1
|
Sun C, Jing Z, Chen X, Chen J, Shang Q, Jin H, Jia J, Ren Y, Zhao L, Gao L, He Z, Chen F. Reconciliation of wheat 660K and 90K SNP arrays and their utilization in dough rheological properties of bread wheat. J Adv Res 2025:S2090-1232(25)00030-X. [PMID: 39765327 DOI: 10.1016/j.jare.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION High-density Wheat 660K and 90K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application. OBJECTIVE With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660K and 90K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat. METHODS We refined physical positions of Wheat 660K and 90K SNP arrays in the currently popular wheat cultivar AK58 genome that was released more recently. We next performed genome-wide association studies (GWAS) and linkage analysis to identify important genetic loci related to quality traits using updated and un-updated arrays, respectively. RESULTS Refining results showed that 92.3% and 83% of SNPs in the Wheat 660K and 90K SNP arrays were precisely mapped to the AK58 genome, respective. GWAS results by the updated 660K and 90K arrays indicated that 26 intervals composed of 1032 significant SNPs were associated with 9 quality traits in multiple environments. The significant interval for stability time on 1D was narrowed into an 8.4-Mb region using the updated arrays, whereas the interval is 405 Mb using the un-updated arrays. Linkage analysis revealed an important QTL QST.henau-1D.2 for stability time with 1.64 Mb. Integration of GWAS and QTL results narrowed the significant interval into 6.46 Mb containing 35 annotation genes by collinearity analysis. After T-test, gene expression analysis, seven of them are potential candidate genes and thus favorable haplotypes are identified to benefit marker-assisted selection. CONCLUSION A reconciliation of Wheat 660K and 90K arrays promote their efficient applications. Important genetic loci and favorable haplotypes identified in this study provided valuable information for wheat quality breeding.
Collapse
Affiliation(s)
- Congwei Sun
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Zhenhai Jing
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Xiaoqian Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Jiahui Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Qiaoqiao Shang
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Hui Jin
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China
| | - Yan Ren
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Lei Zhao
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China.
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081 China.
| | - Feng Chen
- Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China.
| |
Collapse
|
2
|
Wang Y, Han W, Wang T, Jia C, Liu J, Fan X, Chen J. Elucidating the genetic basis of bulb-related traits in garlic (Allium sativum) through genome-wide association study. Int J Biol Macromol 2025; 284:137842. [PMID: 39579831 DOI: 10.1016/j.ijbiomac.2024.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The genetic architecture of garlic bulb related traits were still not well elucidated due to its big and complex genome. In this study, genotyping-by-sequencing (GBS) in 163 garlic accessions mainly from China were conducted. All the 163 garlic accessions were divided into three subpopulations, and largely consistent with geographic origins. Genome-wide association study (GWAS) was conducted for 5 garlic bulb related traits across four environments. Totally, 26 significantly loci were identified in two or more environments and located within or near 431 genes, and explain 14.0-31.7 % of the phenotypic variances. Among these, qBW5.1 was nearly with the qBH5.1. Four loci were reported previously, whereas the remaining 22 are likely to be new. Gene ontology enrichment analysis showed that the candidate genes were significantly enriched in metabolic process, biosynthetic process and catalytic activity. Nine candidate genes encode the zinc finger domain-containing protein, serine/threonine-protein kinase, peroxygenase, auxin-induced protein, ethylene-responsive transcription and E3-Ubiquitin protein ligases were identified and validated. Additionally, a meaningful achievement is one kompetitive allele-specific PCR marker, Kasp_chr7_BW for bulb weight were successfully developed and validated in a diverse panel. These results uncover the genetic mechanism of garlic bulb related traits and provide accessions and KASP markers for further garlic molecular breeding.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenjing Han
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Taotao Wang
- Shandong Dongyun Engineering and Technology Research Center for Garlic, Jining 272200, China
| | - Chunying Jia
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Liu
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Xiaorong Fan
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Li C, Zhang L, Peng Z, Li X, Liu Z, Lu T, Kang X, Yang J. Genetic relationship analysis and core collection construction of Eucalyptus grandis from Dongmen improved variety base: the largest eucalypt germplasm resource in China. BMC PLANT BIOLOGY 2024; 24:1240. [PMID: 39716061 DOI: 10.1186/s12870-024-05970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Eucalyptus grandis, which was first comprehensively and systematically introduced to China in the 1980s, is one of the most important fast-growing tree species in the forestry industry. However, to date, no core collection has been selected from the germplasm resources of E. grandis based on growth and genetic relationship analysis. RESULTS In the present study, 545 individuals of E. grandis collected from 28 populations across 5 countries were selected for genetic diversity analysis using 16 selected SSR markers. The polymorphism information content (PIC) was employed to assess genetic diversity, yielding a mean value of 0.707. Genetic structure analysis was conducted on 492 individuals from 13 combined populations, revealing three clusters as the most suitable number. Principal coordinate analysis (PCoA) demonstrated that the populations were divided into three major clusters. Additionally, the analysis of molecular variance (AMOVA) indicated that the majority of variation occurred within populations. CONCLUSIONS Based on the criteria for screening the core collection, we constructed a population consisting of 158 individuals and created unique fingerprinting codes. These results provide a crucial theoretical foundation for the protection and utilization of germplasm resources of E. grandis in China, which will be helpful in the selection of genetically distant parents for future multigenerational hybridization programs.
Collapse
Affiliation(s)
- Chenhe Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lei Zhang
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Zhibang Peng
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Xia Li
- Guangxi Dongmen Forest Farm, Chongzuo, 532199, China
| | - Zhao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Te Lu
- Science and Technology Section, Chifeng Research Institute of Forestry Science, Chifeng, 024000, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Yu C, Yang Q, Li W, Jiang Y, Gan G, Cai L, Li X, Li Z, Li W, Zou M, Yang Y, Wang Y. Development of a 50K SNP array for whole-genome analysis and its application in the genetic localization of eggplant ( Solanum melongena L.) fruit shape. FRONTIERS IN PLANT SCIENCE 2024; 15:1492242. [PMID: 39659423 PMCID: PMC11629150 DOI: 10.3389/fpls.2024.1492242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Introduction Current eggplant variety breeding is still mainly based on conventional methods, and there remains a lack of effective molecular breeding systems for complex traits controlled by multiple genes, such as yield and quality. To accelerate the research progress of eggplant genetics and molecular breeding, it is necessary to implement a genome-based breeding strategy. Methods Therefore, in this study, a SNP array containing 50K liquid-phase probes was designed on the basis of the resequencing data of 577 eggplants. Results The developed 50K liquid-phase probes were used to perform targeted capture sequencing on 12 eggplant lines, and the efficiency of probe capture exceeded 99.25%. Principal component, phylogenetic, and population structure analyses divided the 577 eggplants into 7 subgroups, and statistical analysis was performed on the fruit shape and color of the materials in the different subgroups. Further analysis of the geographical distribution of 428 Chinese eggplant materials revealed that the geographical regions of different subgroups were similar. The 50K SNP liquid-phase array was used to perform bulked- segregant analysis combined with whole-genome resequencing (BSA-seq) of fruit shape in the F2 population, which consisted of 1435 lines constructed with E421 as the maternal parent and 145 as the paternal parent. The BSA-seq data were located in the 78444173-84449348 interval on chromosome 3, with a size of 6 Mb, which was narrowed to 712.6 kb through fine mapping. Further sequence alignment and expression analysis revealed SmIQD14 as a candidate gene controlling eggplant fruit shape. The 50K SNP liquid-phase array can be widely used in future eggplant molecular breeding research.
