1
|
Kazemzadeh S, Farrokhi N, Ahmadikhah A, Tabar Heydar K, Gilani A, Askari H, Ingvarsson PK. Genome-wide association study and genotypic variation for the major tocopherol content in rice grain. FRONTIERS IN PLANT SCIENCE 2024; 15:1426321. [PMID: 39439508 PMCID: PMC11493719 DOI: 10.3389/fpls.2024.1426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Rice tocopherols, vitamin E compounds with antioxidant activity, play essential roles in human health. Even though the key genes involved in vitamin E biosynthetic pathways have been identified in plants, the genetic architecture of vitamin E content in rice grain remains unclear. A genome-wide association study (GWAS) on 179 genotypically diverse rice accessions with 34,323 SNP markers was conducted to detect QTLs that define total and α- tocopherol contents in rice grains. Total and α-tocopherol contents had a strong positive correlation and varied greatly across the accessions, ranging from 0.230-31.76 and 0.011-30.83 (μg/g), respectively. A total of 13 QTLs were identified, which were spread across five of the rice chromosomes. Among the 13 QTLs, 11 were considered major with phenotypic variation explained (PVE) greater than 10%. Twelve transcription factor (TF) genes, one microprotein (miP), and a transposon were found to be associated with the QTLs with putative roles in controlling tocopherol contents. Moreover, intracellular transport proteins, ABC transporters, nonaspanins, and SNARE, were identified as associated genes on chromosomes 1 and 8. In the vicinity of seven QTLs, protein kinases were identified as key signaling factors. Haplotype analysis revealed the QTLs qAlph1.1, qTot1.1, qAlph2.1, qAlph6.1, qTot6.1, and qTot8.3 to have significant haplogroups. Quantitative RT-PCR validated the expression direction and magnitude of WRKY39 (Os02g0265200), PIP5Ks (Os08g0450800), and MADS59 (Os06g0347700) in defining the major tocopherol contents. This study provides insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in rice and other cereals.
Collapse
Affiliation(s)
- Sara Kazemzadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asadollah Ahmadikhah
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolali Gilani
- Agricultural and Natural Resources Research Institute of Khuzestan, Ahwaz, Iran
| | - Hossein Askari
- Department of Cell and Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Liu P, Xiang C, Liu K, Yu H, Liao Z, Shen Y, Liu L, Ma L. Genome-wide association study reveals genetic basis and candidate genes for chlorophyll content of leaves in maize (Z ea mays L.). PeerJ 2024; 12:e18278. [PMID: 39391824 PMCID: PMC11466220 DOI: 10.7717/peerj.18278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The chlorophyll content (CC) directly affects photosynthesis, growth, and yield. However, the genetic basis of CC is still unclear in maize (Zea mays L.). Here, we conducted a genome-wide association study using mixed linear model for CC of the fifth leaves at seedling stage (CCFSS) and the ear leaves at filling stage (CCEFS) for 334 maize inbred lines. The heritability estimates for CCFSS and CCEFS, obtained via variance components analysis using the lme4 package in R, were 70.84% and 78.99%, respectively, indicating that the CC of leaves is primarily controlled by genetic factors. A total of 15 CC-related SNPs and 177 candidate genes were identified with a p-value < 4.49 × 10-5, which explained 4.98-7.59% of the phenotypic variation. Lines with more favorable gene variants showed higher CC. Meanwhile, Gene Ontology (GO) analysis implied that these candidate genes were probably related to chlorophyll biosynthesis. In addition, gene-based association analyses revealed that six variants in GRMZM2G037152, GRMZM5G816561, GRMZM2G324462, and GRMZM2G064657 genes were significantly (p-value < 0.01) correlated with CC, of which GRMZM2G064657 (encodes a phosphate transporter protein) and GRMZM5G816561 (encodes a cytochrome P450 protein) were specifically highly expressed in leaves tissues. Interestingly, these candidate genes were previously reported to involve in the regulation of the contents of chlorophyll in plants or Chlamydomonas. These results may contribute to the understanding of genetic basis and molecular mechanisms of maize CC and the selection of maize varieties with improved CC.
Collapse
Affiliation(s)
- Peng Liu
- Mianyang Teachers College, Mianyang, Sichuan, China
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Kai Liu
- Sichuan Agricultural University, Chengdu, Sichuan, China
- Leshan Academy of Agricultural Sciences, Leshan, Sichuan, China
| | - Hong Yu
- Sichuan Agricultural University, Chengdu, Sichuan, China
- Zigong Academy of Agricultural Sciences, Zigong, Sichuan, China
| | | | - Yaou Shen
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Liu
- Mianyang Teachers College, Mianyang, Sichuan, China
| | - Langlang Ma
- Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Huang S, Yang X, Li W, Xu Z, Xie Y, Meng X, Li Z, Zhou W, Wang S, Jin L, Jin N, Lyu J, Yu J. Genome-wide analysis of the CCT gene family and functional characterization of SlCCT6 in response to drought stress in tomato. Int J Biol Macromol 2024; 280:135906. [PMID: 39332567 DOI: 10.1016/j.ijbiomac.2024.135906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
CCT transcription factors are important for photoperiod and abiotic stress regulation in Arabidopsis and rice. However, the CCT gene family has not been reported in tomato. Here, we systematically analyzed this. Thirty-one SlCCT genes were identified and divided into five groups (CMF, TIFY, PRR, S8, and COL), with members unevenly distributed across 12 chromosomes and the third chromosome exhibiting the most distribution. SlCCT was found to interact with an interacting protein (SlGI), transcription factor (MYB), and non-coding RNA (sly-miR156-5p) to jointly regulate the tomato stress response. cis-Acting element analysis of the SlCCT promoter region indicated large stress- and hormone-response elements in this family. Real-time PCR results indicated that SlPRR subfamily genes respond to various abiotic stresses and hormones. Tissue expression analysis revealed that several PRR subfamily genes are highly expressed in flowers, and subcellular localization analysis indicated an SlCCT6 nuclear location. Notably, SlCCT6 expression was significantly induced by drought, and its silencing reduced drought stress tolerance. Moreover, SlCCT6 overexpression enhanced tomato drought resistance by increasing antioxidant enzyme activity and activating stress-related genes, whereas SlCCT6 knockout decreased drought resistance. In conclusion, this provides valuable insights for future research on SlCCT functions.
Collapse
Affiliation(s)
- Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Qiu T, Wei S, Fang K, Zhang M, Li Y, Feng Y, Cheng Y, Zhang S, Tian J, Gao A, Yang Q, Yang M, Bhadauria V, Li J, Peng YL, Zhao W. The atypical Dof transcriptional factor OsDes1 contributes to stay-green, grain yield, and disease resistance in rice. SCIENCE ADVANCES 2024; 10:eadp0345. [PMID: 39178266 PMCID: PMC11343033 DOI: 10.1126/sciadv.adp0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 08/25/2024]
Abstract
The regulation of leaf senescence and disease resistance plays a crucial role in determining rice grain yield and quality, which are important to meet the ever-increasing food demands of the world. Here, we identified an atypical Dof transcriptional factor OsDes1 that contributes to the stay-green phenotype, grain yield, and disease resistance in rice. The expression level of OsDes1 is positively associated with stay-green in natural variations of japonica rice, suggesting that OsDes1 would be alternatively used in breeding programs. Mechanistically, OsDes1 targets the promoter of the Rieske FeS protein gene OsPetC to activate its expression and interacts with OsPetC to protect against its degradation, thus promoting stay-green and ultimately improving the grain yield. OsDes1 also binds to the promoter region of defense-related genes, such as OsPR1b, and activates their expression, leading to enhanced disease resistance. These findings offer a potential strategy for breeding rice to enhance grain yield and disease resistance.
