1
|
Xu Z, Tian Y, Wang J, Ma Y, Li Q, Zhou Y, Zhang W, Liu T, Kong L, Wang Y, Xie Z, An Z, Zheng B, Zhang Y, Cao C, Liu C, Tian L, Fan C, Liu J, Yao H, Song J, Duan B, Liu H, Gao R, Sun W, Chen S. Convergent evolution of berberine biosynthesis. SCIENCE ADVANCES 2024; 10:eads3596. [PMID: 39612339 PMCID: PMC11606445 DOI: 10.1126/sciadv.ads3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Berberine is an effective antimicrobial and antidiabetic alkaloid, primarily extracted from divergent botanical lineages, specifically Coptis (Ranunculales, early-diverging eudicot) and Phellodendron (Sapindales, core eudicot). In comparison with its known pathway in Coptis species, its biosynthesis in Phellodendron species remains elusive. Using chromosome-level genome assembly, coexpression matrix, and biochemical assays, we identified six key steps in berberine biosynthesis from Phellodendron amurense, including methylation, hydroxylation, and berberine bridge formation. Notably, we discovered a specific class of O-methyltransferases (NOMT) responsible for N-methylation. Structural analysis and mutagenesis of PaNOMT9 revealed its unique substrate-binding conformation. In addition, unlike the classical FAD-dependent berberine bridge formation in Ranunculales, Phellodendron uses a NAD(P)H-dependent monooxygenase (PaCYP71BG29) for berberine bridge formation, originating from the neofunctionalization of tryptamine 5-hydroxylase. Together, these findings reveal the convergence of berberine biosynthesis between Coptis and Phellodendron and signify the role of the convergent evolution in plant specialized metabolisms.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuanze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanran Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengwei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jiushi Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Haitao Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Tian Y, Kong L, Li Q, Wang Y, Wang Y, An Z, Ma Y, Tian L, Duan B, Sun W, Gao R, Chen S, Xu Z. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Nat Prod Rep 2024; 41:1787-1810. [PMID: 39360417 DOI: 10.1039/d4np00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Covering: up to June 2024Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites derived from L-tyrosine, exhibiting significant pharmacological properties such as anti-microbial, anti-spasmodic, anti-cancer, cardiovascular protection, and analgesic effects. The industrial production of valuable BIAs relies on extraction from plants; however, challenges concerning their low concentration and efficiency hinder drug development. Hence, alternative approaches, including biosynthesis and chemoenzymatic synthesis, have been explored. Model species like Papaver somniferum and Coptis japonica have played a key role in unraveling the biosynthetic pathways of BIAs; however, many aspects, particularly modified steps like oxidation and methylation, remain unclear. Critical enzymes, e.g., CYP450s and methyltransferases, play a substantial role in BIA backbone formation and modification, which is essential for understanding the origin and adaptive evolution of these plant specialized metabolites. This review comprehensively analyzes the structural diversity of reported BIAs and their distribution in plant lineages. In addition, the progress in understanding biosynthesis, evolution, and catalytic mechanisms underlying BIA biosynthesis is summarized. Finally, we discuss the progress and challenges in metabolic engineering, providing valuable insights into BIA drug development and the sustainable utilization of BIA-producing plants.
Collapse
Affiliation(s)
- Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yongmiao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
3
|
Jiao X, Fu X, Li Q, Bu J, Liu X, Savolainen O, Huang L, Guo J, Nielsen J, Chen Y. De novo production of protoberberine and benzophenanthridine alkaloids through metabolic engineering of yeast. Nat Commun 2024; 15:8759. [PMID: 39384562 PMCID: PMC11464499 DOI: 10.1038/s41467-024-53045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Protoberberine alkaloids and benzophenanthridine alkaloids (BZDAs) are subgroups of benzylisoquinoline alkaloids (BIAs), which represent a diverse class of plant-specialized natural metabolites with many pharmacological properties. Microbial biosynthesis has been allowed for accessibility and scalable production of high-value BIAs. Here, we engineer Saccharomyces cerevisiae to de novo produce a series of protoberberines and BZDAs, including palmatine, berberine, chelerythrine, sanguinarine and chelirubine. An ER compartmentalization strategy is developed to improve vacuole protein berberine bridge enzyme (BBE) activity, resulting in >200% increase on the production of the key intermediate (S)-scoulerine. Another promiscuous vacuole protein dihydrobenzophenanthridine oxidase (DBOX) has been identified to catalyze two-electron oxidation on various tetrahydroprotoberberines at N7-C8 position and dihydrobenzophenanthridine alkaloids. Furthermore, cytosolically expressed DBOX can alleviate the limitation on BBE. This study highlights the potential of microbial cell factories for the biosynthesis of a diverse group of BIAs through engineering of heterologous plant enzymes.
Collapse
Affiliation(s)
- Xiang Jiao
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Xiaozhi Fu
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Junling Bu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China
| | - Otto Savolainen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.
- BioInnovation Institute, DK-2200, Copenhagen N, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Kielich N, Mazur O, Musidlak O, Gracz-Bernaciak J, Nawrot R. Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research. Brief Funct Genomics 2024; 23:579-594. [PMID: 37952099 DOI: 10.1093/bfgp/elad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.
Collapse
Affiliation(s)
- Natalia Kielich
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Gracz-Bernaciak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Gao S, Jia Y, Guo H, Xu T, Wang B, Bush SJ, Wan S, Zhang Y, Yang X, Ye K. The centromere landscapes of four karyotypically diverse Papaver species provide insights into chromosome evolution and speciation. CELL GENOMICS 2024; 4:100626. [PMID: 39084227 PMCID: PMC11406182 DOI: 10.1016/j.xgen.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shijie Wan
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Genome Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Faculty of Science, Leiden University, Leiden 2311EZ, the Netherlands.
| |
Collapse
|
6
|
Huang J, Yue M, Yang Y, Liu Y, Zeng J. Protopine-Type Alkaloids Alleviate Lipopolysaccharide-Induced Intestinal Inflammation and Modulate the Gut Microbiota in Mice. Animals (Basel) 2024; 14:2273. [PMID: 39123799 PMCID: PMC11311078 DOI: 10.3390/ani14152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we assessed the therapeutic effects of Macleaya cordata (Willd). R. Br.-derived protopine-type alkaloids (MPTAs) in a mouse model of lipopolysaccharide (LPS)-induced intestinal inflammation. The experimental design involved the allocation of mice into distinct groups, including a control group, a model group treated with 6 mg/kg LPS, a berberine group treated with 50 mg/kg berberine hydrochloride and low-, medium- and high-dose MPTA groups treated with 6, 12 and 24 mg/kg MPTAs, respectively. Histological analysis of the ileum, jejunum and duodenum was performed using Hematoxylin and Eosin (H&E) staining. Moreover, the quantification of intestinal goblet cells (GCs) was performed based on PAS staining. The serum levels of IL-1β, IL-6, IL-8 and TNF-α were quantified using an enzyme-linked immunosorbent assay (ELISA), while the mRNA levels of TLR4, NF-κB p65, NLRP3, IL-6 and IL-1β were assessed using quantitative PCR (qPCR). The protein levels of TLR4, Md-2, MyD88, NF-κB p65 and NLRP3 were determined using Western blotting. Furthermore, the 16S rDNA sequences of bacterial taxa were amplified and analysed to determine alterations in the gut microbiota of the mice following MPTA treatment. Different doses of MPTAs were found to elicit distinct therapeutic effects, leading to enhanced intestinal morphology and an increased abundance of intestinal GCs. A significant decrease was noted in the levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α). Additionally, the protein levels of TLR4, MyD88, NLRP3 and p-p65/p65 were markedly reduced by MPTA treatment. Furthermore, 16S rDNA sequencing analysis revealed that the administration of 24 mg/kg MPTAs facilitated the restoration of microbial composition.