Collapse
Affiliation(s)
- Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xinchun Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhiqiang Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Min Zou
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Yang
- Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
5
|
Wei F, Ran Z, Hong D, Wenjun W, Huage L, Sumin Z, Rongyan Z. Identification of Taihang-chicken-specific genetic markers using genome-wide SNPs and machine learning: BREED-SPECIFIC SNPS OF TAIHANG CHICKEN. Poult Sci 2024; 104:104585. [PMID: 39603186 PMCID: PMC11635733 DOI: 10.1016/j.psj.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Taihang is an indigenous breed in Hebei Province and has a long history of evolution. To uncover the genetic basis and protect the genetic resources, it is important to develop accurate markers to identify Taihang at the molecular level. In this study, a total of 137 individuals from Taihang and other 4 breeds were selected to construct a genome-wide SNP map. The population genetic structure analysis revealed clear differentiation among the five breeds. A total of 47 SNPs were identified for differentiating Taihang from other breeds based on the fixation index (FST), linkage disequilibrium (LD) pruning, and machine learning, further validated using principal component analysis (PCA) and genetic relationship matrix (GRM). The 47 SNPs were annotated to genes associated with production, growth and development, immunity, adaptation, and appearance. Overall, the combination of 47 SNPs enables precise identification of Taihang, which significantly contributes to the preservation of native genetic resources.
Collapse
Affiliation(s)
- Fu Wei
- Hebei Agricultural University, Baoding, Hebei province 071001, China
| | - Zhang Ran
- Hebei Agricultural University, Baoding, Hebei province 071001, China
| | - Ding Hong
- Institute of Animal Science and Veterinary Medicine, Baoding, Hebei province 071000, China
| | - Wang Wenjun
- Hebei Agricultural University, Baoding, Hebei province 071001, China
| | - Liu Huage
- Institute of Animal Science and Veterinary Medicine, Baoding, Hebei province 071000, China
| | - Zang Sumin
- Hebei Agricultural University, Baoding, Hebei province 071001, China
| | - Zhou Rongyan
- Hebei Agricultural University, Baoding, Hebei province 071001, China.
| |
Collapse
|
6
|
Liu X, Zhang X, Meng X, Liu P, Lei M, Jin H, Wang Y, Jin Y, Cui G, Mu Z, Liu J, Jia X. Identification of genetic loci for powdery mildew resistance in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1443239. [PMID: 39445142 PMCID: PMC11496114 DOI: 10.3389/fpls.2024.1443239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024]
Abstract
Powdery mildew (PM) poses an extreme threat to wheat yields and quality. In this study, 262 recombinant inbred lines (RILs) of Doumai and Shi 4185 cross were used to map PM resistance genes across four environments. High-density genetic linkage map of the Doumai/Shi 4185 RIL population was constructed using the wheat Illumina iSelect 90K single-nucleotide polymorphism (SNP) array. In total, four stable quantitative trait loci (QTLs) for PM resistance, QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS, were detected and explained 5.6%-15.6% of the phenotypic variances. Doumai contributed all the resistance alleles of QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS. Among these, QPm.caas-4AS and QPm.caas-6BS overlapped with the previously reported loci, whereas QPm.caas-2AS and QPm.caas-4BL are potentially novel. In addition, six high-confidence genes encoding the NBS-LRR-like resistance protein, disease resistance protein family, and calcium/calmodulin-dependent serine/threonine-kinase were selected as the candidate genes for PM resistance. Three kompetitive allele-specific PCR (KASP) markers, Kasp_PMR_2AS for QPm.caas-2AS, Kasp_PMR_4BL for QPm.caas-4BL, and Kasp_PMR_6BS for QPm.caas-6BS, were developed, and their genetic effects were validated in a natural population including 100 cultivars. These findings will offer valuable QTLs and available KASP markers to enhance wheat marker-assisted breeding for PM resistance.
Collapse
Affiliation(s)
- Xia Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Xiaoqing Zhang
- National Agricultural Technology Extension Service Center of the Ministry, Agriculture and Rural Affairs, Beijing, China
| | - Xianghai Meng
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Menglin Lei
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanzhen Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Guoqing Cui
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
9
|
Zhao S, Wang Y, Zhu Z, Chen P, Liu W, Wang C, Lu H, Xiang Y, Liu Y, Qian Q, Chang Y. Streamlined whole-genome genotyping through NGS-enhanced thermal asymmetric interlaced (TAIL)-PCR. PLANT COMMUNICATIONS 2024; 5:100983. [PMID: 38845197 DOI: 10.1016/j.xplc.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
Whole-genome genotyping (WGG) stands as a pivotal element in genomic-assisted plant breeding. Nevertheless, sequencing-based approaches for WGG continue to be costly, primarily owing to the high expenses associated with library preparation and the laborious protocol. During prior development of foreground and background integrated genotyping by sequencing (FBI-seq), we discovered that any sequence-specific primer (SP) inherently possesses the capability to amplify a massive array of stable and reproducible non-specific PCR products across the genome. Here, we further improved FBI-seq by replacing the adapter ligated by Tn5 transposase with an arbitrary degenerate (AD) primer. The protocol for the enhanced FBI-seq unexpectedly mirrors a simplified thermal asymmetric interlaced (TAIL)-PCR, a technique that is widely used for isolation of flanking sequences. However, the improved TAIL-PCR maximizes the primer-template mismatched annealing capabilities of both SP and AD primers. In addition, leveraging of next-generation sequencing enhances the ability of this technique to assay tens of thousands of genome-wide loci for any species. This cost-effective, user-friendly, and powerful WGG tool, which we have named TAIL-PCR by sequencing (TAIL-peq), holds great potential for widespread application in breeding programs, thereby facilitating genome-assisted crop improvement.
Collapse
Affiliation(s)
- Sheng Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhenghang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wuge Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
10
|
Mbanjo EGN, Ogungbesan A, Agbona A, Akpotuzor P, Toyinbo S, Iluebbey P, Rabbi IY, Peteti P, Wages SA, Norton J, Zhang X, Bohórquez-Chaux A, Mushoriwa H, Egesi C, Kulakow P, Parkes E. Validation of SNP Markers for Diversity Analysis, Quality Control, and Trait Selection in a Biofortified Cassava Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:2328. [PMID: 39204764 PMCID: PMC11359368 DOI: 10.3390/plants13162328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
A validated marker system is crucial to running an effective genomics-assisted breeding program. We used 36 Kompetitive Allele-Specific PCR (KASP) markers to genotype 376 clones from the biofortified cassava pipeline, and fingerprinted 93 of these clones with DArTseq markers to characterize breeding materials and evaluate their relationships. The discriminating ability of the 36-quality control (QC) KASP and 6602 DArTseq markers was assessed using 92 clones genotyped in both assays. In addition, trait-specific markers were used to determine the presence or absence of target genomic regions. Hierarchical clustering identified two major groups, and the clusters were consistent with the breeding program origins. There was moderate genetic differentiation and a low degree of variation between the identified groups. The general structure of the population was similar using both assays. Nevertheless, KASP markers had poor resolution when it came to differentiating the genotypes by seed sources and overestimated the prevalence of duplicates. The trait-linked markers did not achieve optimal performance as all markers displayed variable levels of false positive and/or false negative. These findings represent the initial step in the application of genomics-assisted breeding for the biofortified cassava pipeline, and will guide the use of genomic selection in the future.