Collapse
Affiliation(s)
- Tiancheng Qiu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Shuang Wei
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Kexing Fang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Man Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yixin Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yayan Feng
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Yapu Cheng
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Sanwei Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Jiagen Tian
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Aiai Gao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Qingya Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Mengni Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Vijai Bhadauria
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People’s Republic of China
| | - You-Liang Peng
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Wensheng Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya 572025, People’s Republic of China
| |
Collapse
|
5
|
An Y, Xia X, Zhang X, Liu L, Jiang S, Jing T, Zhang F. Genome-wide identification of the sorghum OVATE gene family and revelation of its expression characteristics in sorghum seeds and leaves. Sci Rep 2024; 14:15123. [PMID: 38956272 PMCID: PMC11219837 DOI: 10.1038/s41598-024-66103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Xiaobo Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqin Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Li Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China.
| |
Collapse
|
6
|
Xu G, Cheng Y, Wang X, Dai Z, Kang Z, Ye Z, Pan Y, Zhou L, Xie D, Sun J. Identification of Single Nucleotide Polymorphic Loci and Candidate Genes for Seed Germination Percentage in Okra under Salt and No-Salt Stresses by Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:588. [PMID: 38475435 DOI: 10.3390/plants13050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Excessive soil salinity is a major stressor inhibiting crops' growth, development, and yield. Seed germination is a critical stage of crop growth and development, as well as one of the most salt-sensitive stages. Salt stress has a significant inhibitory effect on seed germination. Okra is a nutritious vegetable, but its seed germination percentage (GP) is low, whether under salt stress conditions or suitable conditions. In this study, we used 180 okra accessions and conducted a genome-wide association study (GWAS) on the germination percentage using 20,133,859 single nucleotide polymorphic (SNP) markers under 0 (CK, diluted water), 70 (treatment 1, T1), and 140 mmol/L (treatment 2, T2) NaCl conditions. Using the mixed linear model (MLM) in Efficient Mixed-model Association eXpedated (EMMAX) and Genome-wide Efficient Mixed Model Association (GEMMA) software, 511 SNP loci were significantly associated during germination, of which 167 SNP loci were detected simultaneously by both programs. Among the 167 SNPs, SNP2619493 on chromosome 59 and SNP2692266 on chromosome 44 were detected simultaneously under the CK, T1, and T2 conditions, and were key SNP loci regulating the GP of okra seeds. Linkage disequilibrium block analysis revealed that nsSNP2626294 (C/T) in Ae59G004900 was near SNP2619493, and the amino acid changes caused by nsSNP2626294 led to an increase in the phenotypic values in some okra accessions. There was an nsSNP2688406 (A/G) in Ae44G005470 near SNP2692266, and the amino acid change caused by nsSNP2688406 led to a decrease in phenotypic values in some okra accessions. These results indicate that Ae59G004900 and Ae44G005470 regulate the GP of okra seeds under salt and no-salt stresses. The gene expression analysis further demonstrated these results. The SNP markers and genes that were identified in this study will provide reference for further research on the GP of okra, as well as new genetic markers and candidate genes for cultivating new okra varieties with high GPs under salt and no-salt stress conditions.
Collapse
Affiliation(s)
- Gaowen Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yujing Cheng
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226019, China
| | - Xiaoqiu Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226019, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zepei Kang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhichao Ye
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yangyang Pan
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Linkang Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Dongwei Xie
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jian Sun
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Liu S, Xiong Z, Zhang Z, Wei Y, Xiong D, Wang F, Huang J. Exploration of chlorophyll fluorescence characteristics gene regulatory in rice ( Oryza sativa L.): a genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1234866. [PMID: 37746023 PMCID: PMC10513790 DOI: 10.3389/fpls.2023.1234866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorophyll content and fluorescence parameters are crucial indicators to evaluate the light use efficiency in rice; however, the correlations among these parameters and the underlying genetic mechanisms remain poorly understood. Here, to clarify these issues, we conducted a genome-wide association study (GWAS) on 225 rice accessions. In the phenotypic and Mendelian randomization (MR) analysis, a weak negative correlation was observed between the chlorophyll content and actual quantum yield of photosystem II (Φ I I ). The phenotypic diversity observed in SPAD, N P Q t , Φ N P Q , and F v / F m among accessions was affected by genetic background. Furthermore, the GWAS identified 78 SNPs and 17 candidate genes significantly associated with SPAD, N P Q t , Φ I I , Φ N P Q , q L and q P . Combining GWAS on 225 rice accessions with transcriptome analysis of two varieties exhibiting distinct fluorescence characteristics revealed two potential candidate genes (Os03g0583000 from Φ I I & q P traits and Os06g0587200 from N P Q t trait), which are respectively associated with peroxisomes, and protein kinase catalytic domains might involve in regulating the chlorophyll content and chlorophyll fluorescence. This study provides novel insights into the correlation among chlorophyll content and fluorescence parameters and the genetic mechanisms in rice, and offers valuable information for the breeding of rice with enhanced photosynthetic efficiency.
Collapse
Affiliation(s)
- Sicheng Liu
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhuang Xiong
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuolin Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Youbo Wei
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongliang Xiong
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Wang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics 2023; 24:384. [PMID: 37430212 DOI: 10.1186/s12864-023-09504-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The chlorophyll content (CC) is a key factor affecting maize photosynthetic efficiency and the final yield. However, its genetic basis remains unclear. The development of statistical methods has enabled researchers to design and apply various GWAS models, including MLM, MLMM, SUPER, FarmCPU, BLINK and 3VmrMLM. Comparative analysis of their results can lead to more effective mining of key genes. RESULTS The heritability of CC was 0.86. Six statistical models (MLM, BLINK, MLMM, FarmCPU, SUPER, and 3VmrMLM) and 1.25 million SNPs were used for the GWAS. A total of 140 quantitative trait nucleotides (QTNs) were detected, with 3VmrMLM and MLM detecting the most (118) and fewest (3) QTNs, respectively. The QTNs were associated with 481 genes and explained 0.29-10.28% of the phenotypic variation. Additionally, 10 co-located QTNs were detected by at least two different models or methods, three co-located QTNs were identified in at least two different environments, and six co-located QTNs were detected by different models or methods in different environments. Moreover, 69 candidate genes within or near these stable QTNs were screened based on the B73 (RefGen_v2) genome. GRMZM2G110408 (ZmCCS3) was identified by multiple models and in multiple environments. The functional characterization of this gene indicated the encoded protein likely contributes to chlorophyll biosynthesis. In addition, the CC differed significantly between the haplotypes of the significant QTN in this gene, and CC was higher for haplotype 1. CONCLUSION This study's results broaden our understanding of the genetic basis of CC, mining key genes related to CC and may be relevant for the ideotype-based breeding of new maize varieties with high photosynthetic efficiency.
Collapse
Affiliation(s)
- Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haidong Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyang Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
9
|
Li W, Yan J, Zhang Y, Zhang F, Guan Z, Yao Y, Chang Y, Tu H, Li X, Wang H, Xiong H, Lai X, Yin P, Xiong L. Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice. NATURE PLANTS 2023; 9:1130-1142. [PMID: 37349549 DOI: 10.1038/s41477-023-01449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
NARROW LEAF 1 (NAL1) is a breeding-valuable pleiotropic gene that affects multiple agronomic traits in rice, although the molecular mechanism is largely unclear. Here, we report that NAL1 is a serine protease and displays a novel hexameric structure consisting of two ATP-mediated doughnut-shaped trimeric complexes. Moreover, we identified TOPLESS-related corepressor OsTPR2 involved in multiple growth and development processes as the substrate of NAL1. We found that NAL1 degraded OsTPR2, thus modulating the expression of downstream genes related to hormone signalling pathways, eventually achieving its pleiotropic physiological function. An elite allele, NAL1A, which may have originated from wild rice, could increase grain yield. Furthermore, the NAL1 homologues in different crops have a similar pleiotropic function to NAL1. Our study uncovers a NAL1-OsTPR2 regulatory module and provides gene resources for the design of high-yield crops.
Collapse
Affiliation(s)
- Wenjing Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Guo H, Cui Y, Li Z, Nie C, Xu Y, Hu T. Photosynthesis, Water Status and K +/Na + Homeostasis of Buchoe dactyloides Responding to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2459. [PMID: 37447020 DOI: 10.3390/plants12132459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Soil salinization is one of the most serious abiotic stresses restricting plant growth. Buffalograss is a C4 perennial turfgrass and forage with an excellent resistance to harsh environments. To clarify the adaptative mechanisms of buffalograss in response to salinity, we investigated the effects of NaCl treatments on photosynthesis, water status and K+/Na+ homeostasis of this species, then analyzed the expression of key genes involved in these processes using the qRT-PCR method. The results showed that NaCl treatments up to 200 mM had no obvious effects on plant growth, photosynthesis and leaf hydrate status, and even substantially stimulated root activity. Furthermore, buffalograss could retain a large amount of Na+ in roots to restrict Na+ overaccumulation in shoots, and increase leaf K+ concentration to maintain a high K+/Na+ ratio under NaCl stresses. After 50 and 200 mM NaCl treatments, the expressions of several genes related to chlorophyll synthesis, photosynthetic electron transport and CO2 assimilation, as well as aquaporin genes (BdPIPs and BdTIPs) were upregulated. Notably, under NaCl treatments, the increased expression of BdSOS1, BdHKT1 and BdNHX1 in roots might have helped Na+ exclusion by root tips, retrieval from xylem sap and accumulation in root cells, respectively; the upregulation of BdHAK5 and BdSKOR in roots likely enhanced K+ uptake and long-distance transport from roots to shoots, respectively. This work finds that buffalograss possesses a strong ability to sustain high photosynthetic capacity, water balance and leaf K+/Na+ homeostasis under salt stress, and lays a foundation for elucidating the molecular mechanism underlying the salt tolerance of buffalograss.