Collapse
Affiliation(s)
- Jialu Huang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Meishan Yue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| | - Jianguo Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (M.Y.)
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (Y.Y.); (Y.L.)
| |
Collapse
|
7
|
Gao X, Ma Q, Zhang X, Wang X, Wang N, Cui Y, Li S, Ma S, Wang H, Zhang K. The reference genome sequence of Artemisia argyi provides insights into secondary metabolism biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406592. [PMID: 39006964 PMCID: PMC11239399 DOI: 10.3389/fpls.2024.1406592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.
Collapse
Affiliation(s)
- Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xiaomeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xingyun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuyan Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hong Wang
- Henan Artemisia Argyi Medical Research Center, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
8
|
Zhu J, Zhang K, He Y, Zhang Q, Ran Y, Tan Z, Cui L, Feng Y. Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis. Microb Cell Fact 2024; 23:183. [PMID: 38902758 PMCID: PMC11191272 DOI: 10.1186/s12934-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming. RESULTS The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain. CONCLUSIONS This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kai Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yuanzhi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yanpeng Ran
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zaigao Tan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
9
|
Gou Y, Li D, Zhao M, Li M, Zhang J, Zhou Y, Xiao F, Liu G, Ding H, Sun C, Ye C, Dong C, Gao J, Gao D, Bao Z, Huang L, Xu Z, Lian J. Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast. Nat Commun 2024; 15:5238. [PMID: 38898098 PMCID: PMC11186835 DOI: 10.1038/s41467-024-49554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.
Collapse
Affiliation(s)
- Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiaojiao Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yilian Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Gaofei Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Haote Ding
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Chenfan Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Wu X, Ibrahim N, Liang Y, Liu X. Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata. Microorganisms 2024; 12:1088. [PMID: 38930470 PMCID: PMC11206080 DOI: 10.3390/microorganisms12061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 μg/L) and chelerythrine (393.31 μg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Yili Liang
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (N.I.)
| |
Collapse
|
11
|
Liu X, Ren Y, Qin S, Yang Z. Exploring the mechanism of 6-Methoxydihydrosanguinarine in the treatment of lung adenocarcinoma based on network pharmacology, molecular docking and experimental investigation. BMC Complement Med Ther 2024; 24:202. [PMID: 38783288 PMCID: PMC11119275 DOI: 10.1186/s12906-024-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND 6-Methoxydihydrosanguinarine (6-MDS) has shown promising potential in fighting against a variety of malignancies. Yet, its anti‑lung adenocarcinoma (LUAD) effect and the underlying mechanism remain largely unexplored. This study sought to explore the targets and the probable mechanism of 6-MDS in LUAD through network pharmacology and experimental validation. METHODS The proliferative activity of human LUAD cell line A549 was evaluated by Cell Counting Kit-8 (CCK8) assay. LUAD related targets, potential targets of 6-MDS were obtained from databases. Venn plot analysis were performed on 6-MDS target genes and LUAD related genes to obtain potential target genes for 6-MDS treatment of LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was utilized to perform a protein-protein interaction (PPI) analysis, which was then visualized by Cytoscape. The hub genes in the network were singled out by CytoHubba. Metascape was employed for GO and KEGG enrichment analyses. molecular docking was carried out using AutoDock Vina 4.2 software. Gene expression levels, overall survival of hub genes were validated by the GEPIA database. Protein expression levels, promotor methylation levels of hub genes were confirmed by the UALCAN database. Timer database was used for evaluating the association between the expression of hub genes and the abundance of infiltrating immune cells. Furthermore, correlation analysis of hub genes expression with immune subtypes of LUAD were performed by using the TISIDB database. Finally, the results of network pharmacology analysis were validated by qPCR. RESULTS Experiments in vitro revealed that 6-MDS significantly reduced tumor growth. A total of 33 potential targets of 6-MDS in LUAD were obtained by crossing the LUAD related targets with 6-MDS targets. Utilizing CytoHubba, a network analysis tool, the top 10 genes with the highest centrality measures were pinpointed, including MMP9, CDK1, TYMS, CCNA2, ERBB2, CHEK1, KIF11, AURKB, PLK1 and TTK. Analysis of KEGG enrichment hinted that these 10 hub genes were located in the cell cycle signaling pathway, suggesting that 6-MDS may mainly inhibit the occurrence of LUAD by affecting the cell cycle. Molecular docking analysis revealed that the binding energies between 6-MDS and the hub proteins were all higher than - 6 kcal/Mol with the exception of AURKB, indicating that the 9 targets had strong binding ability with 6-MDS.These results were corroborated through assessments of mRNA expression levels, protein expression levels, overall survival analysis, promotor methylation level, immune subtypes andimmune infiltration. Furthermore, qPCR results indicated that 6-MDS can significantly decreased the mRNA levels of CDK1, CHEK1, KIF11, PLK1 and TTK. CONCLUSIONS According to our findings, it appears that 6-MDS could possibly serve as a promising option for the treatment of LUAD. Further investigations in live animal models are necessary to confirm its potential in fighting cancer and to delve into the mechanisms at play.
Collapse
Affiliation(s)
- Xingyun Liu
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China
| | - Yanling Ren
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510086, China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, China.
| | - Zerui Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 510086, China.
| |
Collapse
|
12
|
An Z, Gao R, Chen S, Tian Y, Li Q, Tian L, Zhang W, Kong L, Zheng B, Hao L, Xin T, Yao H, Wang Y, Song W, Hua X, Liu C, Song J, Fan H, Sun W, Chen S, Xu Z. Lineage-Specific CYP80 Expansion and Benzylisoquinoline Alkaloid Diversity in Early-Diverging Eudicots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309990. [PMID: 38477432 PMCID: PMC11109638 DOI: 10.1002/advs.202309990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Collapse
Affiliation(s)
- Zhoujie An
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ya Tian
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Qi Li
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lixia Tian
- School of Pharmaceutical SciencesGuizhou UniversityGuiyang550025China
| | - Wanran Zhang
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lingzhe Kong
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Baojiang Zheng
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wei Song
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Xin Hua
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Chengwei Liu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of HerbgenomicsChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zhichao Xu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
13
|
Xiang KL, Wu SD, Lian L, He WC, Peng D, Peng HW, Zhang XN, Li HL, Xue JY, Shan HY, Xu GX, Liu Y, Wu ZQ, Wang W. Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. SCIENCE CHINA. LIFE SCIENCES 2024; 67:803-816. [PMID: 38087029 DOI: 10.1007/s11427-023-2448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 04/06/2024]
Abstract
Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.