Collapse
Affiliation(s)
| | - Adebukola Ogungbesan
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Afolabi Agbona
- Texas A&M Agrilife Research & Extension Center, Weslaco, TX 78596, USA
| | - Patrick Akpotuzor
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Seyi Toyinbo
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Peter Iluebbey
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Prasad Peteti
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Sharon A. Wages
- College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Joanna Norton
- College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Xiaofei Zhang
- Cassava Program, International Center for Tropical Agriculture (CIAT), CGIAR, Cali 763537, Colombia
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Adriana Bohórquez-Chaux
- Cassava Program, International Center for Tropical Agriculture (CIAT), CGIAR, Cali 763537, Colombia
| | - Hapson Mushoriwa
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
- National Root Crops Research Institute (NRCRI), Umudike, Umuahia 440001, Nigeria
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Elizabeth Parkes
- IITA—Zambia, Southern Africa Research and Administration Hub (SARAH), Plot 1458B, Ngwerere Road (off Great North Road), Chongwe 10100, Lusaka, Zambia
| |
Collapse
|
11
|
Mangal V, Verma LK, Singh SK, Saxena K, Roy A, Karn A, Rohit R, Kashyap S, Bhatt A, Sood S. Triumphs of genomic-assisted breeding in crop improvement. Heliyon 2024; 10:e35513. [PMID: 39170454 PMCID: PMC11336775 DOI: 10.1016/j.heliyon.2024.e35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Conventional breeding approaches have played a significant role in meeting the food demand remarkably well until now. However, the increasing population, yield plateaus in certain crops, and limited recombination necessitate using genomic resources for genomics-assisted crop improvement programs. As a result of advancements in the next-generation sequence technology, GABs have developed dramatically to characterize allelic variants and facilitate their rapid and efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has played an important role in harnessing the potential of modern genomic tools, exploiting allelic variation from genetic resources and developing cultivars over the past decade. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of completeness. Even though adopting these technologies is essentially determined on economic grounds and cost-effective assays, which create a wealth of information that can be successfully used to exploit the latent potential of crops. GAB has been instrumental in harnessing the potential of modern genomic resources and exploiting allelic variation for genetic enhancement and cultivar development. GAB strategies will be indispensable for designing future crops and are expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional value.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| | | | - Sandeep Kumar Singh
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Kanak Saxena
- Department of Genetics and Plant Breeding, Rabindranath Tagore University, Raisen, Madhya Pradesh, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| | - Anandi Karn
- Plant Breeding & Graduate Program, IFAS - University of Florida, Gainesville, USA
| | - Rohit Rohit
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Shruti Kashyap
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Ashish Bhatt
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Salej Sood
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
12
|
Zhi L, Gong X, Zhang H, Liu J, Cao S, Zhang Y, Yan J, Tian W, He Z. Identification of QTL for Alkylresorcinols in Wheat and Development of KASP Markers for Marker-Assisted Selection of Health-Promoting Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39052860 DOI: 10.1021/acs.jafc.4c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study evaluated alkylresorcinol concentration (ARC) in recombinant inbred lines (RILs) from the cross of Zhongmai 578 and Jimai 22 in three environments. ARC exhibited a continuous distribution ranging from 337.4 to 758.0, 495.4-768.0, and 456.3-764.7 μg/g, respectively, in three environments. Analysis of variance (ANOVA) indicated significant (P < 0.001) impacts of genotypes, environments, and their interactions. The broad-sense heritability of ARC was 0.76. Genome-wide linkage mapping analysis identified four stable quantitative trait loci (QTL) for ARC on chromosomes 2A, 3A, 4D, and 7A. Kompetitive allele-specific PCR (KASP) marker of each QTL was developed and validated in 206 representative wheat varieties. Wheat varieties harboring 0, 1, 2, 3, and 4 favorable alleles had ARC of 499.1, 587.8, 644.7, 668.5, and 711.1 μg/g, respectively. This study suggests that combining multiple minor-effect QTL through KASP markers can serve as an effective strategy for breeding high-ARC wheat, thereby enhancing innovations in functional food production.
Collapse
Affiliation(s)
- Lei Zhi
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xue Gong
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jindong Liu
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghe Cao
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Zhang
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453519, China
| | - Jun Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenfei Tian
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Ye X, Han F. Editorial: Applications of fast breeding technologies in crop improvement and functional genomics study. FRONTIERS IN PLANT SCIENCE 2024; 15:1460642. [PMID: 39100090 PMCID: PMC11294221 DOI: 10.3389/fpls.2024.1460642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Tong J, Zhao C, Liu D, Jambuthenne DT, Sun M, Dinglasan E, Periyannan SK, Hickey LT, Hayes BJ. Genome-wide atlas of rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:179. [PMID: 38980436 PMCID: PMC11233289 DOI: 10.1007/s00122-024-04689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.
Collapse
Affiliation(s)
- Jingyang Tong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Cong Zhao
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mengjing Sun
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Agriculture and Environmental Science and Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Niu J, Wang W, Wang Z, Chen Z, Zhang X, Qin Z, Miao L, Yang Z, Xie C, Xin M, Peng H, Yao Y, Liu J, Ni Z, Sun Q, Guo W. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol 2024; 25:171. [PMID: 38951917 PMCID: PMC11218387 DOI: 10.1186/s13059-024-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.
Collapse
Affiliation(s)
- Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Jighly A. Pitfalls of multi-species SNP arrays introducing new forms of ascertainment bias. THE PLANT GENOME 2024; 17:e20459. [PMID: 38785130 DOI: 10.1002/tpg2.20459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
|
17
|
Li C, Fu L, Wang Q, Liu H, Chen G, Qi F, Zhang M, Jia Y, Li X, Huang B, Dong W, Du P, Zhang X. Development and application of whole-chromosome painting of chromosomes 7A and 8A of Arachis duranensis based on chromosome-specific single-copy oligonucleotides. Genome 2024; 67:178-188. [PMID: 38394647 DOI: 10.1139/gen-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of Arachis duranensis. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in A. duranensis (AA) and A. ipaensis (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild Arachis species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in Arachis and demonstrates the practical utility of LS-7A and LS-8A.
Collapse
Affiliation(s)
- Chenyu Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liuyang Fu
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Wang
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Hua Liu
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Guoquan Chen
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Feiyan Qi
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Maoning Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yaoguang Jia
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaona Li
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Bingyan Huang
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Wenzhao Dong
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Pei Du
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Shennong Laboratory/Nation Industrial Innovation Centre for Bio-Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| |
Collapse
|
18
|
Niu Y, Yung WS, Sze CC, Wong FL, Li MW, Chung G, Lam HM. Developing an SNP dataset for efficiently evaluating soybean germplasm resources using the genome sequencing data of 3,661 soybean accessions. BMC Genomics 2024; 25:475. [PMID: 38745120 PMCID: PMC11092025 DOI: 10.1186/s12864-024-10382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) markers play significant roles in accelerating breeding and basic crop research. Several soybean SNP panels have been developed. However, there is still a lack of SNP panels for differentiating between wild and cultivated populations, as well as for detecting polymorphisms within both wild and cultivated populations. RESULTS This study utilized publicly available resequencing data from over 3,000 soybean accessions to identify differentiating and highly conserved SNP and insertion/deletion (InDel) markers between wild and cultivated soybean populations. Additionally, a naturally occurring mutant gene library was constructed by analyzing large-effect SNPs and InDels in the population. CONCLUSION The markers obtained in this study are associated with numerous genes governing agronomic traits, thus facilitating the evaluation of soybean germplasms and the efficient differentiation between wild and cultivated soybeans. The natural mutant gene library permits the quick identification of individuals with natural mutations in functional genes, providing convenience for accelerating soybean breeding using reverse genetics.