Collapse
Affiliation(s)
- Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhen Li
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Chunya Nie
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
Wang Q, Chen P, Wang H, Chao S, Guo W, Zhang Y, Miao C, Yuan H, Peng B. Physiological and transcriptomic analysis of OsLHCB3 knockdown lines in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:38. [PMID: 37312752 PMCID: PMC10248686 DOI: 10.1007/s11032-023-01387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
The photosystem II (PSII) outer antenna LHCB3 protein plays critical roles in distributing the excitation energy and modulating the rate of state transition for photosynthesis. Here, OsLHCB3 knockdown mutants were produced using the RNAi system. Phenotypic analyses showed that OsLHCB3 knockdown led to pale green leaves and lower chlorophyll contents at both tillering and heading stages. In addition, mutant lines exhibited decreased non-photochemical quenching (NPQ) capacity and net photosynthetic rate (Pn) by downregulating the expression of PSII-related genes. Moreover, RNA-seq experiments were performed at both tillering and heading stages. The differentially expressed genes (DEGs) mainly involved in chlorophyll binding response to abscisic acid, photosystem II, response to chitin, and DNA-binding transcription factor. Besides, our transcriptomic and physiological data indicated that OsLHCB3 was essential for binding chlorophyll, but not for the metabolism of chlorophyll in rice. OsLHCB3 RNAi knockdown plants affected the expression of PS II-related genes, but not PS I-related genes. Overall, these results suggest that OsLHCB3 also plays vital roles in regulating photosynthesis and antenna proteins in rice as well as responses to environment stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01387-z.
Collapse
Affiliation(s)
- Quanxiu Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Honglin Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Shuangshuang Chao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wenru Guo
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Yuxue Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Chenglin Miao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Hongyu Yuan
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Bo Peng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
12
|
Jin Y, Li D, Liu M, Cui Z, Sun D, Li C, Zhang A, Cao H, Ruan Y. Genome-Wide Association Study Identified Novel SNPs Associated with Chlorophyll Content in Maize. Genes (Basel) 2023; 14:genes14051010. [PMID: 37239370 DOI: 10.3390/genes14051010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Chlorophyll is an essential component that captures light energy to drive photosynthesis. Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate genes of chlorophyll content will help increase maize production. Here, we performed a genome-wide association study (GWAS) on chlorophyll content and its dynamic changes in 378 maize inbred lines with extensive natural variation. Our phenotypic assessment showed that chlorophyll content and its dynamic changes were natural variations with a moderate genetic level of 0.66/0.67. A total of 19 single-nucleotide polymorphisms (SNPs) were found associated with 76 candidate genes, of which one SNP, 2376873-7-G, co-localized in chlorophyll content and area under the chlorophyll content curve (AUCCC). Zm00001d026568 and Zm00001d026569 were highly associated with SNP 2376873-7-G and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-acyl carrier protein thioesterase, respectively. As expected, higher expression levels of these two genes are associated with higher chlorophyll contents. These results provide a certain experimental basis for discovering the candidate genes of chlorophyll content and finally provide new insights for cultivating high-yield and excellent maize suitable for planting environment.
Collapse
Affiliation(s)
- Yueting Jin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Dan Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| |
Collapse
|
13
|
Yan M, Feng F, Xu X, Fan P, Lou Q, Chen L, Zhang A, Luo L, Mei H. Genome-wide association study identifies a gene conferring high physiological phosphorus use efficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1153967. [PMID: 36998687 PMCID: PMC10043302 DOI: 10.3389/fpls.2023.1153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Phosphate (Pi) is indispensable for the growth and development of plant, and low-Pi stress is a major limitation for crop growth and yield worldwide. The tolerance to low-Pi stress varied among rice germplasm resources. However, the mechanisms underlying the tolerance of rice to low-Pi stress, as a complex quantitative trait, are not clear. We performed a genome-wide association study (GWAS) through a diverse worldwide collection of 191 rice accessions in the field under normal-Pi and low-Pi supply in two years. Twenty and three significant association loci were identified for biomass and grain yield per plant under low-Pi supply respectively. The expression level of OsAAD as a candidate gene from a associated locus was significantly up-regulated after low-Pi stress treatment for five days and tended to return to normal levels after Pi re-supply in shoots. Suppression of OsAAD expression could improve the physiological phosphorus use efficiency (PPUE) and grain yields through affecting the expression of several genes associated with GA biosynthesis and metabolism. OsAAD would be a promising gene for increasing PPUE and grain yield in rice under normal- and low-Pi supply via genome editing.
Collapse
Affiliation(s)
- Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fangjun Feng
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaoyan Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Peiqing Fan
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
14
|
Pasion EA, Misra G, Kohli A, Sreenivasulu N. Unraveling the genetics underlying micronutrient signatures of diversity panel present in brown rice through genome-ionome linkages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:749-771. [PMID: 36573652 PMCID: PMC10952705 DOI: 10.1111/tpj.16080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.
Collapse
Affiliation(s)
| | - Gopal Misra
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | - Ajay Kohli
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | | |
Collapse
|
15
|
Hussain MA, Li S, Gao H, Feng C, Sun P, Sui X, Jing Y, Xu K, Zhou Y, Zhang W, Li H. Comparative analysis of physiological variations and genetic architecture for cold stress response in soybean germplasm. FRONTIERS IN PLANT SCIENCE 2023; 13:1095335. [PMID: 36684715 PMCID: PMC9852849 DOI: 10.3389/fpls.2022.1095335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max L.) is susceptible to low temperatures. Increasing lines of evidence indicate that abiotic stress-responsive genes are involved in plant low-temperature stress response. However, the involvement of photosynthesis, antioxidants and metabolites genes in low temperature response is largely unexplored in Soybean. In the current study, a genetic panel of diverse soybean varieties was analyzed for photosynthesis, chlorophyll fluorescence and leaf injury parameters under cold stress and control conditions. This helps us to identify cold tolerant (V100) and cold sensitive (V45) varieties. The V100 variety outperformed for antioxidant enzymes activities and relative expression of photosynthesis (Glyma.08G204800.1, Glyma.12G232000.1), GmSOD (GmSOD01, GmSOD08), GmPOD (GmPOD29, GmPOD47), trehalose (GmTPS01, GmTPS13) and cold marker genes (DREB1E, DREB1D, SCOF1) than V45 under cold stress. Upon cold stress, the V100 variety showed reduced accumulation of H2O2 and MDA levels and subsequently showed lower leaf injury compared to V45. Together, our results uncovered new avenues for identifying cold tolerant soybean varieties from a large panel. Additionally, we identified the role of antioxidants, osmo-protectants and their posttranscriptional regulators miRNAs such as miR319, miR394, miR397, and miR398 in Soybean cold stress tolerance.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Pengyu Sun
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiangpeng Sui
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Keheng Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
16
|
Narawatthana S, Phansenee Y, Thammasamisorn BO, Vejchasarn P. Multi-model genome-wide association studies of leaf anatomical traits and vein architecture in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1107718. [PMID: 37123816 PMCID: PMC10130391 DOI: 10.3389/fpls.2023.1107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anatomy of rice leaves is closely related to photosynthesis and grain yield. Therefore, exploring insight into the quantitative trait loci (QTLs) and alleles related to rice flag leaf anatomical and vein traits is vital for rice improvement. Methods Here, we aimed to explore the genetic architecture of eight flag leaf traits using one single-locus model; mixed-linear model (MLM), and two multi-locus models; fixed and random model circulating probability unification (FarmCPU) and Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK). We performed multi-model GWAS using 329 rice accessions of RDP1 with 700K single-nucleotide polymorphisms (SNPs) markers. Results The phenotypic correlation results indicated that rice flag leaf thickness was strongly correlated with leaf mesophyll cells layer (ML) and thickness of both major and minor veins. All three models were able to identify several significant loci associated with the traits. MLM identified three non-synonymous SNPs near NARROW LEAF 1 (NAL1) in association with ML and the distance between minor veins (IVD) traits. Discussion Several numbers of significant SNPs associated with known gene function in leaf development and yield traits were detected by multi-model GWAS performed in this study. Our findings indicate that flag leaf traits could be improved via molecular breeding and can be one of the targets in high-yield rice development.
Collapse
Affiliation(s)
- Supatthra Narawatthana
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
- *Correspondence: Supatthra Narawatthana,
| | - Yotwarit Phansenee
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| | - Bang-On Thammasamisorn
- Rice Department, Thailand Rice Science Institute, Ministry of Agriculture and Cooperatives (MOAC), Suphan Buri, Thailand
| | - Phanchita Vejchasarn
- Ubon Ratchathani Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Ubon Ratchathani, Thailand
| |
Collapse
|
17
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
18
|
Liu C, Zhu X, Zhang J, Shen M, Chen K, Fu X, Ma L, Liu X, Zhou C, Zhou D, Wang G. eQTLs play critical roles in regulating gene expression and identifying key regulators in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2357-2371. [PMID: 36087348 PMCID: PMC9674320 DOI: 10.1111/pbi.13912] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/28/2023]
Abstract
The regulation of gene expression plays an essential role in both the phenotype and adaptation of plants. Transcriptome sequencing enables simultaneous identification of exonic variants and quantification of gene expression. Here, we sequenced the leaf transcriptomes of 287 rice accessions from around the world and obtained a total of 177 853 high-quality single nucleotide polymorphisms after filtering. Genome-wide association study identified 44 354 expression quantitative trait loci (eQTLs), which regulate the expression of 13 201 genes, as well as 17 local eQTL hotspots and 96 distant eQTL hotspots. Furthermore, a transcriptome-wide association study screened 21 candidate genes for starch content in the flag leaves at the heading stage. HS002 was identified as a significant distant eQTL hotspot with five downstream genes enriched for diterpene antitoxin synthesis. Co-expression analysis, eQTL analysis, and linkage mapping together demonstrated that bHLH026 acts as a key regulator to activate the expression of downstream genes. The transgenic assay revealed that bHLH026 is an important regulator of diterpenoid antitoxin synthesis and enhances the disease resistance of rice. These findings improve our knowledge of the regulatory mechanisms of gene expression variation and complex regulatory networks of the rice genome and will facilitate genetic improvement of cultivated rice varieties.