Collapse
Affiliation(s)
- Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- China National Botanical Garden, Beijing, 100093, China
| | - Sheng-Dan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Zhi-Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Becker A, Bachelier JB, Carrive L, Conde E Silva N, Damerval C, Del Rio C, Deveaux Y, Di Stilio VS, Gong Y, Jabbour F, Kramer EM, Nadot S, Pabón-Mora N, Wang W. A cornucopia of diversity-Ranunculales as a model lineage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1800-1822. [PMID: 38109712 DOI: 10.1093/jxb/erad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Giessen, Germany
| | - Julien B Bachelier
- Institute of Biology/Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Laetitia Carrive
- Université de Rennes, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Natalia Conde E Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Cédric Del Rio
- CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - Sorbonne Université - CNRS, 43 Rue Buffon, 75005 Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | | | - Yan Gong
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie, Systématique et Evolution, Gif-sur-Yvette, France
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China and University of Chinese Academy of Sciences, Beijing, 100049China
| |
Collapse
|
15
|
Liu Z, Shen S, Wang Y, Sun S, Yu T, Fu Y, Zhou R, Li C, Cao R, Zhang Y, Li N, Sun L, Song X. The genome of Stephania japonica provides insights into the biosynthesis of cepharanthine. Cell Rep 2024; 43:113832. [PMID: 38381605 DOI: 10.1016/j.celrep.2024.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yujie Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuqi Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tong Yu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rui Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanshu Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Liangdan Sun
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
16
|
Liu X, Ma Y, Bu J, Lian C, Ma R, Li Q, Jiao X, Hu Z, Chen Y, Chen S, Guo J, Huang L. Characterization of CYP82 genes involved in the biosynthesis of structurally diverse benzylisoquinoline alkaloids in Corydalis yanhusuo. PLANT MOLECULAR BIOLOGY 2024; 114:23. [PMID: 38453737 DOI: 10.1007/s11103-023-01397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/27/2023] [Indexed: 03/09/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Junling Bu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Conglong Lian
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Rui Ma
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiang Jiao
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Zhimin Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Suiqing Chen
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China.
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China.
| |
Collapse
|
17
|
Sun M, Zhong X, Zhou L, Liu W, Song R, Huang P, Zeng J. CRISPR/Cas9 revolutionizes Macleaya cordata breeding: a leap in sanguinarine biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae024. [PMID: 38495029 PMCID: PMC10940120 DOI: 10.1093/hr/uhae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Mengshan Sun
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiaohong Zhong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Li Zhou
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Rong Song
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Hunan Agricultural University, Changsha 410128, Hunan, China
| |
Collapse
|
18
|
Leng L, Xu Z, Hong B, Zhao B, Tian Y, Wang C, Yang L, Zou Z, Li L, Liu K, Peng W, Liu J, An Z, Wang Y, Duan B, Hu Z, Zheng C, Zhang S, Li X, Li M, Liu Z, Bi Z, He T, Liu B, Fan H, Song C, Tong Y, Chen S. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery. Nat Commun 2024; 15:1537. [PMID: 38378731 PMCID: PMC10879537 DOI: 10.1038/s41467-024-45690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.
Collapse
Affiliation(s)
- Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lulu Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Zhoujie An
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaodong Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baimei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Mahajan S, Chakraborty A, Bisht MS, Sil T, Sharma VK. Genome sequencing and functional analysis of a multipurpose medicinal herb Tinospora cordifolia (Giloy). Sci Rep 2024; 14:2799. [PMID: 38307917 PMCID: PMC10837142 DOI: 10.1038/s41598-024-53176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.
Collapse
Affiliation(s)
- Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Titas Sil
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
20
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
21
|
Dai JS, Xu J, Shen HJ, Chen NP, Zhu BQ, Xue ZJ, Chen HH, Ding ZS, Ding R, Qian CD. The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump. Microbiol Spectr 2024; 12:e0323723. [PMID: 38038452 PMCID: PMC10783092 DOI: 10.1128/spectrum.03237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.
Collapse
Affiliation(s)
- Jian-Sheng Dai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Jie Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Jie Xue
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Han Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chao-Dong Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
23
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Wang X, Wang L, Zhang J, Liu Y, Xie H, Zeng J, Cheng P. Photoredox catalysed reductive aminomethylation of quaternary benzophenanthridine alkaloids. Nat Prod Res 2023; 37:3551-3555. [PMID: 35767365 DOI: 10.1080/14786419.2022.2092732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Reduction of C = N double bond is the most important phase I metabolism process of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the NADPH mediated reduction in QBAs, a visible-light promoted reductive aminomethylation of QBAs for synthesis of 6-substituted benzophenanthridines was reported using QBAs and N,N-dimethylaniline as coupling partners in this study. An α-amino radical that derived from QBAs was supposed to be the key intermediate in this visible-light promoted reductive aminomethylation reaction.
Collapse
Affiliation(s)
- Xinhao Wang
- Hunan Agricultural University, Changsha, Hunan, China
| | - Lin Wang
- Hunan Agricultural University, Changsha, Hunan, China
| | | | - Yisong Liu
- Hunan Agricultural University, Changsha, Hunan, China
| | - Hongqi Xie
- Hunan Agricultural University, Changsha, Hunan, China
| | - Jianguo Zeng
- Hunan Agricultural University, Changsha, Hunan, China
| | - Pi Cheng
- Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
25
|
Liu W, Tian X, Feng Y, Hu J, Wang B, Chen S, Liu D, Liu Y. Genome-wide analysis of bHLH gene family in Coptis chinensis provides insights into the regulatory role in benzylisoquinoline alkaloid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107846. [PMID: 37390693 DOI: 10.1016/j.plaphy.2023.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Coptis chinensis Franch is a perennial species with high medical value. The rhizome of C. chinensis is a traditional Chinese medicine widely used for more than 2000 years in China. Its principal active ingredients are benzylisoquinoline alkaloids (BIAs). The basic helix-loop-helix (bHLH) transcription factors play an important regulatory role in the biosynthesis of plant secondary metabolites. However, the bHLH genes in C. chinensis have not been described, and little is known about their roles in alkaloid biosynthesis. In this study, a total of 143 CcbHLH genes (CcbHLHs) were identified and unevenly distributed on nine chromosomes. Phylogenetic analysis divided the 143 CcbHLH proteins into 26 subfamilies by comparison with Arabidopsis thaliana bHLH proteins. The majority CcbHLHs in each subgroup had similar gene structures and conserved motifs. Furthermore, the physicochemical properties, conserved motif, intron/exon composition, and cis-acting elements of CcbHLHs were analyzed. Transcriptome analysis revealed that 30 CcbHLHs were significantly expressed in the rhizomes of C. chinensis. Co-expression analysis revealed that 11 CcbHLHs were highly positively correlated with contents of various alkaloids of C. chinensis. Moreover, yeast one-hybrid experiments verified that CcbHLH001 and CcbHLH0002 could interact with the promoters of berberine biosynthesis pathway genes CcBBE and CcCAS, suggesting their regulatory roles in BIA biosynthesis. This study provides comprehensive insights into the bHLH gene family in C. chinensis and will support in-depth functional characterization of CcbHLHs involved in the regulation of protoberberine-type alkaloid biosynthesis.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xufang Tian
