variations. These variations can cause many adverse effects on the growth and development of the plant. Further, in natural conditions, several abiotic stresses causing factors make the plant more susceptible to pathogens infections and vice-versa. A very intricate and multifaceted interactions of various biomolecules are involved in metabolic pathways that can direct towards a cross-tolerance and improvement of plant's defence system. Systems biology approach plays a significant role in the investigation of these molecular interactions. The valuable information obtained by systems biology will help to develop stress-resistant plant varieties against multiple stresses. Thus, this review aims to decipher various multilevel interactions at the molecular level under combinatorial biotic and abiotic stresses and the role of systems biology to understand these molecular interactions.
Collapse
|
50
|
Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene⁻Bran Metabolite Relationships. Metabolites 2018; 8:metabo8040063. [PMID: 30304872 PMCID: PMC6315861 DOI: 10.3390/metabo8040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
Rice (Oryza sativa L.) processing yields ~60 million metric tons of bran annually. Rice genes producing bran metabolites of nutritional and human health importance were assessed across 17 diverse cultivars from seven countries using non-targeted metabolomics, and resulted in 378–430 metabolites. Gambiaka cultivar had the highest number and Njavara had the lowest number of metabolites. The 71 rice bran compounds of significant variation by cultivar included 21 amino acids, seven carbohydrates, two metabolites from cofactors and vitamins, 33 lipids, six nucleotides, and two secondary metabolites. Tryptophan, α-ketoglutarate, γ-tocopherol/β-tocopherol, and γ-tocotrienol are examples of bran metabolites with extensive cultivar variation and genetic information. Thirty-four rice bran components that varied between cultivars linked to 535 putative biosynthetic genes using to the OryzaCyc 4.0, Plant Metabolic Network database. Rice genes responsible for bran composition with animal and human health importance is available for rice breeding programs to utilize in crop improvement.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Emily Luna
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León 21000, Nicaragua.
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805 Bamako, Mali.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|