Collapse
Affiliation(s)
- Chang Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xiya Zhu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Jin Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Meng Shen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Kai Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xiangkui Fu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Lian Ma
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Xuelin Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Chang Zhou
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2)CNRS, INRAE, University Paris‐SaclayOrsayFrance
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
19
|
Jiang Y, Yang J, Li M, Li Y, Zhou P, Wang Q, Sun Y, Zhu G, Wang Q, Zhang P, Rui Y, Lynch I. Effect of Silica-Based Nanomaterials on Seed Germination and Seedling Growth of Rice ( Oryza sativa L.). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234160. [PMID: 36500783 PMCID: PMC9740595 DOI: 10.3390/nano12234160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 05/06/2023]
Abstract
The application of nanomaterials (NMs) in agriculture has become a global concern in recent years. However, studies on their effects on plants are still limited. Here, we conducted a seed germination experiment for 5 days and a hydroponics experiment for 14 days to study the effects of silicon dioxide NMs(nSiO2) and silicon carbide NMs(nSiC) (0,10, 50, 200 mg/L) on rice (Oryza sativa L.). Bulk SiO2 (bSiO2) and sodium silicate (Na2SiO3) were used as controls. The results showed that nSiO2 and nSiC increased the shoot length (11-37%, 6-25%) and root length (17-87%, 59-207%) of germinating seeds, respectively, compared with the control. Similarly, inter-root exposure to nSiO2, bSiO2, and nSiC improved the activity of aboveground catalase (10-55%, 31-34%, and 13-51%) and increased the content of trace elements magnesium, copper, and zinc, thus promoting the photosynthesis of rice. However, Na2SiO3 at a concentration of 200 mg/L reduced the aboveground and root biomass of rice by 27-51% and 4-17%, respectively. This may be because excess silicon not only inhibited the activity of root antioxidant enzymes but also disrupted the balance of mineral elements. This finding provides a new basis for the effect of silica-based NMs promotion on seed germination and rice growth.
Collapse
Affiliation(s)
- Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Zhang
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: (P.Z.); (Y.R.)
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
- Correspondence: (P.Z.); (Y.R.)
| | - Iseult Lynch
- Department of Chemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
20
|
Improving
C
3
photosynthesis by exploiting natural genetic variation:
Hirschfeldia incana
as a model species. Food Energy Secur 2022. [DOI: 10.1002/fes3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Wang X, Zhou T, Li G, Yao W, Hu W, Wei X, Che J, Yang H, Shao L, Hua J, Li X, Xiao J, Xing Y, Ouyang Y, Zhang Q. A Ghd7-centered regulatory network provides a mechanistic approximation to optimal heterosis in an elite rice hybrid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:68-83. [PMID: 35912411 DOI: 10.1111/tpj.15928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.
Collapse
Affiliation(s)
- Xianmeng Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Hu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wei
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haichuan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Shao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinping Hua
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Jang YH, Park JR, Kim EG, Kim KM. OsbHLHq11, the Basic Helix-Loop-Helix Transcription Factor, Involved in Regulation of Chlorophyll Content in Rice. BIOLOGY 2022; 11:1000. [PMID: 36101381 PMCID: PMC9312294 DOI: 10.3390/biology11071000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
Photosynthesis is an important factor in determining the yield of rice. In particular, the size and efficiency of the photosynthetic system after the heading has a great impact on the yield. Research related to high-efficiency photosynthesis is essential to meet the growing demands of crops for the growing population. Chlorophyll is a key molecule in photosynthesis, a pigment that acts as an antenna to absorb light energy. Improvement of chlorophyll content characteristics has been emphasized in rice breeding for several decades. It is expected that an increase in chlorophyll content may increase photosynthetic efficiency, and understanding the genetic basis involved is important. In this study, we measured leaf color (CIELAB), chlorophyll content (SPAD), and chlorophyll fluorescence, and quantitative trait loci (QTL) mapping was performed using 120 Cheongcheong/Nagdong double haploid (CNDH) line after the heading date. A major QTL related to chlorophyll content was detected in the RM26981-RM287 region of chromosome 11. OsbHLHq11 was finally selected through screening of genes related to chlorophyll content in the RM26981-RM287 region. The relative expression level of the gene of OsbHLHq11 was highly expressed in cultivars with low chlorophyll content, and is expected to have a similar function to BHLH62 of the Gramineae genus. OsbHLHq11 is expected to increase photosynthetic efficiency by being involved in the chlorophyll content, and is expected to be utilized as a new genetic resource for breeding high-yield rice.
Collapse
Affiliation(s)
- Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Jae-Ryoung Park
- Crop Breeding Division, Rural Development Administration, National Institute of Crop Science, Wanju 55365, Korea;
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (Y.-H.J.); (E.-G.K.)
| |
Collapse
|
23
|
Ouyang X, Zhong X, Chang S, Qian Q, Zhang Y, Zhu X. Partially functional NARROW LEAF1 balances leaf photosynthesis and plant architecture for greater rice yield. PLANT PHYSIOLOGY 2022; 189:772-789. [PMID: 35377451 PMCID: PMC9157069 DOI: 10.1093/plphys/kiac135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
NARROW LEAF1 (NAL1) is an elite gene in rice (Oryza sativa), given its close connection to leaf photosynthesis, hybrid vigor, and yield-related agronomic traits; however, the underlying mechanism by which this gene affects these traits remains elusive. In this study, we systematically measured leaf photosynthetic parameters, leaf anatomical parameters, architectural parameters, and agronomic traits in indica cultivar 9311, in 9311 with the native NAL1 replaced by the Nipponbare NAL1 (9311-NIL), and in 9311 with the NAL1 fully mutated (9311-nal1). Leaf length, width, and spikelet number gradually increased from lowest to highest in 9311-nal1, 9311, and 9311-NIL. In contrast, the leaf photosynthetic rate on a leaf area basis, leaf thickness, and panicle number gradually decreased from highest to lowest in 9311-nal1, 9311, and 9311-NIL. RNA-seq analysis showed that NAL1 negatively regulates the expression of photosynthesis-related genes; NAL1 also influenced expression of many genes related to phytohormone signaling, as also shown by different leaf contents of 3-Indoleacetic acid, jasmonic acid, Gibberellin A3, and isopentenyladenine among these genotypes. Furthermore, field experiments with different planting densities showed that 9311 had a larger biomass and yield advantage under low planting density compared to either 9311-NIL or 9311-nall. This study shows both direct and indirect effects of NAL1 on leaf photosynthesis; furthermore, we show that a partially functional NAL1 allele helps maintain a balanced leaf photosynthesis and plant architecture for increased biomass and grain yield in the field.
Collapse
Affiliation(s)
- Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyu Zhong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Yin X, Gu J, Dingkuhn M, Struik PC. A model-guided holistic review of exploiting natural variation of photosynthesis traits in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3173-3188. [PMID: 35323898 PMCID: PMC9126731 DOI: 10.1093/jxb/erac109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 05/18/2023]
Abstract
Breeding for improved leaf photosynthesis is considered as a viable approach to increase crop yield. Whether it should be improved in combination with other traits has not been assessed critically. Based on the quantitative crop model GECROS that interconnects various traits to crop productivity, we review natural variation in relevant traits, from biochemical aspects of leaf photosynthesis to morpho-physiological crop characteristics. While large phenotypic variations (sometimes >2-fold) for leaf photosynthesis and its underlying biochemical parameters were reported, few quantitative trait loci (QTL) were identified, accounting for a small percentage of phenotypic variation. More QTL were reported for sink size (that feeds back on photosynthesis) or morpho-physiological traits (that affect canopy productivity and duration), together explaining a much greater percentage of their phenotypic variation. Traits for both photosynthetic rate and sustaining it during grain filling were strongly related to nitrogen-related traits. Much of the molecular basis of known photosynthesis QTL thus resides in genes controlling photosynthesis indirectly. Simulation using GECROS demonstrated the overwhelming importance of electron transport parameters, compared with the maximum Rubisco activity that largely determines the commonly studied light-saturated photosynthetic rate. Exploiting photosynthetic natural variation might significantly improve crop yield if nitrogen uptake, sink capacity, and other morpho-physiological traits are co-selected synergistically.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Junfei Gu
- College of Agriculture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | | | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
25
|
Liu Z, Liu JL, An L, Wu T, Yang L, Cheng YS, Nie XS, Qin ZQ. Genome-wide analysis of the CCT gene family in Chinese white pear (Pyrus bretschneideri Rehd.) and characterization of PbPRR2 in response to varying light signals. BMC PLANT BIOLOGY 2022; 22:81. [PMID: 35196984 PMCID: PMC8864873 DOI: 10.1186/s12870-022-03476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Canopy architecture is critical in determining the light environment and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Two CCT genes, the orthologues of AtPRR5 in pear, have been reported to be strongly correlated with photosynthetic performance under distinct canopy microclimates. However, knowledge concerning the specific expression patterns and roles of pear CCT family genes (PbCCTs) remains very limited. The key roles played by PbCCTs in the light response led us to examine this large gene family in more detail. RESULTS Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated that these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that whole-genome duplication/segmental duplication events played a crucial role in the expansion of the CCT family in pear and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying light signals. Additionally, transient overexpression of PbPRR2 in tobacco leaves resulted in inhibition of photosynthetic performance, suggesting its possible involvement in the repression of photosynthesis. CONCLUSIONS This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of PbCCTs to uncover their biological roles in the light response.