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Shilin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yifei Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
26
|
Zhang H, Hu L, Du X, Shah AA, Ahmad B, Yang L, Mu Z. Response and Tolerance of Macleaya cordata to Excess Zinc Based on Transcriptome and Proteome Patterns. PLANTS (BASEL, SWITZERLAND) 2023; 12:2275. [PMID: 37375899 DOI: 10.3390/plants12122275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Macleaya cordata is a dominant plant of mine tailings and a zinc (Zn) accumulator with high Zn tolerance. In this study, M. cordata seedlings cultured in Hoagland solution were treated with 200 μmol·L-1 of Zn for 1 day or 7 days, and then, their leaves were taken for a comparative analysis of the transcriptomes and proteomes between the leaves of the control and Zn treatments. Differentially expressed genes included those that were iron (Fe)-deficiency-induced, such as vacuolar iron transporter VIT, ABC transporter ABCI17 and ferric reduction oxidase FRO. Those genes were significantly upregulated by Zn and could be responsible for Zn transport in the leaves of M. cordata. Differentially expressed proteins, such as chlorophyll a/b-binding proteins, ATP-dependent protease, and vacuolar-type ATPase located on the tonoplast, were significantly upregulated by Zn and, thus, could be important in chlorophyll biosynthesis and cytoplasm pH stabilization. Moreover, the changes in Zn accumulation, the production of hydrogen peroxide, and the numbers of mesophyll cells in the leaves of M. cordata were consistent with the expression of the genes and proteins. Thus, the proteins involved in the homeostasis of Zn and Fe are hypothesized to be the keys to the tolerance and accumulation of Zn in M. cordata. Such mechanisms in M. cordata can suggest novel approaches to genetically engineering and biofortifying crops.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Linfeng Hu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinlong Du
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Assar Ali Shah
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Baseer Ahmad
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Yang
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiying Mu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
27
|
Yang Z, Luo Y, Xia X, He J, Zhang J, Zeng Q, Li D, Ma B, Zhang S, Zhai C, Chen M, He N. Dehydrogenase MnGutB1 catalyzes 1-deoxynojirimycin biosynthesis in mulberry. PLANT PHYSIOLOGY 2023; 192:1307-1320. [PMID: 36800200 PMCID: PMC10231399 DOI: 10.1093/plphys/kiad065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
As the prevalence of diabetes continues to increase, the number of individuals living with diabetes complications will reach an unprecedented magnitude. Continuous use of some synthetic agents to reduce blood glucose levels causes severe side effects, and thus, the demand for nontoxic, affordable drugs persists. Naturally occurring compounds, such as iminosugars derived from the mulberry (Morus spp.), have been shown to reduce blood glucose levels. In mulberry, 1-deoxynojirimycin (DNJ) is the predominant iminosugar. However, the mechanism underlying DNJ biosynthesis is not completely understood. Here, we showed that DNJ in mulberry is derived from sugar and catalyzed through 2-amino-2-deoxy-D-mannitol (ADM) dehydrogenase MnGutB1. Combining both targeted and nontargeted metabolite profiling methods, DNJ and its precursors ADM and nojirimycin (NJ) were quantified in mulberry samples from different tissues. Purified His-tagged MnGutB1 oxidized the hexose derivative ADM to form the 6-oxo compound DNJ. The mutant MnGutB1 D283N lost this remarkable capability. Furthermore, in contrast to virus-induced gene silencing of MnGutB1 in mulberry leaves that disrupted the biosynthesis of DNJ, overexpression of MnGutB1 in hairy roots and light-induced upregulation of MnGutB1 enhanced DNJ accumulation. Our results demonstrated that hexose derivative ADM, rather than lysine derivatives, is the precursor in DNJ biosynthesis, and it is catalyzed by MnGutB1 to form the 6-oxo compound. These results represent a breakthrough in producing DNJ and its analogs for medical use by metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoyu Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jinzhi He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jiajia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Changxin Zhai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Miao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Zhang H, Hu L, Du X, Sun X, Wang T, Mu Z. Physiological and molecular response and tolerance of Macleaya cordata to lead toxicity. BMC Genomics 2023; 24:277. [PMID: 37226137 DOI: 10.1186/s12864-023-09378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Macleaya cordata is a traditional medicinal herb, and it has high tolerance and accumulation ability to heavy metals, which make it a good candidate species for studying phytoremediation. The objectives of this study were to investigate response and tolerance of M. cordata to lead (Pb) toxicity based on comparative analysis of transcriptome and proteome. RESULTS In this study, the seedlings of M. cordata cultured in Hoagland solution were treated with 100 µmol·L- 1 Pb for 1 day (Pb 1d) or 7 days (Pb 7d), subsequently leaves of M. cordata were taken for the determination of Pb accumulation and hydrogen peroxide production (H2O2), meanwhile a total number of 223 significantly differentially expressed genes (DEGs) and 296 differentially expressed proteins (DEPs) were screened between control and Pb treatments. The results showed leaves of M. cordata had a special mechanism to maintain Pb at an appropriate level. Firstly, some DEGs were iron (Fe) deficiency-induced transporters, for example, genes of vacuolar iron transporter and three ABC transporter I family numbers were upregulated by Pb, which can maintain Fe homeostasis in cytoplasm or chloroplast. In addition, five genes of calcium (Ca2+) binding proteins were downregulated in Pb 1d, which may regulate cytoplasmic Ca2+ concentration and H2O2 signaling pathway. On the other hand, the cysteine synthase upregulated, glutathione S-transferase downregulated and glutathione reductase downregulated in Pb 7d can cause reduced glutathione accumulation and decrease Pb detoxification in leaves. Furthermore, DEPs of eight chlorophyll a/b binding proteins, five ATPases and eight ribosomal proteins can play a pivotal role on chloroplast turnover and ATP metabolism. CONCLUSIONS Our results suggest that the proteins involved in Fe homeostasis and chloroplast turnover in mesophyll cells may play key roles in tolerance of M. cordata to Pb. This study offers some novel insights into Pb tolerance mechanism of plants, and the potential valuable for environmental remediation of this important medicinal plant.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Linfeng Hu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Xinlong Du
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xijing Sun
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ting Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhiying Mu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
29
|
Becker A, Yamada Y, Sato F. California poppy ( Eschscholzia californica), the Papaveraceae golden girl model organism for evodevo and specialized metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1084358. [PMID: 36938015 PMCID: PMC10017456 DOI: 10.3389/fpls.2023.1084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
California poppy or golden poppy (Eschscholzia californica) is the iconic state flower of California, with native ranges from Northern California to Southwestern Mexico. It grows well as an ornamental plant in Mediterranean climates, but it might be invasive in many parts of the world. California poppy was also highly prized by Native Americans for its medicinal value, mainly due to its various specialized metabolites, especially benzylisoquinoline alkaloids (BIAs). As a member of the Ranunculales, the sister lineage of core eudicots it occupies an interesting phylogenetic position. California poppy has a short-lived life cycle but can be maintained as a perennial. It has a comparatively simple floral and vegetative morphology. Several genetic resources, including options for genetic manipulation and a draft genome sequence have been established already with many more to come. Efficient cell and tissue culture protocols are established to study secondary metabolite biosynthesis and its regulation. Here, we review the use of California poppy as a model organism for plant genetics, with particular emphasis on the evolution of development and BIA biosynthesis. In the future, California poppy may serve as a model organism to combine two formerly separated lines of research: the regulation of morphogenesis and the regulation of secondary metabolism. This can provide insights into how these two integral aspects of plant biology interact with each other.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Lab, Institute of Botany, Hustus-Liebig-University, Giessen, Germany