Collapse
Affiliation(s)
- Yongchao Niu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ching-Ching Sze
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu-Si, Republic of Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Rauf A, Sher MA, Farooq U, Rasheed A, Sajjad M, Jing R, Khan Z, Attia KA, Mohammed AA, Fiaz S, Chen J, Rehman SU. An SNP based genotyping assay for genes associated with drought tolerance in bread wheat. Mol Biol Rep 2024; 51:527. [PMID: 38637351 DOI: 10.1007/s11033-024-09481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.
Collapse
Affiliation(s)
- Abdul Rauf
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
- SINO-PAK Joint Research Laboratory, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Ali Sher
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Umar Farooq
- Department of Food Science and Technology, MNS University of Agriculture, Multan, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh, 11451, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, the University of Haripur, Haripur, 22620, Pakistan
| | - Jing Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.
- SINO-PAK Joint Research Laboratory, MNS University of Agriculture, Multan, Pakistan.
| |
Collapse
|
20
|
Melchinger AE, Fernando R, Melchinger AJ, Schön CC. Optimizing selection based on BLUPs or BLUEs in multiple sets of genotypes differing in their population parameters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:104. [PMID: 38622324 PMCID: PMC11018695 DOI: 10.1007/s00122-024-04592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Selection response in truncation selection across multiple sets of candidates hinges on their post-selection proportions, which can deviate grossly from their initial proportions. For BLUPs, using a uniform threshold for all candidates maximizes the selection response, irrespective of differences in population parameters. Plant breeding programs typically involve multiple families from either the same or different populations, varying in means, genetic variances and prediction accuracy of BLUPs or BLUEs for true genetic values (TGVs) of candidates. We extend the classical breeder's equation for truncation selection from single to multiple sets of genotypes, indicating that the expected overall selection response ( Δ G Tot ) for TGVs depends on the selection response within individual sets and their post-selection proportions. For BLUEs, we show that maximizingΔ G Tot requires thresholds optimally tailored for each set, contingent on their population parameters. For BLUPs, we prove thatΔ G Tot is maximized by applying a uniform threshold across all candidates from all sets. We provide explicit formulas for the origin of the selected candidates from different sets and show that their proportions before and after selection can differ substantially, especially for sets with inferior properties and low proportion. We discuss implications of these results for (a) optimum allocation of resources to training and prediction sets and (b) the need to counteract narrowing the genetic variation under genomic selection. For genomic selection of hybrids based on BLUPs of GCA of their parent lines, selecting distinct proportions in the two parent populations can be advantageous, if these differ substantially in the variance and/or prediction accuracy of GCA. Our study sheds light on the complex interplay of selection thresholds and population parameters for the selection response in plant breeding programs, offering insights into the effective resource management and prudent application of genomic selection for improved crop development.
Collapse
Affiliation(s)
- Albrecht E Melchinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Rohan Fernando
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
21
|
Liu P, Feng W, Wang T, Zhang H, Mao S, Zhang H, Huang W, Liu H, Feng S, Chu Z. Investigation of Imidazolinone Herbicide Resistance Gene with KASP Markers for Japonica/ Geng Rice Varieties in the Huanghuaihai Region of China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1097. [PMID: 38674507 PMCID: PMC11053791 DOI: 10.3390/plants13081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Rice is a staple food for more than half of the global population due to its food security and sustainable development. Weeds compete with crops for sunlight and indispensable nutrients, affecting the yield and quality of crops. Breeding herbicide-tolerant rice varieties paired with herbicide application is expected to help with weed control. In this study, 194 Japonica/Geng rice varieties or lines collected from the Huanghuaihai region of China were screened by Kompetitive Allele-Specific PCR (KASP) markers based on four mutation sites within OsALS1 (LOC_Os02g30630), which is the target of imidazolinone (IMI) herbicides. Only the OsALS1627N haplotype was identified in 18 varieties, including the previously reported Jingeng818 (JG818), and its herbicide resistance was validated by treatment with three IMIs. To investigate the origin of the OsALS1627N haplotype in the identified varieties, six codominant PCR-based markers tightly linked with OsALS1 were developed. PCR analysis revealed that the other 17 IMI-tolerant varieties were derived from JG818. We randomly selected three IMI-tolerant varieties for comparative whole-genome resequencing with known receptor parent varieties. Sequence alignment revealed that more loci from JG818 have been introduced into IMI-tolerant varieties. However, all three IMI-tolerant varieties carried clustered third type single nucleotide polymorphism (SNP) sites from unknown parents, indicating that these varieties were not directly derived from JG818, whereas those from different intermediate improved lines were crossed with JG818. Overall, we found that only OsALS1627N from JG818 has been broadly introduced into the Huanghuaihai region of China. Additionally, the 17 identified IMI-tolerant varieties provide alternative opportunities for improving such varieties along with other good traits.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
| | - Wenjie Feng
- Jining Academy of Agricultural Sciences, Jining 272031, China;
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
| | - Huadong Zhang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
| | - Shuaige Mao
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
| | - Hua Zhang
- Tancheng Jinghua Seed Co., Ltd., Linyi 276100, China;
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
| | - Haifeng Liu
- College of Agronomy, Shandong Agricultural University, Taian 271018, China;
| | - Shangzong Feng
- Agro-Technical Popularization Centre of Linyi City, Linyi 276000, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory, College of Life Science, Wuhan University, Wuhan 430072, China; (P.L.); (T.W.); (H.Z.); (S.M.); (W.H.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China;
| |
Collapse
|
22
|
Zhou Y, Gu Y, Zhang X, Wang W, Li Q, Wang B. QTL Mapping of Adult Plant Resistance to Powdery Mildew in Chinese Wheat Landrace Baidatou. PLANT DISEASE 2024; 108:1062-1072. [PMID: 38640452 DOI: 10.1094/pdis-12-22-2894-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases affecting wheat throughout the world. Breeding and growing resistant wheat cultivars is one of the most economic and effective methods to control the disease, and as such, identifying and mapping the new and effective resistance genes is critical. Baidatou, a Chinese wheat landrace, shows excellent field resistance to powdery mildew. To identify the resistance gene(s) in Baidatou, 170 F7:8 recombinant inbred lines (RILs) derived from the cross Mingxian 169/Baidatou were evaluated for powdery mildew response at the adult-plant stage in the experimental fields in Yangling (YL) of Shaanxi Province and Tianshui (TS) in Gansu Province in 2019, 2020, and 2021. The relative area under disease progress curve (rAUDPC) of Mingxian 169/Baidatou F7:8 RILs indicated that the resistance of Baidatou to powdery mildew was controlled by quantitative trait loci (QTLs). Based on bulk segregation analysis combined with the 660K single nucleotide polymorphism (SNP) array and genotyping by target sequencing (16K SNP) of the entire RIL population, two QTLs, QPmbdt.nwafu-2AS and QPmbdt.nwafu-3AS, were identified, and these accounted for up to 44.5% of the phenotypic variation. One of the QTLs was located on the 3.32 cM genetic interval on wheat chromosome 2AS between the kompetitive allele-specific PCR markers AX-111012288 and AX_174233809, and another was located on the 9.6 cM genetic interval on chromosome 3AS between the SNP markers 3A_684044820 and 3A_686681822. These markers could be useful for successful breeding of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Yongchao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yudi Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenli Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
23
|
Hong MJ, Ko CS, Kim DY. Genome-Wide Association Study to Identify Marker-Trait Associations for Seed Color in Colored Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:3600. [PMID: 38612412 PMCID: PMC11011601 DOI: 10.3390/ijms25073600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This study conducted phenotypic evaluations on a wheat F3 population derived from 155 F2 plants. Traits related to seed color, including chlorophyll a, chlorophyll b, carotenoid, anthocyanin, L*, a*, and b*, were assessed, revealing highly significant correlations among various traits. Genotyping using 81,587 SNP markers resulted in 3969 high-quality markers, revealing a genome-wide distribution with varying densities across chromosomes. A genome-wide association study using fixed and random model circulating probability unification (FarmCPU) and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified 11 significant marker-trait associations (MTAs) associated with L*, a*, and b*, and chromosomal distribution patterns revealed predominant locations on chromosomes 2A, 2B, and 4B. A comprehensive annotation uncovered 69 genes within the genomic vicinity of each MTA, providing potential functional insights. Gene expression analysis during seed development identified greater than 2-fold increases or decreases in expression in colored wheat for 16 of 69 genes. Among these, eight genes, including transcription factors and genes related to flavonoid and ubiquitination pathways, exhibited distinct expression patterns during seed development, providing further approaches for exploring seed coloration. This comprehensive exploration expands our understanding of the genetic basis of seed color and paves the way for informed discussions on the molecular intricacies contributing to this phenotypic trait.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.)