Collapse
Affiliation(s)
- Zheng Liu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jia-Li Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lin An
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Wu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Li Yang
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yin-Sheng Cheng
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xian-Shuang Nie
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Qi Qin
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
26
|
Identification and Allele Combination Analysis of Rice Grain Shape-Related Genes by Genome-Wide Association Study. Int J Mol Sci 2022; 23:ijms23031065. [PMID: 35162989 PMCID: PMC8835367 DOI: 10.3390/ijms23031065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Grain shape is an important agronomic character of rice, which affects the appearance, processing, and the edible quality. Screening and identifying more new genes associated with grain shape is beneficial to further understanding the genetic basis of grain shape and provides more gene resources for genetic breeding. This study has a natural population containing 623 indica rice cultivars. Genome-wide association studies/GWAS of several traits related to grain shape (grain length/GL, grain width/GW, grain length to width ratio/GLWR, grain circumferences/GC, and grain size/grain area/GS) were conducted by combining phenotypic data from four environments and the second-generation resequencing data, which have identified 39 important Quantitative trait locus/QTLs. We analyzed the 39 QTLs using three methods: gene-based association analysis, haplotype analysis, and functional annotation and identified three cloned genes (GS3, GW5, OsDER1) and seven new candidate genes in the candidate interval. At the same time, to effectively utilize the genes in the grain shape-related gene bank, we have also analyzed the allelic combinations of the three cloned genes. Finally, the extreme allele combination corresponding to each trait was found through statistical analysis. This study’s novel candidate genes and allele combinations will provide a valuable reference for future breeding work.
Collapse
|
27
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Sharma S, Pinson SRM, Gealy DR, Edwards JD. Genomic prediction and QTL mapping of root system architecture and above-ground agronomic traits in rice (Oryza sativa L.) with a multitrait index and Bayesian networks. G3 (BETHESDA, MD.) 2021; 11:jkab178. [PMID: 34568907 PMCID: PMC8496310 DOI: 10.1093/g3journal/jkab178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022]
Abstract
Root system architecture (RSA) is a crucial factor in resource acquisition and plant productivity. Roots are difficult to phenotype in the field, thus new tools for predicting phenotype from genotype are particularly valuable for plant breeders aiming to improve RSA. This study identifies quantitative trait loci (QTLs) for RSA and agronomic traits in a rice (Oryza sativa) recombinant inbred line (RIL) population derived from parents with contrasting RSA traits (PI312777 × Katy). The lines were phenotyped for agronomic traits in the field, and separately grown as seedlings on agar plates which were imaged to extract RSA trait measurements. QTLs were discovered from conventional linkage analysis and from a machine learning approach using a Bayesian network (BN) consisting of genome-wide SNP data and phenotypic data. The genomic prediction abilities (GPAs) of multi-QTL models and the BN analysis were compared with the several standard genomic prediction (GP) methods. We found GPAs were improved using multitrait (BN) compared to single trait GP in traits with low to moderate heritability. Two groups of individuals were selected based on GPs and a modified rank sum index (GSRI) indicating their divergence across multiple RSA traits. Selections made on GPs did result in differences between the group means for numerous RSA. The ranking accuracy across RSA traits among the individual selected RILs ranged from 0.14 for root volume to 0.59 for lateral root tips. We conclude that the multitrait GP model using BN can in some cases improve the GPA of RSA and agronomic traits, and the GSRI approach is useful to simultaneously select for a desired set of RSA traits in a segregating population.
Collapse
Affiliation(s)
- Santosh Sharma
- Dale Bumpers National Rice Research Center, United States Department of Agriculture—Agricultural Research Service, Stuttgart, AR 72160, USA
| | - Shannon R M Pinson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture—Agricultural Research Service, Stuttgart, AR 72160, USA
| | - David R Gealy
- Dale Bumpers National Rice Research Center, United States Department of Agriculture—Agricultural Research Service, Stuttgart, AR 72160, USA
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture—Agricultural Research Service, Stuttgart, AR 72160, USA
| |
Collapse
|
29
|
Zhang F, Hu Z, Wu Z, Lu J, Shi Y, Xu J, Wang X, Wang J, Zhang F, Wang M, Shi X, Cui Y, Vera Cruz C, Zhuo D, Hu D, Li M, Wang W, Zhao X, Zheng T, Fu B, Ali J, Zhou Y, Li Z. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics. THE PLANT CELL 2021; 33:2538-2561. [PMID: 34467412 PMCID: PMC8408478 DOI: 10.1093/plcell/koab146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Zhiqiang Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jialing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063009, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Mingming Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiaorong Shi
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Yanru Cui
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Dalong Zhuo
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Dandan Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, 130 West Chang-Jiang Street, Hefei 230036, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
30
|
Fukayama H, Miyagawa F, Shibatani N, Koudou A, Sasayama D, Hatanaka T, Azuma T, Yamauchi Y, Matsuoka D, Morita R. CO 2 -responsive CCT protein interacts with 14-3-3 proteins and controls the expression of starch synthesis-related genes. PLANT, CELL & ENVIRONMENT 2021; 44:2480-2493. [PMID: 33989431 DOI: 10.1111/pce.14084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
CO2 -responsive CCT protein (CRCT) is a positive regulator of starch synthesis-related genes such as ADP-glucose pyrophosphorylase large subunit 1 and starch branching enzyme I particularly in the leaf sheath of rice (Oryza sativa L.). The promoter GUS analysis revealed that CRCT expressed exclusively in the vascular bundle, whereas starch synthesis-related genes were expressed in different sites such as mesophyll cell and starch storage parenchyma cell. However, the chromatin immunoprecipitation (ChIP) using a FLAG-CRCT overexpression line and subsequent qPCR analyses showed that the 5'-flanking regions of these starch synthesis-related genes tended to be enriched by ChIP, suggesting that CRCT can bind to the promoter regions of these genes. The monomer of CRCT is 34.2 kDa; however, CRCT was detected at 270 kDa via gel filtration chromatography, suggesting that CRCT forms a complex in vivo. Immunoprecipitation and subsequent MS analysis pulled down several 14-3-3-like proteins. A yeast two-hybrid analysis and bimolecular fluorescence complementation assays confirmed the interaction between CRCT and 14-3-3-like proteins. Although there is an inconsistency in the place of expression, this study provides important findings regarding the molecular function of CRCT to control the expression of key starch synthesis-related genes.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Fumihiro Miyagawa
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoki Shibatani
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Aiko Koudou
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daisuke Sasayama
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tomoko Hatanaka
- Laboratory of Crop Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tetsushi Azuma
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuo Yamauchi
- Laboratory of Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Ryutaro Morita
- Laboratory of Tropical Plant Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
31
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
32
|
Wang Q, Su Q, Nian J, Zhang J, Guo M, Dong G, Hu J, Wang R, Wei C, Li G, Wang W, Guo HS, Lin S, Qian W, Xie X, Qian Q, Chen F, Zuo J. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. MOLECULAR PLANT 2021; 14:1012-1023. [PMID: 33930508 DOI: 10.1016/j.molp.2021.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 04/25/2021] [Indexed: 05/13/2023]
Abstract
The genetic improvement of nitrogen use efficiency (NUE) of crops is vital for grain productivity and sustainable agriculture. However, the regulatory mechanism of NUE remains largely elusive. Here, we report that the rice Grain number, plant height, and heading date7 (Ghd7) gene genetically acts upstream of ABC1 REPRESSOR1 (ARE1), a negative regulator of NUE, to positively regulate nitrogen utilization. As a transcriptional repressor, Ghd7 directly binds to two Evening Element-like motifs in the promoter and intron 1 of ARE1, likely in a cooperative manner, to repress its expression. Ghd7 and ARE1 display diurnal expression patterns in an inverse oscillation manner, mirroring a regulatory scheme based on these two loci. Analysis of a panel of 2656 rice varieties suggests that the elite alleles of Ghd7 and ARE1 have undergone diversifying selection during breeding. Moreover, the allelic distribution of Ghd7 and ARE1 is associated with the soil nitrogen deposition rate in East Asia and South Asia. Remarkably, the combination of the Ghd7 and ARE1 elite alleles substantially improves NUE and yield performance under nitrogen-limiting conditions. Collectively, these results define a Ghd7-ARE1-based regulatory mechanism of nitrogen utilization, providing useful targets for genetic improvement of rice NUE.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingmei Su
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Guo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Rongsheng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanwen Li
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoyang Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fan Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
33
|
Meng B, Wang T, Luo Y, Xu D, Li L, Diao Y, Gao Z, Hu Z, Zheng X. Genome-Wide Association Study Identified Novel Candidate Loci/Genes Affecting Lodging Resistance in Rice. Genes (Basel) 2021; 12:718. [PMID: 34064770 PMCID: PMC8151605 DOI: 10.3390/genes12050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022] Open
Abstract
Lodging reduces rice yield, but increasing lodging resistance (LR) usually limits yield potential. Stem strength and leaf type are major traits related to LR and yield, respectively. Hence, understanding the genetic basis of stem strength and leaf type is of help to reduce lodging and increase yield in LR breeding. Here, we carried out an association analysis to identify quantitative trait locus (QTLs) affecting stem strength-related traits (internode length/IL, stem wall thickness/SWT, stem outer diameter/SOD, and stem inner diameter/SID) and leaf type-associated traits (Flag leaf length/FLL, Flag leaf angle/FLA, Flag leaf width/FLW, leaf-rolling/LFR and SPAD/Soil, and plant analyzer development) using a diverse panel of 550 accessions and evaluated over two years. Genome-wide association study (GWAS) using 4,076,837 high-quality single-nucleotide polymorphisms (SNPs) identified 89 QTLs for the nine traits. Next, through "gene-based association analysis, haplotype analysis, and functional annotation", the scope was narrowed down step by step. Finally, we identified 21 candidate genes in 9 important QTLs that included four reported genes (TUT1, OsCCC1, CFL1, and ACL-D), and seventeen novel candidate genes. Introgression of alleles, which are beneficial for both stem strength and leaf type, or pyramiding stem strength alleles and leaf type alleles, can be employed for LR breeding. All in all, the experimental data and the identified candidate genes in this study provide a useful reference for the genetic improvement of rice LR.