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Science, Kyoto, Japan
- Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
30
|
Zhang H, Sun X, Hwarari D, Du X, Wang Y, Xu H, Lv S, Wang T, Yang L, Hou D. Oxidative Stress Response and Metal Transport in Roots of Macleaya cordata Exposed to Lead and Zinc. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030516. [PMID: 36771604 PMCID: PMC9920459 DOI: 10.3390/plants12030516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 05/31/2023]
Abstract
Heavy metal pollution possesses potential hazards to plant, animal and human health, which has become the focus of recent attention. Hence, phytoremediation has been regarded as one of the most important remediation technologies for heavy-metal-contaminated soils. In this research, a dominant mine tailing plant, Macleaya cordata, was used as the experimental material to compare the metal transport and oxidative stress response in its roots under lead (Pb) and zinc (Zn) treatments. The result showed that Pb was mainly accumulated in the roots of M. cordata under the Pb treatment; less than 1% Pb was transported to the parts above. An analysis of the Zn content demonstrated a 39% accumulation in the shoots. The production of reactive oxygen species was detected using the in situ histological staining of roots, which showed that hydrogen peroxide in the root tips was observed to increase with the increase in both Pb and Zn concentrations. No significant superoxide anion changes were noted in the root tips under the Pb treatment. An analysis of the root enzyme activity showed that increase in NADPH oxidase activity can be responsible for the production of superoxide anions, subsequent the inhibition of root growth and decrease in antioxidant enzyme activities in the roots of M. cordata exposed to excess Zn. In total, this research provides evidence that the root of M. cordata has a high antioxidant capacity for Pb stress, so it can accumulate more Pb without oxidative damage. On the other hand, the Zn accumulated in the roots of M. cordata causes oxidative damage to the root tips, which can stimulate more Zn transport to the shoots to reduce the damage to the roots. This result will provide a basis for the application of M. cordata in the phytoremediation of soil polluted by Pb-Zn compounds.
Collapse
Affiliation(s)
- Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Xijing Sun
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinlong Du
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Yinghao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Ting Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
31
|
Chen G, Mostafa S, Lu Z, Du R, Cui J, Wang Y, Liao Q, Lu J, Mao X, Chang B, Gan Q, Wang L, Jia Z, Yang X, Zhu Y, Yan J, Jin B. The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00171-1. [PMID: 36587654 PMCID: PMC10372924 DOI: 10.1016/j.gpb.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novo genome of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase genes associated with flower fragrance are significantly amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and BAHD superfamilies were identified as related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing increased copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis and provides a foundation for functional genomic research and variety improvements in Jasminum.
Collapse
Affiliation(s)
- Gang Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jinkai Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Mao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bang Chang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhichao Jia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Yingfang Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
32
|
Yang Y, Sun Y, Wang Z, Yin M, Sun R, Xue L, Huang X, Wang C, Yan X. Full-length transcriptome and metabolite analysis reveal reticuline epimerase-independent pathways for benzylisoquinoline alkaloids biosynthesis in Sinomenium acutum. FRONTIERS IN PLANT SCIENCE 2022; 13:1086335. [PMID: 36605968 PMCID: PMC9808091 DOI: 10.3389/fpls.2022.1086335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a large family of plant natural products with important pharmaceutical applications. Sinomenium acutum is a medicinal plant from the Menispermaceae family and has been used to treat rheumatoid arthritis for hundreds of years. Sinomenium acutum contains more than 50 BIAs, and sinomenine is a representative BIA from this plant. Sinomenine was found to have preventive and curative effects on opioid dependence. Despite the broad applications of S. acutum, investigation on the biosynthetic pathways of BIAs from S. acutum is limited. In this study, we comprehensively analyzed the transcriptome data and BIAs in the root, stem, leaf, and seed of S. acutum. Metabolic analysis showed a noticeable difference in BIA contents in different tissues. Based on the study of the full-length transcriptome, differentially expressed genes, and weighted gene co-expression network, we proposed the biosynthetic pathways for a few BIAs from S. acutum, such as sinomenine, magnoflorine, and tetrahydropalmatine, and screened candidate genes involved in these biosynthesis processes. Notably, the reticuline epimerase (REPI/STORR), which converts (S)-reticuline to (R)-reticuline and plays an essential role in morphine and codeine biosynthesis, was not found in the transcriptome data of S. acutum. Our results shed light on the biogenesis of the BIAs in S. acutum and may pave the way for the future development of this important medicinal plant.
Collapse
Affiliation(s)
- Yufan Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ying Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- WuXi AppTec (Tianjin) Co., Ltd., Tianjin, China
| | - Zhaoxin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Maojing Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Runze Sun
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Li X, Cai K, Fan Z, Wang J, Wang L, Wang Q, Wang L, Pei X, Zhao X. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111461. [PMID: 36122814 DOI: 10.1016/j.plantsci.2022.111461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Phellodendron amurense (Rupr.) is a well-known medicinal plant with high medicinal value, and its various tissues are enriched in various active pharmaceutical ingredients. Isoquinoline alkaloids are the primary medicinal component of P. amurense and have multiple effects, such as anti-inflammation, antihypertension, and antitumor effects. However, the potential regulatory mechanism of isoquinoline alkaloid biosynthesis during stem development in P. amurense is still poorly understood. In the present study, a total of eight plant hormones for each stem development stage were detected; of those, auxin, gibberellins and brassinosteroids were significantly highly increased in perennial stems and played key roles during stem development in P. amurense. We also investigated the content and change pattern of secondary metabolites and comprehensively identified some key structural genes involved in the isoquinoline alkaloid biosynthesis pathway by combining the transcriptome and metabolomics. A total of 39,978 DEGs were identified in the present study, and six of those had candidate structural genes (NCS, GOT2, TYNA, CODM, TYR, TAT and PSOMT1) that were specifically related to isoquinoline alkaloid biosynthesis in P. amurense. Corydalmine, cyclanoline, dehydroyanhunine, (S)-canadine and corybulbine were the most significantly upregulated metabolites among the different comparative groups. Three differentially expressed metabolites, dopamine, (S)-corytuberine and (S)-canadine, were enriched in the isoquinoline alkaloid biosynthesis pathway. Furthermore, bHLH and WRKY transcription factors play key roles in the isoquinoline alkaloid biosynthesis pathway in P. amurense. The results not only provide comprehensive genetic information for understanding the molecular mechanisms of isoquinoline alkaloid biosynthesis but also lay a foundation for the combinatory usage of the medicinal active ingredient of P. amurense.
Collapse
Affiliation(s)
- Xiang Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| | - Zuoyi Fan
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Jingyuan Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Lianfu Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Qi Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Lixing Wang
- Linjiang Forestry Bureau of Jilin Province, Linjiang 134600, China.
| | - Xiaona Pei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China.