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.)
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan-eup 32439, Republic of Korea
| |
Collapse
|
24
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
25
|
Liu C, He Y, Liang W, Zhu T, Zhang B, Li D, Li W, Wang K, Tian Y, Kang X, Sun G. Research Note: Development and application of specific molecular identity cards for "Yufen 1" H line chickens. Poult Sci 2024; 103:103343. [PMID: 38113703 PMCID: PMC10770742 DOI: 10.1016/j.psj.2023.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The "Yufen 1" H line chicken (YF) has excellent characteristics including early sexual maturity and high egg production, and the conservation of its genetic diversity is the core of the breeding activity. To overcome misrepresented breeds and protect the integrity of the germplasm genetic resources, it is important to develop accurate and convenient methods to identify YF. In this study, whole genome resequencing was performed on the YF population, and bioinformatics analysis was conducted by combining the data from different breeds. Linkage disequilibrium (LD) analysis revealed that YF had the slowest LD-decay rate, suggesting strong natural and artificial selection in its history. Through selective sweep analysis, 1,126 selected regions in YF were identified, which contained 163,661 single nucleotide polymorphisms (SNPs). In particular, 5 specific SNPs (SNP1: Chr2:45509616, SNP2: Chr2:45510792, SNP3: Chr9:13788193, SNP4: Chr9:13795646, SNP5: Chr9:13798154) were found exclusively in the YF population. Subsequently, PCR amplification and Sanger sequencing confirmed the presence of these 5 SNPs in YF. Finally, 4 SNPs (SNP1, SNP2, SNP4, SNP5) were screened and verified using the Kompetitive Allele Specific PCR (KASP) typing technique. These SNPs can be used as specific molecular identity cards (IDs) for YF authentication. The present study is of great significance to ensure sustainable conservation and promotion of YF germplasm resources.
Collapse
Affiliation(s)
- Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuehua He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenjie Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingqi Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Binbin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; The Shennong Laboratory, Zhengzhou 450002, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; The Shennong Laboratory, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; The Shennong Laboratory, Zhengzhou 450002, China.
| |
Collapse
|
26
|
Clare SJ, King RM, Tawril AL, Havill JS, Muehlbauer GJ, Carey SB, Harkess A, Bassil N, Altendorf KR. An affordable and convenient diagnostic marker to identify male and female hop plants. G3 (BETHESDA, MD.) 2023; 14:jkad216. [PMID: 37963231 PMCID: PMC10755173 DOI: 10.1093/g3journal/jkad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023]
Abstract
Hop production utilizes exclusively female plants, whereas male plants only serve to generate novel variation within breeding programs through crossing. Currently, hop lacks a rapid and accurate diagnostic marker to determine whether plants are male or female. Without a diagnostic marker, breeding programs may take 1-2 years to determine the sex of new seedlings. Previous research on sex-linked markers was restricted to specific populations or breeding programs and therefore had limited transferability or suffered from low scalability. A large collection of 765 hop genotypes with known sex phenotypes, genotyping-by-sequencing, and genome-wide association mapping revealed a highly significant marker on the sex chromosome (LOD score = 208.7) that predicted sex within our population with 96.2% accuracy. In this study, we developed a PCR allele competitive extension (PACE) assay for the diagnostic SNP and tested three quick DNA extraction methodologies for rapid, high-throughput genotyping. Additionally, the marker was validated in a separate population of 94 individuals from 15 families from the USDA-ARS hop breeding program in Prosser, WA with 96% accuracy. This diagnostic marker is located in a gene predicted to encode the basic helix-loop-helix transcription factor protein, a family of proteins that have been previously implicated in male sterility in a variety of plant species, which may indicate a role in determining hop sex. The marker is diagnostic, accurate, affordable, and highly scalable and has the potential to improve efficiency in hop breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Ryan M King
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Anna L Tawril
- Forage Seed and Cereal Research Unit, USDA-ARS, 24106 N Bunn Road, Prosser, WA 99350, USA
| | - Joshua S Havill
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St.Paul, MN 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St.Paul, MN 55108, USA
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Kayla R Altendorf
- Forage Seed and Cereal Research Unit, USDA-ARS, 24106 N Bunn Road, Prosser, WA 99350, USA
| |
Collapse
|
27
|
Khanbo S, Somyong S, Phetchawang P, Wirojsirasak W, Ukoskit K, Klomsa-ard P, Pootakham W, Tangphatsornruang S. A SNP variation in the Sucrose synthase ( SoSUS) gene associated with sugar-related traits in sugarcane. PeerJ 2023; 11:e16667. [PMID: 38111652 PMCID: PMC10726748 DOI: 10.7717/peerj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Background Sugarcane (Saccharum spp.) is an economically significant crop for both the sugar and biofuel industries. Breeding sugarcane cultivars with high-performance agronomic traits is the most effective approach for meeting the rising demand for sugar and biofuels. Molecular markers associated with relevant agronomic traits could drastically reduce the time and resources required to develop new sugarcane varieties. Previous sugarcane candidate gene association analyses have found single nucleotide polymorphism (SNP) markers associated with sugar-related traits. This study aims to validate these associated SNP markers of six genes, including Lesion simulating disease 1 (LSD), Calreticulin (CALR), Sucrose synthase 1 (SUS1), DEAD-box ATP-dependent RNA helicase (RH), KANADI1 (KAN1), and Sodium/hydrogen exchanger 7 (NHX7), in a diverse population in 2-year and two-location evaluations. Methods After genotyping of seven targeted SNP markers was performed by PCR Allelic Competitive Extension (PACE) SNP genotyping, the association with sugar-related traits and important cane yield component traits was determined on a set of 159 sugarcane genotypes. The marker-trait relationships were validated and identified by both t-test analysis and an association analysis based on the general linear model. Results The mSoSUS1_SNPCh10.T/C and mSoKAN1_SNPCh7.T/C markers that were designed from the SUS1 and KAN1 genes, respectively, showed significant associations with different amounts of sugar-related traits and yield components. The mSoSUS1_SNPCh10.T/C marker was found to have more significant association with sugar-related traits, including pol, CCS, brix, fiber and sugar yield, with p values of 6.08 × 10-6 to 4.35 × 10-2, as well as some cane yield component traits with p values of 1.61 × 10-4 to 3.35 × 10-2. The significant association is consistent across four environments. Conclusion Sucrose synthase (SUS) is considered a crucial enzyme involved in sucrose metabolism. This marker is a high potential functional marker that may be used in sugarcane breeding programs to select superior sugarcane with good fiber and high sugar contents.