Collapse
Affiliation(s)
- Bingxin Meng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Yi Luo
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Deze Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Lanzhi Li
- Hunan Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China;
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Xingfei Zheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| |
Collapse
|
34
|
Zhang J, Fan X, Hu Y, Zhou X, He Q, Liang L, Xing Y. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:913-923. [PMID: 32889758 DOI: 10.1111/jipb.13013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Many genes encoding CCT domain-containing proteins regulate flowering time. In rice (Oryza sativa), 41 such genes have been identified, but only a few have been shown to regulate heading date. Here, to test whether and how additional CCT family genes regulate heading date in rice, we classified these genes into five groups based on their diurnal expression patterns. The expression patterns of genes in the same subfamily or in close phylogenetic clades tended to be similar. We generated knockout mutants of the entire gene family via CRISPR/Cas9. The heading dates of knockout mutants of only 4 of 14 genes previously shown to regulate heading date were altered, pointing to functional redundancy of CCT family genes in regulating this trait. Analysis of mutants of four other genes showed that OsCCT22, OsCCT38, and OsCCT41 suppress heading under long-day conditions and promote heading under short-day conditions. OsCCT03 promotes heading under both conditions and upregulates the expression of Hd1 and Ehd1, a phenomenon not previously reported for other such genes. To date, at least 18 CCT domain-containing genes involved in regulating heading have been identified, providing diverse, flexible gene combinations for generating rice varieties with a given heading date.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
35
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
36
|
Guo Z, Liu X, Zhang B, Yuan X, Xing Y, Liu H, Luo L, Chen G, Xiong L. Genetic analyses of lodging resistance and yield provide insights into post-Green-Revolution breeding in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:814-829. [PMID: 33159401 PMCID: PMC8051602 DOI: 10.1111/pbi.13509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 05/10/2023]
Abstract
Lodging reduces grain yield in cereal crops. Understanding the genetic basis of lodging resistance (LR) benefits LR breeding. In the study, 524 accessions from a rice germplasm collection and 193 recombinant inbred lines were phenotyped for 17 LR-related traits. Height and culm strength (the magnitude of applied force necessary to break the culm) were two major factors affecting LR. We conducted genome-wide association study (GWAS) and identified 127 LR-associated loci. Significant phenotypic correlations between culm-strength traits and yield-related traits were observed. To reveal the genetic relationship between them, we conducted GWAS of culm-strength traits with adding yield-related trait as a covariate and detected 63 loci linking culm strength and yield. As a proof, a near-isogenic line for an association locus on chromosome 7 showed enhanced LR and yield. Strikingly, 58 additional loci were identified in the covariate-added GWAS. Several LR-associated loci had undergone divergent selection. Linkage analysis supported the GWAS results. We propose that introgression of alleles beneficial for both culm strength and panicle weight without negative effects on panicle number or pyramiding high-yielding alleles and lodging-resistant alleles without effects on yield can be employed for the post-Green-Revolution breeding.
Collapse
Affiliation(s)
- Zilong Guo
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
- Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiao Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Xinjie Yuan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverHuazhong Agricultural UniversityWuhanChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Hongyan Liu
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
37
|
Zhang J, Wan L, Igathinathane C, Zhang Z, Guo Y, Sun D, Cen H. Spatiotemporal Heterogeneity of Chlorophyll Content and Fluorescence Response Within Rice ( Oryza sativa L.) Canopies Under Different Nitrogen Treatments. FRONTIERS IN PLANT SCIENCE 2021; 12:645977. [PMID: 33841474 PMCID: PMC8028447 DOI: 10.3389/fpls.2021.645977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 05/08/2023]
Abstract
Accurate acquisition of plant phenotypic information has raised long-standing concerns in support of crop breeding programs. Different methods have been developed for high throughput plant phenotyping, while they mainly focused on the canopy level without considering the spatiotemporal heterogeneity at different canopy layers and growth stages. This study aims to phenotype spatiotemporal heterogeneity of chlorophyll (Chl) content and fluorescence response within rice leaves and canopies. Multipoint Chl content and high time-resolved Chl a fluorescence (ChlF) transient (OJIP transient) of rice plants were measured at different nitrogen levels and growth stages. Results showed that the Chl content within the upper leaves exhibited an increasing trend from the basal to the top portions but a decreasing pattern within the lower leaves at the most growth stages. Leaf Chl content within the rice canopy was higher in the lower leaves in the vegetative phase, while from the initial heading stage the pattern gradually reversed with the highest Chl content appearing in the upper leaves. Nitrogen supply mainly affects the occurrence time of the reverse vertical pattern. This could be the result of different nutritional demands of leaves transforming from sinks to sources, and it was further confirmed by the fall of the JI phase of OJIP transient in the vegetative phase and the rise in the reproductive phase. We further deduced that the vertical distribution of Chl content could have a defined pattern at a specific growth stage. Furthermore, the reduction of end acceptors at photosystem I (PSI) electron acceptor side per cross section (RE0/CS) was found to be a potential sensitive predictor for identifying the vertical heterogeneity of leaf Chl content. These findings provide prior knowledge on the vertical profiles of crop physiological traits, which explore the opportunity to develop more efficient plant phenotyping tools for crop breeding.
Collapse
Affiliation(s)
- Jiafei Zhang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Liang Wan
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - C. Igathinathane
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States
| | - Zhao Zhang
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing, China
- Key Laboratory of Agriculture Information Acquisition Technology, Ministry of Agriculture of China, China Agricultural University, Beijing, China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, China
| | - Dawei Sun
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Haiyan Cen
- College of Biosystems Engineering and Food Science, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
38
|
Mengarelli DA, Zanor MI. Genome-wide characterization and analysis of the CCT motif family genes in soybean (Glycine max). PLANTA 2021; 253:15. [PMID: 33392793 DOI: 10.1007/s00425-020-03537-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Soybean possesses 19 CMF genes which mainly arose from duplication events. Their features and motifs are highly conserved but transcriptional data indicated functional diversity in metabolism and stress responses. CCT [for CONSTANS, CONSTANS-like (CO-like), and timing of CAB expression1 (TOC1)] domain-containing genes play important roles in regulating flowering, plant growth, and grain yield and are also involved in stress responses. The CMF (CCT motif family) genes, included in the CCT family, contain a single CCT domain as the only identifiable domain in their predicted protein sequence and are interesting targets for breeding programs. In this study, we identified 19 putative GmCMF genes, based on the latest soybean (Glycine max) genome annotation. The predicted GmCMF proteins were characterized based on conserved structural features, and a phylogenetic tree was constructed including all CMF proteins from rice and Arabidopsis as representative examples of the monocotyledonous (monocot) and dicotyledonous (dicot) plants, respectively. High similarities in the conserved motifs of the protein sequences and the gene structures were found. In addition, by analyzing the CMF gene family in soybean, we identified seven pairs of genes that originated from segmental chromosomal duplication events attributable to the most recent whole-genome duplication (WGD) event in the Glycine lineage. Expression analysis of GmCMF genes in various tissues and after specific treatments demonstrated tissue and stress-response specific differential expression. Gene expression analysis was complemented by the identification of putative cis-elements present in the promoter regions of the genes through a bioinformatics approach, using the existing soybean reference genome sequence and gene models. Co-functional networks inferred from distinct types of genomics data-including microarrays and RNA-seq samples from soybean-revealed that GmCMF genes might play crucial roles in metabolism and transport processes. The results of this study, the first systematic analysis of the soybean CCT gene family, can serve as a strong foundation for further elucidation of their physiological functions and biological roles.