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 15004, China.
| |
Collapse
|
34
|
Zhong S, Li B, Chen W, Wang L, Guan J, Wang Q, Yang Z, Yang H, Wang X, Yu X, Fu P, Liu H, Chen C, Tan F, Ren T, Shen J, Luo P. The chromosome-level genome of Akebia trifoliata as an important resource to study plant evolution and environmental adaptation in the Cretaceous. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1316-1330. [PMID: 36305286 DOI: 10.1111/tpj.16011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The environmental adaptation of eudicots is the most reasonable explanation for why they compose the largest clade of modern plants (>70% of angiosperms), which indicates that the basal eudicots would be valuable and helpful to study their survival and ability to thrive throughout evolutionary processes. Here, we detected two whole-genome duplication (WGD) events in the high-quality assembled Akebia trifoliata genome (652.73 Mb) with 24 138 protein-coding genes based on the evidence of intragenomic and intergenomic collinearity, synonymous substitution rate (KS ) values and polyploidization and diploidization traces; these events putatively occurred at 85.15 and 146.43 million years ago (Mya). The integrated analysis of 16 species consisting of eight basal and eight core eudicots further revealed that there was a putative ancient WGD at the early stage of eudicots (temporarily designated θ) at 142.72 Mya, similar to the older WGD of Akebia trifoliata, and a putative core eudicot-specific WGD (temporarily designated ω). Functional enrichment analysis of retained duplicate genes following the θ event is suggestive of adaptation to the extreme environment change in both the carbon dioxide concentration and desiccation around the Jurassic-Cretaceous boundary, while the retained duplicate genes following the ω event is suggestive of adaptation to the extreme droughts, possibly leading to the rapid spread of eudicots in the mid-Cretaceous. Collectively, the A. trifoliata genome experienced two WGD events, and the older event may have occurred at the early stage of eudicots, which likely increased plant environmental adaptability and helped them survive in ancient extreme environments.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road in Haidian District, 100193, Beijing, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Bin Li
- State Key Laboratory of Tree Breeding and Forest Genetics, Research Institute of Forestry, Chinese Academy of Forestry, 1 Dongxiaofu Xiangshan Road in Haidian District, 100091, Beijing, China
| | - Wei Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Lili Wang
- Biomarker Technologies Co., Ltd, 12 Fuqian Street in Shunyi District, 101300, Beijing, China
| | - Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Zujun Yang
- Center for Information in Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue in West Hi-Tech Zone, 611731, Chengdu, Sichuan Province, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Xianshu Wang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Xiaojiao Yu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Peng Fu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Hongchang Liu
- Guizhou Key Laboratory for Propagation and Cultivation of Medicinal Plants, Guizhou University, 2708 Huaxi South Avenue in Huaxi District, 550025, Guiyang, Guizhou province, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road in Wenjiang District, 611130, Chengdu, Sichuan Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road in Haidian District, 100193, Beijing, China
| |
Collapse
|
35
|
Shen G, Luo Y, Yao Y, Meng G, Zhang Y, Wang Y, Xu C, Liu X, Zhang C, Ding G, Pang Y, Zhang H, Guo B. The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome. FRONTIERS IN PLANT SCIENCE 2022; 13:1034943. [PMID: 36452098 PMCID: PMC9702526 DOI: 10.3389/fpls.2022.1034943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.
Collapse
Affiliation(s)
- Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Guoqing Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Roy NS, Park NI, Kim NS, Park Y, Kim BY, Kim YD, Yu JK, Kim YI, Um T, Kim S, Choi IY. Comparative Transcriptomics for Genes Related to Berberine and Berbamine Biosynthesis in Berberidaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2676. [PMID: 36297700 PMCID: PMC9610958 DOI: 10.3390/plants11202676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Berberine and berbamine are bioactive compounds of benzylisoquinoline alkaloids (BIAs) present in Berberis species. The contents of berbamine are 20 times higher than berberine in leaf tissues in three closely related species: Berberis koreana, B. thunbergii and B. amurensis. This is the first report on the quantification of berberine compared to the berbamine in the Berberis species. Comparative transcriptome analyses were carried out with mRNAs from the leaf tissues of the three-species. The comparison of the transcriptomes of B. thunbergii and B. amurensis to those of B. koreana, B. thunbergii showed a consistently higher number of differentially expressed genes than B. amurensis in KEGG and DEG analyses. All genes encoding enzymes involved in berberine synthesis were identified and their expressions were variable among the three species. There was a single copy of CYP80A/berbamunine synthase in B. koreana. Methyltransferases and cytochrome P450 mono-oxidases (CYPs) are key enzymes for BIA biosynthesis. The current report contains the copy numbers and other genomic characteristics of the methyltransferases and CYPs in Berberis species. Thus, the contents of the current research are valuable for molecular characterization for the medicinal utilization of the Berberis species.
Collapse
Affiliation(s)
- Neha Samir Roy
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Nam-Soo Kim
- NBIT, Kangwon National University, Gangwondaehakgil-1, Bodeumkwan 504, Chuncheon 24341, Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Young-Dong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Korea
| | - Ju-Kyung Yu
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Yong-In Kim
- On Biological Resource Research Institute, Chuncheon 24239, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Ik-Young Choi
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
37
|
Lin XL, Shi YN, Cao YL, Tan X, Zeng YL, Luo ST, Li YM, Qin L, Xia BH, Fu RG, Lin LM, Li K, Cao D, Zeng JG, Liao DF. Sanguinarine protects against indomethacin-induced small intestine injury in rats by regulating the Nrf2/NF-κB pathways. Front Pharmacol 2022; 13:960140. [PMID: 36304153 PMCID: PMC9593053 DOI: 10.3389/fphar.2022.960140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1β, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.
Collapse
Affiliation(s)
- Xiu-lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ning Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-ling Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Tan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-ling Zeng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shi-teng Luo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bo-hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong-geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li-mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kai Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Jian-guo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| | - Duan-fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Deliang Cao, ; Jian-guo Zeng, ; Duan-fang Liao,
| |
Collapse
|
38
|
Guo L, Yao H, Chen W, Wang X, Ye P, Xu Z, Zhang S, Wu H. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. HORTICULTURE RESEARCH 2022; 9:uhac223. [PMID: 36479585 PMCID: PMC9720450 DOI: 10.1093/hr/uhac223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Globally, medicinal plant natural products (PNPs) are a major source of substances used in traditional and modern medicine. As we human race face the tremendous public health challenge posed by emerging infectious diseases, antibiotic resistance and surging drug prices etc., harnessing the healing power of medicinal plants gifted from mother nature is more urgent than ever in helping us survive future challenge in a sustainable way. PNP research efforts in the pre-genomic era focus on discovering bioactive molecules with pharmaceutical activities, and identifying individual genes responsible for biosynthesis. Critically, systemic biological, multi- and inter-disciplinary approaches integrating and interrogating all accessible data from genomics, metabolomics, structural biology, and chemical informatics are necessary to accelerate the full characterization of biosynthetic and regulatory circuitry for producing PNPs in medicinal plants. In this review, we attempt to provide a brief update on the current research of PNPs in medicinal plants by focusing on how different state-of-the-art biotechnologies facilitate their discovery, the molecular basis of their biosynthesis, as well as synthetic biology. Finally, we humbly provide a foresight of the research trend for understanding the biology of medicinal plants in the coming decades.