Collapse
Affiliation(s)
- Supaporn Khanbo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Suthasinee Somyong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Phakamas Phetchawang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathumtani, Thailand
| | - Peeraya Klomsa-ard
- Mitr Phol Innovation and Research Center, Phu Khiao, Chaiyaphum, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
28
|
Oh JE, Kim JE, Kim J, Lee MH, Lee K, Kim TH, Jo SH, Lee JH. Development of an SNP marker set for marker-assisted backcrossing using genotyping-by-sequencing in tetraploid perilla. Mol Genet Genomics 2023; 298:1435-1447. [PMID: 37725237 DOI: 10.1007/s00438-023-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2326 and 2454 SNP markers that spanned a total genetic distance of 2133 cM across 16 linkage groups and 2169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.
Collapse
Affiliation(s)
- Jae-Eun Oh
- SEEDERS Inc, Daejeon, 34912, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Eun Kim
- SEEDERS Inc, Daejeon, 34912, Republic of Korea
| | - Jangmi Kim
- SEEDERS Inc, Daejeon, 34912, Republic of Korea
| | - Myoung-Hee Lee
- National Institute of Crop Science, RDA, Miryang, 50424, Republic of Korea
| | - Keunpyo Lee
- National Academy of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Tae-Ho Kim
- National Academy of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | | | | |
Collapse
|
29
|
Kaur H, Sharma P, Kumar J, Singh VK, Vasistha NK, Gahlaut V, Tyagi V, Verma SK, Singh S, Dhaliwal HS, Sheikh I. Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS. Mol Biol Rep 2023; 50:9191-9202. [PMID: 37776411 DOI: 10.1007/s11033-023-08800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Wheat is a major staple crop and helps to reduce worldwide micronutrient deficiency. Investigating the genetics that control the concentrations of iron (Fe) and zinc (Zn) in wheat is crucial. Hence, we undertook a comprehensive study aimed at elucidating the genomic regions linked to the contents of Fe and Zn in the grain. METHODS AND RESULTS We performed the multi-locus genome-wide association (ML-GWAS) using a panel of 161 wheat-Aegilops substitution and addition lines to dissect the genomic regions controlling grain iron (GFeC), and grain zinc (GZnC) contents. The wheat panel was genotyped using 10,825 high-quality SNPs and phenotyped in three different environments (E1-E3) during 2017-2019. A total of 111 marker-trait associations (MTAs) (at p-value < 0.001) were detected that belong to all three sub-genomes of wheat. The highest number of MTAs were identified for GFeC (58), followed by GZnC (44) and yield (9). Further, six stable MTAs were identified for these three traits and also two pleiotropic MTAs were identified for GFeC and GZnC. A total of 1291 putative candidate genes (CGs) were also identified for all three traits. These CGs encode a diverse set of proteins, including heavy metal-associated (HMA), bZIP family protein, AP2/ERF, and protein previously associated with GFeC, GZnC, and grain yield. CONCLUSIONS The significant MTAs and CGs pinpointed in this current study are poised to play a pivotal role in enhancing both the nutritional quality and yield of wheat, utilizing marker-assisted selection (MAS) techniques.
Collapse
Affiliation(s)
- Harneet Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Prachi Sharma
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali, Punjab, 140306, India
| | - Vikas Kumar Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P., 250004, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Itanagar, India
| | - Vijay Gahlaut
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - Vikrant Tyagi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | | | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
- USDA-ARS, Southeast Area, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL, 33158, USA
| | - H S Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Imran Sheikh
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India.
| |
Collapse
|
30
|
Sharma N, Raman H, Wheeler D, Kalenahalli Y, Sharma R. Data-driven approaches to improve water-use efficiency and drought resistance in crop plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111852. [PMID: 37659733 DOI: 10.1016/j.plantsci.2023.111852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
With the increasing population, there lies a pressing demand for food, feed and fibre, while the changing climatic conditions pose severe challenges for agricultural production worldwide. Water is the lifeline for crop production; thus, enhancing crop water-use efficiency (WUE) and improving drought resistance in crop varieties are crucial for overcoming these challenges. Genetically-driven improvements in yield, WUE and drought tolerance traits can buffer the worst effects of climate change on crop production in dry areas. While traditional crop breeding approaches have delivered impressive results in increasing yield, the methods remain time-consuming and are often limited by the existing allelic variation present in the germplasm. Significant advances in breeding and high-throughput omics technologies in parallel with smart agriculture practices have created avenues to dramatically speed up the process of trait improvement by leveraging the vast volumes of genomic and phenotypic data. For example, individual genome and pan-genome assemblies, along with transcriptomic, metabolomic and proteomic data from germplasm collections, characterised at phenotypic levels, could be utilised to identify marker-trait associations and superior haplotypes for crop genetic improvement. In addition, these omics approaches enable the identification of genes involved in pathways leading to the expression of a trait, thereby providing an understanding of the genetic, physiological and biochemical basis of trait variation. These data-driven gene discoveries and validation approaches are essential for crop improvement pipelines, including genomic breeding, speed breeding and gene editing. Herein, we provide an overview of prospects presented using big data-driven approaches (including artificial intelligence and machine learning) to harness new genetic gains for breeding programs and develop drought-tolerant crop varieties with favourable WUE and high-yield potential traits.
Collapse
Affiliation(s)
- Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia.
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia
| | - Yogendra Kalenahalli
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324, India
| | - Rita Sharma
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
31
|
Jin Y, Wang Y, Liu J, Wang F, Qiu X, Liu P. Genome-wide linkage mapping of root system architecture-related traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274392. [PMID: 37900737 PMCID: PMC10612324 DOI: 10.3389/fpls.2023.1274392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Identifying loci for root system architecture (RSA) traits and developing available markers are crucial for wheat breeding. In this study, RSA-related traits, including total root length (TRL), total root area (TRA), and number of root tips (NRT), were evaluated in the Doumai/Shi4185 recombinant inbred line (RIL) population under hydroponics. In addition, both the RILs and parents were genotyped using the wheat 90K single-nucleotide polymorphism (SNP) array. In total, two quantitative trait loci (QTLs) each for TRL (QTRL.caas-4A.1 and QTRL.caas-4A.2), TRA (QTRA.caas-4A and QTRA.caas-4D), and NRT (QNRT.caas-5B and QNRT.caas-5D) were identified and each explaining 5.94%-9.47%, 6.85%-7.10%, and 5.91%-10.16% phenotypic variances, respectively. Among these, QTRL.caas-4A.1 and QTRA.caas-4A overlapped with previous reports, while QTRL.caas-4A.2, QTRA.caas-4D, QNRT.caas-5B, and QNRT.caas-5D were novel. The favorable alleles of QTRL.caas-4A.1, QTRA.caas-4A, and QTRA.caas-5B were contributed by Doumai, whereas the favorable alleles of QTRL.caas-4A.2, QTRA.caas-4D, and QTRA.caas-5D originated from Shi 4185. Additionally, two competitive allele-specific PCR (KASP) markers, Kasp_4A_RL (QTRA.caas-4A) and Kasp_5D_RT (QNRT.caas-5D), were developed and validated in 165 wheat accessions. This study provides new loci and available KASP markers, accelerating wheat breeding for higher yields.