Collapse
|
39
|
Liao S, Yan J, Xing H, Tu Y, Zhao H, Wang G. Genetic basis of vascular bundle variations in rice revealed by genome-wide association study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110715. [PMID: 33288021 DOI: 10.1016/j.plantsci.2020.110715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/30/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
The vascular bundles play important roles in transportation of photoassimilate, and the number, size, and capacity of vascular bundles influence the transportation efficiency. Dissecting the genetic basis may help to make better use of naturally occurring vascular bundle variations. Here, we conducted a genome-wide association study (GWAS) of the vascular bundle variations in a worldwide collection of 529 Oryza sativa accessions. A total of 42 and 93 significant association loci were identified in the neck panicle and flag leaf, respectively. The introgression lines showing extreme values of the target traits harbored at least one GWAS signal, indicating the reliability of the GWAS loci. Based on the data of near-isogenic lines and transgenic plants, Grain number, plant height, and heading date7 (Ghd7) was identified as a major locus for the natural variation of vascular bundles in the neck panicle at the heading stage. In addition, Narrow leaf1 (NAL1) was found to influence the vascular bundles in both the neck panicle and flag leaf, and the effects of the major haplotypes of NAL1 were characterized. The loci or candidate genes identified would help to improve vascular bundle system in rice breeding.
Collapse
Affiliation(s)
- Shiyu Liao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ju Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hongkun Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yuan Tu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
40
|
Ma J, Wang L, Cao Y, Wang H, Li H. Association Mapping and Transcriptome Analysis Reveal the Genetic Architecture of Maize Kernel Size. FRONTIERS IN PLANT SCIENCE 2021; 12:632788. [PMID: 33815440 PMCID: PMC8013726 DOI: 10.3389/fpls.2021.632788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Kernel length, kernel width, and kernel thickness are important traits affecting grain yield and product quality. Here, the genetic architecture of the three kernel size traits was dissected in an association panel of 309 maize inbred lines using four statistical methods. Forty-two significant single nucleotide polymorphisms (SNPs; p < 1.72E-05) and 70 genes for the three traits were identified under five environments. One and eight SNPs were co-detected in two environments and by at least two methods, respectively, and they explained 5.87-9.59% of the phenotypic variation. Comparing the transcriptomes of two inbred lines with contrasting seed size, three and eight genes identified in the association panel showed significantly differential expression between the two genotypes at 15 and 39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide association study were significantly differentially expressed between the two development stages in the two genotypes. Combining environment-/method-stable SNPs and differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize kernel size and development.
Collapse
|
41
|
Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice. Gene 2020; 770:145353. [PMID: 33333227 DOI: 10.1016/j.gene.2020.145353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
Since domestication, rice has cultivated in a wide range of latitudes with different day lengths. Selection of diverse natural variations in heading date and photoperiod sensitivity is critical for adaptation of rice to different geographical environments. To unravel the genetic architecture underlying natural variation of rice flowering time, we conducted a genome wide association study (GWAS) using several association analysis strategies with a diverse worldwide collection of 529 O. sativa accessions. Heading date was investigated in three environments under long-day or short-day conditions, and photosensitivity was evaluated. By dividing the whole association panel into subpopulations and performing GWAS with both linear mixed models and multi-locus mixed-models, we revealed hundreds of significant loci harboring novel candidate genes as well as most of the known flowering time genes. In total, 127 hotspots were detected in at least two GWAS. Universal genetic heterogeneity was found across subpopulations. We further detected abundant interactions between GWAS loci, especially in indica. Functional gene families were revealed from enrichment analysis of the 127 hotspots. The results demonstrated a rich of genetic interactions in rice flowering time genes and such epistatic interactions contributed to the large portions of missing heritability in GWAS. It suggests the increased complexity of genetic heterogeneity might discount the power of increasing the sample sizes in GWAS.
Collapse
|
42
|
Qu M, Essemine J, Xu J, Ablat G, Perveen S, Wang H, Chen K, Zhao Y, Chen G, Chu C, Zhu X. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1334-1347. [PMID: 33015858 DOI: 10.1111/tpj.15004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 05/07/2023]
Abstract
The acceleration of stomatal closure upon high to low light transition could improve plant water use efficiency and drought tolerance. Herein, using genome-wide association study, we showed that the genetic variation in OsNHX1 was strongly associated with the changes in τcl , the time constant of stomatal closure, in 206 rice accessions. OsNHX1 overexpression in rice resulted in a decrease in τcl , and an increase in biomass, grain yield under drought. Conversely, OsNHX1 knockout by CRISPR/CAS9 shows opposite trends for these traits. We further found three haplotypes spanning the OsNHX1 promoter and CDS regions. Two among them, HapII and HapIII, were found to be associated with a high and low τcl , respectively. A near-isogenic line (NIL, S464) was developed through replacing the genomic region harboring HapII (~10 kb) from MH63 (recipient) rice cultivar by the same sized genomic region containing Hap III from 02428 (donor). Compared with MH63, S464 shows a reduction by 35% in τcl and an increase by 40% in the grain yield under drought. However, under normal conditions, S464 maintains closely similar grain yield as MH63. The global distribution of the two OsNHX1 haplotypes is associated with the local precipitation. Taken together, the natural variation in OsNHX1 could be utilized to manipulate the stomatal dynamics for an improved rice drought tolerance.
Collapse
Affiliation(s)
- Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guljannat Ablat
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
43
|
Ma X, Fan J, Wu Y, Zhao S, Zheng X, Sun C, Tan L. Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:596-612. [PMID: 32748498 PMCID: PMC7693357 DOI: 10.1111/tpj.14946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 05/05/2023]
Abstract
Asian cultivated rice (Oryza sativa) and African cultivated rice (Oryza glaberrima) originated from the wild rice species Oryza rufipogon and Oryza barthii, respectively. The genomes of both cultivated species have undergone profound changes during domestication. Whole-genome de novo assemblies of O. barthii, O. glaberrima, O. rufipogon and Oryza nivara, produced using PacBio single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies, showed that Gypsy-like retrotransposons are the major contributors to genome size variation in African and Asian rice. Through the detection of genome-wide structural variations (SVs), we observed that besides 28 shared SV hot spots, another 67 hot spots existed in either the Asian or African rice genomes. Based on gene annotation information of the SVs, we established that organelle-to-nucleus DNA transfers resulted in numerous SVs that participated in the nuclear genome divergence of rice species and subspecies. We detected 52 giant nuclear integrants of organelle DNA (NORGs, defined as >10 kb) in six Oryza AA genomes. In addition, we developed an effective method to genotype giant NORGs, based on genome assembly, and first showed the dynamic change in the distribution of giant NORGs in rice natural population. Interestingly, 16 highly differentiated giant NORGs tended to accumulate in natural populations of Asian rice from higher latitude regions, grown at lower temperatures and light intensities. Our study provides new insight into the genome divergence of African and Asian rice, and establishes that organelle-to-nucleus DNA transfers, as potentially powerful contributors to environmental adaptation during rice evolution, play a major role in producing SVs in rice genomes.