Collapse
Affiliation(s)
- Li Guo
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weikai Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Ye
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sisheng Zhang
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
39
|
Xu Z, Li Z, Ren F, Gao R, Wang Z, Zhang J, Zhao T, Ma X, Pu X, Xin T, Rombauts S, Sun W, Van de Peer Y, Chen S, Song J. The genome of Corydalis reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:217-230. [PMID: 35476217 PMCID: PMC7614287 DOI: 10.1111/tpj.15788] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 05/05/2023]
Abstract
Species belonging to the order Ranunculales have attracted much attention because of their phylogenetic position as a sister group to all other eudicot lineages and their ability to produce unique yet diverse benzylisoquinoline alkaloids (BIAs). The Papaveraceae family in Ranunculales is often used as a model system for studying BIA biosynthesis. Here, we report the chromosome-level genome assembly of Corydalis tomentella, a species of Fumarioideae, one of the two subfamilies of Papaveraceae. Based on comparisons of sequenced Ranunculalean species, we present clear evidence of a shared whole-genome duplication (WGD) event that has occurred before the divergence of Ranunculales but after its divergence from other eudicot lineages. The C. tomentella genome enabled us to integrate isotopic labeling and comparative genomics to reconstruct the BIA biosynthetic pathway for both sanguinarine biosynthesis shared by papaveraceous species and the cavidine biosynthesis that is specific to Corydalis. Also, our comparative analysis revealed that gene duplications, especially tandem gene duplications, underlie the diversification of BIA biosynthetic pathways in Ranunculales. In particular, tandemly duplicated berberine bridge enzyme-like genes appear to be involved in cavidine biosynthesis. In conclusion, our study of the C. tomentella genome provides important insights into the occurrence of WGDs during the early evolution of eudicots, as well as into the evolution of BIA biosynthesis in Ranunculales.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinlan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- Academy for Advanced Interdisciplinary Studies and College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, China
- Corresponding Authors: Jingyuan Song (), Shilin Chen (), and Yves Van de Peer ()
| |
Collapse
|
40
|
Hu Z, Hu H, Hu Z, Zhong X, Guan Y, Zhao Y, Wang L, Ye L, Ming L, Riaz Rajoka MS, He Z, Wang Y, Song X. Sanguinarine, Isolated From Macleaya cordata, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Inhibiting Ergosterol Synthesis. Front Microbiol 2022; 13:908461. [PMID: 35783394 PMCID: PMC9240711 DOI: 10.3389/fmicb.2022.908461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
In recent decades, infections caused by the opportunistic fungus Candida albicans have increased, especially in patients with immunodeficiency. In this study, we investigated the mechanism of action of sanguinarine (SAN) against C. albicans both in vitro and in vivo. SAN exhibited antifungal activity against C. albicans clinical isolates, with MICs in the range of 112.8-150.5 μM. Furthermore, scanning electron and transmission electron microscopy showed that SAN induced morphological changes as well as structure disruption in C. albicans cells, including masses of cellular debris, ruptured cell walls, and membrane deformation. Flow cytometry revealed that SAN could lead to cell membrane damage, and ergosterol content analysis indicated that SAN could cause ergosterol content reduction exceeding 90%. Further, we validated the efficacy of SAN against candidiasis caused by C. albicans in a murine model, and SAN significantly improved survival and reduced weight loss compared to vehicle. The treatment of 1.5 and 2.5 mg/kg/d SAN obviously reduced the fungal burden in the kidney. In addition, histopathological examination indicated that no fungal cells were observed in lung and kidney tissues after SAN treatment. Hence, this study suggests that SAN is a promising plant-derived compound for the development of an effective anticandidal agent.
Collapse
Affiliation(s)
- Ziwei Hu
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hao Hu
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhili Hu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaojun Zhong
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yifu Guan
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Yunshi Zhao
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lu Wang
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Liang Ye
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Yan Wang
- Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xun Song
- School of Basic Medicine, School of Pharmaceutical Sciences, Respiratory Medicine Department, Shenzhen University General Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
41
|
Plant-microbe hybrid synthesis provides new insights for the efficient use of Macleaya cordata. World J Microbiol Biotechnol 2022; 38:110. [PMID: 35546212 DOI: 10.1007/s11274-022-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Sanguinarine and chelerytrine have antibacterial and anti-inflammatory effects and is the main active ingredients of growth promoters in animals. Currently, Sanguinarine and chelerytrine were extracted from the capsules of the medicinal plant Macleaya cordata. However, the biomass of M. cordata nonmedicinal parts (leaves) accounted for a large proportion and contained a rich presentation of protopine and allocryptopine which are the precursor compounds of sanguinarine and chelerytrine. The aim of this study was to develop a new method for producing sanguinarine and chelerytrine through yeast transformation of protopine and allocryptopine in M. cordata leaves. First, we isolated different genes from Papaver somniferum (PsP6H, PsCPR, PsDBOX), Eschscholtzia californica (EcP6H), Cucumis sativus (CuCPR), Arabidopsis thaliana (AtCPR) and M. cordata (Mc11229, Mc11218, Mc6408, Mc6407, Mc19967, Mc13802). Additionally, some of the gene sequences were codon optimized. Then, we transformed these genes into yeast cells to compare the catalytic efficiency. Second, we used the most efficient strains to biotransform the leaves of M. cordata. Finally, we obtained 85.415 ± 11.887 ng mL-1 sanguinarine and 4.288 ± 1.395 ng mL-1 chelerytrine, which was more than 2-3 times the content in leaves of M. cordata. Overall, we using the nonmedicinal parts of M. cordata and successfully obtained sanguinarine and chelerytrine by the plant-microbial hybrid synthesis method.
Collapse
|
42
|
Effects of codon optimization, N-terminal truncation and gene dose on the heterologous expression of berberine bridge enzyme. World J Microbiol Biotechnol 2022; 38:77. [PMID: 35316417 DOI: 10.1007/s11274-022-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Morphine, sanguinarine and chelerythrine are benzylisoquinoline alkaloids (BIAs), and these compounds possess strong biological activities. (S)-scoulerine is a commonly shared precursor of these compounds, and berberine bridge enzyme (BBE) is a key rate-limiting enzyme in the synthesis of (S)-scoulerine. We isolated the BBE gene from Macleaya cordata (McBBE) and used CEN.PK2-1C as a chassis strain. We compared the catalytic efficiency of five codon-optimized McBBE genes in Saccharomyces cerevisiae and finally obtained a yeast strain (YH03) that exhibited a 58-fold increase in yield (1.12 mg/L). Then, we truncated the N-terminus of McBBE by 8 and 22 amino acids and found that with the increase in the number of N-terminal truncated amino acids, the production of (S)-scoulerine gradually decreased. Additionally, we used CRISPR-Cas9 to integrate the McBBE gene at the delta site of the S. cerevisiae genome to achieve stable genetic inheritance and found that the yield of (S)-scoulerine was not significantly increased in the integrated strain. In conclusion, our work achieved high-efficiency expression of McBBE in S. cerevisiae, explored the influence of N-terminal truncation on the yield of (S)-scoulerine, and obtained a genetically stable S. cerevisiae strain with high McBBE expression. This study provides a reference for further complex metabolic engineering optimization and lays a foundation for the efficient biosynthesis of BIAs.