Collapse
Affiliation(s)
- Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Yamei Wang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Jindong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuyan Wang
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Xiaodong Qiu
- Department of Science and Technology of Shandong Province, Jinan, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| |
Collapse
|
32
|
Xu X, Ni Z, Zou X, Zhang Y, Tong J, Xu X, Dong Y, Han B, Li S, Wang D, Xia X, He Z, Hao Y. QTL Mapping Reveals Both All-Stage and Adult-Plant Resistance to Powdery Mildew in Chinese Elite Wheat Cultivars. PLANT DISEASE 2023; 107:3230-3237. [PMID: 37018212 DOI: 10.1094/pdis-02-23-0399-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.
Collapse
Affiliation(s)
- Xiaoting Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhongqiu Ni
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zou
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031, Hebei, China
| | - Jingyang Tong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yachao Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Bin Han
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Simin Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
33
|
Jin H, Tian Y, Zhang Y, Zhang R, Zhao H, Yang X, Song X, Dimitrov Y, Wu YE, Gao Q, Liu J, Zhang J, He Z. Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 14:1816. [PMID: 37761956 PMCID: PMC10530800 DOI: 10.3390/genes14091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Processing quality is an important economic wheat trait. The marker-assisted selection (MAS) method plays a vital role in accelerating genetic improvement of processing quality. In the present study, processing quality in a panel of 165 cultivars grown in four environments was evaluated by mixograph. An association mapping analysis using 90 K and 660 K single nucleotide polymorphism (SNP) arrays identified 24 loci in chromosomes 1A, 1B (4), 1D, 2A, 2B (2), 3A, 3B, 3D (2), 4A (3), 4B, 5D (2), 6A, 7B (2) and 7D (2), explaining 10.2-42.5% of the phenotypic variances. Totally, 15 loci were stably detected in two or more environments. Nine loci coincided with known genes or QTL, whereas the other fifteen were novel loci. Seven candidate genes encoded 3-ketoacyl-CoA synthase, lipoxygenase, pyridoxal phosphate-dependent decarboxylase, sucrose synthase 3 and a plant lipid transfer protein/Par allergen. SNPs significantly associated with processing quality and accessions with more favorable alleles can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yuanyuan Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Yan Zhang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yordan Dimitrov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Yu-e Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (H.J.); (X.Y.); (X.S.); (Y.D.); (Y.W.)
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China; (Y.T.); (Y.Z.); (J.L.)
| |
Collapse
|
34
|
Wu C, Ma K, Chen W, Li J, Liu M, Cheng P, Wang B, Li Q. Identification and Molecular Mapping of the Gene YrFL in Wheat Cultivar Flanders with Durable Resistance to Stripe Rust. PLANT DISEASE 2023; 107:2716-2723. [PMID: 36774583 DOI: 10.1094/pdis-11-22-2683-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most severe diseases of wheat (Triticum aestivum L.) worldwide. Identification and characterization of resistance genes is advantageous to cultivating wheat varieties with durable resistance, which is the most economic and effective strategy to control stripe rust. Flanders, a common wheat cultivar released in France in 1986, confers effective resistance to stripe rust both at the seedling and adult plant stages. To elucidate the genetic basis of resistance in Flanders, F1, F2, and F2:3 generations derived from the cross Mingxian169 × Flanders were evaluated with the most prevalent Chinese Pst race CYR33 at the seedling stage. Inheritance analysis showed that the stripe rust resistance of Flanders was controlled by a single dominant gene, temporarily designated as YrFL. Bulked segregant analysis (BSA) combined with a wheat 660K single-nucleotide polymorphism (SNP) array indicated that polymorphic SNP markers were mainly located in the 0 to 150 Mb on wheat chromosome 5A. One hundred and eleven kompetitive allele-specific PCR (KASP) and 39 simple sequence repeat (SSR) markers on chromosome 5A were used to locate the YrFL. Linkage analysis mapped YrFL with 19 KASP and three SSR markers on wheat chromosome 5AS, and the genetic distances of the closest flanking markers AX108925494 and Xbarc56 to YrFL were 0.6 and 2.0 cM, respectively. Chromosome location, resistance characterization, and molecular marker positions indicated that YrFL is likely a novel stripe rust resistance gene on wheat chromosome 5AS and could be pyramided with other resistance genes to improve resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Caijuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kangjie Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenbin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Yan Q, Jia G, Tan W, Tian R, Zheng X, Feng J, Luo X, Si B, Li X, Huang K, Wang M, Chen X, Ren Y, Yang S, Zhou X. Genome-wide QTL mapping for stripe rust resistance in spring wheat line PI 660122 using the Wheat 15K SNP array. FRONTIERS IN PLANT SCIENCE 2023; 14:1232897. [PMID: 37701804 PMCID: PMC10493333 DOI: 10.3389/fpls.2023.1232897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Introduction Stripe rust is a global disease of wheat. Identification of new resistance genes is key to developing and growing resistant varieties for control of the disease. Wheat line PI 660122 has exhibited a high level of stripe rust resistance for over a decade. However, the genetics of stripe rust resistance in this line has not been studied. A set of 239 recombinant inbred lines (RILs) was developed from a cross between PI 660122 and an elite Chinese cultivar Zhengmai 9023. Methods The RIL population was phenotyped for stripe rust response in three field environments and genotyped with the Wheat 15K single-nucleotide polymorphism (SNP) array. Results A total of nine quantitative trait loci (QTLs) for stripe rust resistance were mapped to chromosomes 1B (one QTL), 2B (one QTL), 4B (two QTLs), 4D (two QTLs), 6A (one QTL), 6D (one QTL), and 7D (one QTL), of which seven QTLs were stable and designated as QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DS, QYrPI660122.swust-4DL, QYrZM9023.swust-6AS, QYrZM9023.swust-6DS, and QYrPI660122.swust-7DS. QYrPI660122.swust-4DS was a major all-stage resistance QTL explaining the highest percentage (10.67%-20.97%) of the total phenotypic variation and was mapped to a 12.15-cM interval flanked by SNP markers AX-110046962 and AX-111093894 on chromosome 4DS. Discussion The QTL and their linked SNP markers in this study can be used in wheat breeding to improve resistance to stripe rust. In addition, 26 lines were selected based on stripe rust resistance and agronomic traits in the field for further selection and release of new cultivars.