Collapse
Affiliation(s)
- Xin Ma
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinjian Fan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| | - Yongzhen Wu
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- MOE Key Laboratory of Crop Heterosis and UtilizationNational Center for Evaluation of Agricultural Wild Plants (Rice)Department of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
44
|
Liu H, Zhou X, Li Q, Wang L, Xing Y. CCT domain-containing genes in cereal crops: flowering time and beyond. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1385-1396. [PMID: 32006055 DOI: 10.1007/s00122-020-03554-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The review summarizes the functions of the plant special transcription factors CCT family genes in multiple traits and discusses the molecular breeding strategies with CCT family genes in the future. Plants integrate circadian clock and external signals such as temperature and photoperiod to synchronize flowering with seasonal environmental changes. This process makes cereal crops including short-day crops, such as rice and maize, and long-day crops, such as wheat and barley, better adapt to varied growth zones from temperate to tropical regions. CCT family genes involve circadian clock and photoperiodic flowering pathways and help plants set a suitable flowering time to produce offspring. Beyond the flowering time, CCT family genes in cereal crops are associated with biomass and grain yield. Moreover, recent studies showed that they also associate with photosynthesis, nutrition use efficiency and stress tolerance. Here, we systematically review the progress in functional characterization of CCT family genes in flowering, geographical adaptation and grain yield formation, raise the core questions related to their molecular mechanisms and discuss how to practice them in genetic improvement in cereal crops by combining gene diagnosis and top-level design.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Qiuping Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
45
|
Wang Q, Tang J, Han B, Huang X. Advances in genome-wide association studies of complex traits in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1415-1425. [PMID: 31720701 DOI: 10.1007/s00122-019-03473-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/05/2019] [Indexed: 05/27/2023]
Abstract
Genome-wide association studies (GWAS), genetic surveys of the whole genome to detect variants associated with a trait in natural populations, are a powerful approach for dissecting complex traits. This genetic mapping approach has been applied in rice over the last 10 years. During the last decade, GWAS was used to identify the loci underlying tens of rice traits, and several important genes were detected in GWAS and further confirmed in follow-up functional experiments. In this review, we present an overview of the whole process in a typical GWAS, including population design, genotyping, phenotyping and analysis methods. Recent advances in rice GWAS are also provided, including several examples of the functional characterization of candidate genes. The possible breakthroughs of rice GWAS in the next decade are discussed with regard to their application in breeding, the consideration of epistatic interactions and in-depth functional annotations of DNA elements and genetic variants throughout the rice genome.
Collapse
Affiliation(s)
- Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiali Tang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
46
|
Li X, Chen Z, Zhang G, Lu H, Qin P, Qi M, Yu Y, Jiao B, Zhao X, Gao Q, Wang H, Wu Y, Ma J, Zhang L, Wang Y, Deng L, Yao S, Cheng Z, Yu D, Zhu L, Xue Y, Chu C, Li A, Li S, Liang C. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1688-1702. [PMID: 32303966 DOI: 10.1007/s11427-019-1682-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
Genotyping and phenotyping large natural populations provide opportunities for population genomic analysis and genome-wide association studies (GWAS). Several rice populations have been re-sequenced in the past decade; however, many major Chinese rice cultivars were not included in these studies. Here, we report large-scale genomic and phenotypic datasets for a collection mainly comprised of 1,275 rice accessions of widely planted cultivars and parental hybrid rice lines from China. The population was divided into three indica/Xian and three japonica/Geng phylogenetic subgroups that correlate strongly with their geographic or breeding origins. We acquired a total of 146 phenotypic datasets for 29 agronomic traits under multi-environments for different subpopulations. With GWAS, we identified a total of 143 significant association loci, including three newly identified candidate genes or alleles that control heading date or amylose content. Our genotypic analysis of agronomically important genes in the population revealed that many favorable alleles are underused in elite accessions, suggesting they may be used to provide improvements in future breeding efforts. Our study provides useful resources for rice genetics research and breeding.
Collapse
Affiliation(s)
- Xiuxiu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guomin Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Qin
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bingke Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Wang
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Juntao Ma
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liyan Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yongli Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lingwei Deng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuang Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China. .,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China.
| | - Shigui Li
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Gao D, Sun W, Wang D, Dong H, Zhang R, Yu S. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice. Sci Rep 2020; 10:3726. [PMID: 32111928 PMCID: PMC7048734 DOI: 10.1038/s41598-020-60593-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Leaf chlorophyll content is an important physiological indicator of plant growth, metabolism and nutritional status, and it is highly correlated with leaf nitrogen content and photosynthesis. In this study, we report the cloning and identification of a xylan glucuronosyltransferase gene (OsGUX1) that affects relative chlorophyll content in rice leaf. Using a set of chromosomal segment substitution lines derived from a cross of wild rice accession ACC10 and indica variety Zhenshan 97 (ZS97), we identified numerous quantitative trait loci for relative chlorophyll content. One major locus of them for relative chlorophyll content was mapped to a 10.3-kb region that contains OsGUX1. The allele OsGUX1AC from ACC10 significantly decreases nitrogen content and chlorophyll content of leaf compared with OsGUX1ZS from ZS97. The overexpression of OsGUX1 reduced chlorophyll content, and the suppression of this gene increased chlorophyll content of rice leaf. OsGUX1 is located in Golgi apparatus, and highly expressed in seedling leaf and the tissues in which primary cell wall synthesis occurring. Our experimental data indicate that OsGUX1 is responsible for addition of glucuronic acid residues onto xylan and participates in accumulation of cellulose and hemicellulose in the cell wall deposition, thus thickening the primary cell wall of mesophyll cells, which might lead to reduced chlorophyll content in rice leaf. These findings provide insights into the association of cell wall components with leaf nitrogen content in rice.
Collapse
Affiliation(s)
- Dawei Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Pariyar SR, Erginbas-Orakci G, Dadshani S, Chijioke OB, Léon J, Dababat AA, Grundler FMW. Dissecting the Genetic Complexity of Fusarium Crown Rot Resistance in Wheat. Sci Rep 2020; 10:3200. [PMID: 32081866 PMCID: PMC7035263 DOI: 10.1038/s41598-020-60190-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) is one of the most important diseases of wheat (Triticum aestivum L.). FCR is mainly caused by the fungal pathogens Fusarium culmorum and F. pseudograminearum. In order to identify new sources of resistance to FCR and to dissect the complexity of FCR resistance, a panel of 161 wheat accessions was phenotyped under growth room (GR) and greenhouse conditions (GH). Analysis of variance showed significant differences in crown rot development among wheat accessions and high heritability of genotype-environment interactions for GR (0.96) and GH (0.91). Mixed linear model analysis revealed seven novel quantitative trait loci (QTLs) linked to F. culmorum on chromosomes 2AL, 3AS, 4BS, 5BS, 5DS, 5DL and 6DS for GR and eight QTLs on chromosomes on 3AS, 3BS, 3DL, 4BS (2), 5BS, 6BS and 6BL for GH. Total phenotypic variances (R²) explained by the QTLs linked to GR and GH were 48% and 59%, respectively. In addition, five favorable epistasis interactions among the QTLs were detected for both GR and GH with and without main effects. Epistatic interaction contributed additional variation up to 21% under GR and 7% under GH indicating strong effects of environment on the expression of QTLs. Our results revealed FCR resistance responses in wheat to be complex and controlled by multiple QTLs.
Collapse
Affiliation(s)
- Shree R Pariyar
- Forschungszentrum Jülich GmbH, Institut für Bio- und Geowissenschaften (IBG)-2, Pflanzenwissenschaften, D-52425, Jülich, Germany.,Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany
| | - Gul Erginbas-Orakci
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Oyiga Benedict Chijioke
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany.
| |
Collapse
|
49
|
Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. MOLECULAR PLANT 2020; 13:187-214. [PMID: 31981735 DOI: 10.1016/j.molp.2020.01.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
Since whole-genome sequencing of many crops has been achieved, crop functional genomics studies have stepped into the big-data and high-throughput era. However, acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies. Nevertheless, recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years. In this article, we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades. We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies. Finally, we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap. It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.
Collapse
Affiliation(s)
- Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, P.R. China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - John H Doonan
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
50
|
Hu D, Zhang H, Du Q, Hu Z, Yang Z, Li X, Wang J, Huang F, Yu D, Wang H, Kan G. Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). PLANTA 2020; 251:39. [PMID: 31907621 DOI: 10.1007/s00425-019-03329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION A total of 41 SNPs were identified as significantly associated with five yield-related traits in wild soybean populations across multiple environments, and the candidate gene GsCID1 was found to be associated with seed weight. These results may facilitate improvements in cultivated soybean. Crop-related wild species contain new sources of genetic diversity for crop improvement. Wild soybean (Glycine soja Sieb. and Zucc.) is the progenitor of cultivated soybean [Glycine max (L.) Merr.] and can be used as an essential genetic resource for yield improvements. In this research, using genome-wide association study (GWAS) in 96 out of 113 wild soybean accessions with 114,090 single nucleotide polymorphisms (SNPs) (with minor allele frequencies ≤ 0.05), SNPs associated with five yield-related traits were identified across multiple environments. In total, 41 SNPs were significantly associated with the traits in two or more environments (significance threshold P ≤ 8.76 × 10-6), with 29, 7, 3, and 2 SNPs detected for 100-seed weight (SW), maturity time (MT), seed yield per plant (SY) and flowering time (FT), respectively. BLAST search against the Glycine soja W05 reference genome was performed, 20 candidate genes were identified based on these 41 significant SNPs. One candidate gene, GsCID1 (Glysoja.04g010563), harbored two significant SNPs-AX-93713187, with a non-synonymous mutation, and AX-93713188, with a synonymous mutation. GsCID1 was highly expressed during seed development based on public information resources. The polymorphisms in this gene were associated with SW. We developed a derived cleaved amplified polymorphic sequence (dCAPS) marker for GsCID1 that was highly associated with SW and was validated as a functional marker. In summary, the revealed SNPs/genes are useful for understanding the genetic architecture of yield-related traits in wild soybean, which could be used as a potential exotic resource to improve cultivated soybean yields.
Collapse
Affiliation(s)
- Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huairen Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|