Collapse
|
43
|
Gao R, Lou Q, Hao L, Qi G, Tian Y, Pu X, He C, Wang Y, Xu W, Xu Z, Song J. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1305-1318. [PMID: 34907610 DOI: 10.1111/tpj.15634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Distant species producing the same secondary metabolites is an interesting and common phenomenon in nature. A classic example of this is scutellarein whose derivatives have been used clinically for more than 30 years. Scutellarein occurs in significant amounts in species of two different orders, Scutellaria baicalensis and Erigeron breviscapus, which diverged more than 100 million years ago. Here, according to the genome-wide selection and functional identification of 39 CYP450 genes from various angiosperms, we confirmed that only seven Scutellaria-specific CYP82D genes and one Erigeron CYP706X gene could perform the catalytic activity of flavone 6-hydroxylase (F6H), suggesting that the convergent evolution of scutellarein production in these two distant species was caused by two independently evolved CYP450 families. We also identified seven Scutellaria-specific CYP82D genes encoding flavone 8-hydroxylase (F8H). The evolutionary patterns of CYP82 and CYP706 families via kingdom-wide comparative genomics highlighted the evolutionary diversity of CYP82D and the specificity of CYP706X in angiosperms. Multi-collinearity and phylogenetic analysis of CYP82D in Scutellaria confirmed that the function of F6H evolved from F8H. Furthermore, the SbaiCYP82D1A319D , EbreCYP706XR130A , EbreCYP706XF312D and EbreCYP706XA318D mutants can significantly decrease the catalytic activity of F6H, revealing the contribution of crucial F6H amino acids to the scutellarein biosynthesis of distant species. This study provides important insights into the multi-origin evolution of the same secondary metabolite biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ya Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China
| |
Collapse
|
44
|
An Update of the Sanguinarine and Benzophenanthridine Alkaloids’ Biosynthesis and Their Applications. Molecules 2022; 27:molecules27041378. [PMID: 35209167 PMCID: PMC8876366 DOI: 10.3390/molecules27041378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.
Collapse
|
45
|
Cui X, Meng F, Pan X, Qiu X, Zhang S, Li C, Lu S. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. HORTICULTURE RESEARCH 2022; 9:uhac005. [PMID: 35147168 PMCID: PMC8973263 DOI: 10.1093/hr/uhac005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/11/2023]
Abstract
Aristolochic acids (AAs) and their derivatives exist in multiple Aristolochiaceae species which had been or are being used as medicinal materials. During the past decades, AAs have received increasing attention due to their nephrotoxicity and carcinogenecity. Elimination of AAs in medicinal materials using biotechnological approaches is important to improve medication safety. However, it has not been achieved because of the limited information of AA biosynthesis available. Here, we report a high-quality reference-grade genome assembly of the AA-containing vine, Aristolochia contorta. Total size of the assembly is 209.27 Mb, which is assembled into 7 pseudochromosomes. Synteny analysis, Ks distribution and 4DTv suggest absences of whole-genome duplication events in A. contorta after the angiosperm-wide WGD. Based on genomic, transcriptomic and metabolic data, pathways and candidate genes of benzylisoquinoline alkaloid (BIA) and AA biosynthesis in A. contorta were proposed. Five O-methyltransferase genes, including AcOMT1-3, AcOMT5 and AcOMT7, were cloned and functionally characterized. The results provide a high-quality reference genome for AA-containing species of Aristolochiaceae. It lays a solid foundation for further elucidation of AA biosynthesis and regulation and molecular breeding of Aristolochiaceae medicinal materials.
Collapse
Affiliation(s)
- Xinyun Cui
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Fanqi Meng
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xian Pan
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Sixuan Zhang
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Caili Li
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| |
Collapse
|
46
|
Liu T, Gou Y, Zhang B, Gao R, Dong C, Qi M, Jiang L, Ding X, Li C, Lian J. Construction of Ajmalicine and Sanguinarine
de novo
Biosynthetic Pathways using Stable Integration Sites in Yeast. Biotechnol Bioeng 2022; 119:1314-1326. [DOI: 10.1002/bit.28040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Bei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Mingming Qi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Xuanwei Ding
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
47
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|
48
|
Integrating Network Pharmacology and Molecular Docking to Analyse the Potential Mechanism of action of Macleaya cordata (Willd.) R. Br. in the Treatment of Bovine Hoof Disease. Vet Sci 2021; 9:vetsci9010011. [PMID: 35051095 PMCID: PMC8779036 DOI: 10.3390/vetsci9010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Based on network pharmacological analysis and molecular docking techniques, the main components of M. cordata for the treatment of bovine relevant active compounds in M. cordata were searched for through previous research bases and literature databases, and then screened to identify candidate compounds based on physicochemical properties, pharmacokinetic parameters, bioavailability, and drug-like criteria. Target genes associated with hoof disease were obtained from the GeneCards database. Compound−target, compound−target−pathway−disease visualization networks, and protein−protein interaction (PPI) networks were constructed by Cytoscape. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in R language. Molecular docking analysis was done using AutoDockTools. The visual network analysis showed that four active compounds, sanguinarine, chelerythrine, allocryptopine and protopine, were associated with the 10 target genes/proteins (SRC, MAPK3, MTOR, ESR1, PIK3CA, BCL2L1, JAK2, GSK3B, MAPK1, and AR) obtained from the screen. The enrichment analysis indicated that the cAMP, PI3K-Akt, and ErbB signaling pathways may be key signaling pathways in network pharmacology. The molecular docking results showed that sanguinarine, chelerythrine, allocryptopine, and protopine bound well to MAPK3 and JAK2. A comprehensive bioinformatics-based network topology strategy and molecular docking study has elucidated the multi-component synergistic mechanism of action of M. cordata in the treatment of bovine hoof disease, offering the possibility of developing M. cordata as a new source of drugs for hoof disease treatment.
Collapse
|
49
|
Wang H, Guo H, Wang N, Huo YX. Toward the Heterologous Biosynthesis of Plant Natural Products: Gene Discovery and Characterization. ACS Synth Biol 2021; 10:2784-2795. [PMID: 34757715 DOI: 10.1021/acssynbio.1c00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plant natural products (PNPs) represent a vast and diverse group of natural products, which have wide applications such as emulsifiers in cosmetics, sweeteners in foods, and active ingredients in medicines. Large-scale production of certain PNPs (e.g., artemisinin, taxol) has been implemented by reconstruction of biosynthetic pathways in heterologous hosts. However, unknown biosynthetic pathways greatly restrict wide applications of heterologous production of PNPs of interest. With the rapid development of sequencing and multiomics analysis technologies, huge amounts of omics data, i.e., genomics, transcriptomics, and proteomics, have been deposited in public databases, which is a precious resource for identification of the unknown biosynthetic pathway of PNPs. Herein, we have enumerated the approaches which have been widely used to screen candidate genes involved in the biosynthesis of PNPs of interest. We also discuss recent developments in the characterization of putative genes and elucidation of the complete biosynthetic pathway in heterologous hosts.
Collapse
Affiliation(s)
- Huiyan Wang
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Hao Guo
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Ning Wang
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Yi-Xin Huo
- School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
50
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|