Collapse
Affiliation(s)
- Qiong Yan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wenjing Tan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ran Tian
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaochen Zheng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Junming Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaoqin Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Binfan Si
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, US Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, Sichuan, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
36
|
Kaldate R, Verma RK, Chetia SK, Dey PC, Mahalle MD, Singh SK, Baruah AR, Modi MK. Mapping of QTLs associated with yield and related traits under reproductive stage drought stress in rice using SNP linkage map. Mol Biol Rep 2023; 50:6349-6359. [PMID: 37314604 DOI: 10.1007/s11033-023-08550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought stress is a major constraint for rice production worldwide. Reproductive stage drought stress (RSDS) leads to heavy yield losses in rice. The prospecting of new donor cultivars for identification and introgression of QTLs of major effect (Quantitative trait locus) for drought tolerance is crucial for the development of drought-resilient rice varieties. METHODS AND RESULTS Our study aimed to map QTLs associated with yield and its related traits under RSDS conditions. A saturated linkage map was constructed using 3417 GBS (Genotyping by sequencing) derived SNP (Single nucleotide polymorphism) markers spanning 1924.136 cM map length with an average marker density of 0.56 cM, in the F3 mapping population raised via cross made between the traditional ahu rice cultivar, Koniahu (drought tolerant) and a high-yielding variety, Disang (drought susceptible). Using the Inclusive composite interval mapping approach, 35 genomic regions governing yield and related traits were identified in pooled data from 198 F3 and F4 segregating lines evaluated for two consecutive seasons under both RSDS and irrigated control conditions. Of the 35 QTLs, 23 QTLs were identified under RSDS with LOD (Logarithm of odds) values ranging between 2.50 and 7.83 and PVE (phenotypic variance explained) values of 2.95-12.42%. Two major QTLs were found to be linked to plant height (qPH1.29) and number of filled grains per panicle (qNOG5.12) under RSDS. Five putative QTLs for grain yield namely, qGY2.00, qGY5.05, qGY6.16, qGY9.19, and qGY10.20 were identified within drought conditions. Fourteen QTL regions having ≤ 10 Mb QTL interval size were further analysed for candidate gene identification and a total of 4146 genes were detected out of these 2263 (54.63%) genes were annotated to at least one gene ontology (GO) term. CONCLUSION Several QTLs associated with grain yield and yield components and putative candidate genes were identified. The putative QTLs and candidate genes identified could be employed to augment drought resilience in rice after further validation through MAS strategies.
Collapse
Affiliation(s)
- Rahul Kaldate
- Department of Agricultural Biotechnology, Assam Agricultural University (AAU), Jorhat, Assam, 785013, India
| | - Rahul Kumar Verma
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), AAU, Jorhat, Assam, 785013, India
| | | | | | - Mayuri D Mahalle
- Department of Agricultural Biotechnology, Assam Agricultural University (AAU), Jorhat, Assam, 785013, India
| | - Sushil Kumar Singh
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), AAU, Jorhat, Assam, 785013, India
| | - Akhil Ranjan Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University (AAU), Jorhat, Assam, 785013, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University (AAU), Jorhat, Assam, 785013, India.
| |
Collapse
|
37
|
Wu T, Lu S, Cai Y, Xu X, Zhang L, Chen F, Jiang B, Zhang H, Sun S, Zhai H, Zhao L, Xia Z, Hou W, Kong F, Han T. Molecular breeding for improvement of photothermal adaptability in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:60. [PMID: 37496825 PMCID: PMC10366068 DOI: 10.1007/s11032-023-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01406-z.
Collapse
Affiliation(s)
- Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yupeng Cai
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Xu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honglei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education of China, Northeast Agricultural University, Harbin, 150030 China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
38
|
Pégard M, Barre P, Delaunay S, Surault F, Karagić D, Milić D, Zorić M, Ruttink T, Julier B. Genome-wide genotyping data renew knowledge on genetic diversity of a worldwide alfalfa collection and give insights on genetic control of phenology traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1196134. [PMID: 37476178 PMCID: PMC10354441 DOI: 10.3389/fpls.2023.1196134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
China's and Europe's dependence on imported protein is a threat to the food self-sufficiency of these regions. It could be solved by growing more legumes, including alfalfa that is the highest protein producer under temperate climate. To create productive and high-value varieties, the use of large genetic diversity combined with genomic evaluation could improve current breeding programs. To study alfalfa diversity, we have used a set of 395 alfalfa accessions (i.e. populations), mainly from Europe, North and South America and China, with fall dormancy ranging from 3 to 7 on a scale of 11. Five breeders provided materials (617 accessions) that were compared to the 400 accessions. All accessions were genotyped using Genotyping-by-Sequencing (GBS) to obtain SNP allele frequency. These genomic data were used to describe genetic diversity and identify genetic groups. The accessions were phenotyped for phenology traits (fall dormancy and flowering date) at two locations (Lusignan in France, Novi Sad in Serbia) from 2018 to 2021. The QTL were detected by a Multi-Locus Mixed Model (mlmm). Subsequently, the quality of the genomic prediction for each trait was assessed. Cross-validation was used to assess the quality of prediction by testing GBLUP, Bayesian Ridge Regression (BRR), and Bayesian Lasso methods. A genetic structure with seven groups was found. Most of these groups were related to the geographical origin of the accessions and showed that European and American material is genetically distinct from Chinese material. Several QTL associated with fall dormancy were found and most of these were linked to genes. In our study, the infinitesimal methods showed a higher prediction quality than the Bayesian Lasso, and the genomic prediction achieved high (>0.75) predicting abilities in some cases. Our results are encouraging for alfalfa breeding by showing that it is possible to achieve high genomic prediction quality.
Collapse
Affiliation(s)
| | | | | | | | - Djura Karagić
- Login EKO doo, Bulevar Zorana Đinđića 125, Novi Beograd, Serbia
| | - Dragan Milić
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Miroslav Zorić
- Login EKO doo, Bulevar Zorana Đinđića 125, Novi Beograd, Serbia
| | | | | |
Collapse
|
39
|
Kalamartzis I, Papakaloudis P, Dordas C. Basil ( Ocimum basilicum) Landraces Can Be Used in a Water-Limited Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2425. [PMID: 37446986 DOI: 10.3390/plants12132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Basil (Ocimum basilicum L.) is a member of the Labiatae family and is one of the most widely consumed aromatic and medicinal plants in many countries due to its numerous properties and uses. The objective of the study was to determine whether landraces are better adapted to water-limited environments compared to commercial cultivars. Irrigation levels and genotypes affected plant height and leaf area index, with 25% and 33% higher values observed under complete irrigation, respectively. Additionally, limited water availability resulted in a 20% reduction in dry matter yield and a 21% reduction in essential oil yield over the three years in all of the genotypes tested, specifically in the lower irrigation treatment (d40), compared to the control treatment (d100). The landraces that performed the best under limited water supply were Athos white spike (AWS) and Gigas white spike (GWS), indicating their suitability for environments with limited water resources. The results demonstrate that there are landraces that can be utilized in dryland climates with appropriate water management, enabling water conservation and utilization of fields in water-scarce areas for irrigation purposes.
Collapse
Affiliation(s)
- Iakovos Kalamartzis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Papakaloudis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
40
|
Ali I, Anwar S, Ali A, Ullah Z, Binjawhar DN, Sher H, Abdel-Hameed UK, Khan MA, Majeed K, Jaremko M. Biochemical and phenological characterization of diverse wheats and their association with drought tolerance genes. BMC PLANT BIOLOGY 2023; 23:326. [PMID: 37331960 DOI: 10.1186/s12870-023-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Drought is one of the most important wheat production limiting factor, and can lead to severe yield losses. This study was designed to examine the effect of drought stress on wheat physiology and morphology under three different field capacities (FC) viz. 80% (control), 50% (moderate) and 30% (severe drought stress) in a diverse collection of wheat germplasm including cultivars, landraces, synthetic hexaploid and their derivatives. Traits like grain weight, thousand grain weight and biomass were reduced by 38.23%, 18.91% and 26.47% respectively at 30% FC, whereas the reduction rate for these traits at 50% FC were 19.57%, 8.88% and 18.68%. In principal component analysis (PCA), the first two components PC1 and PC2 accounted for 58.63% of the total variation and separated the cultivars and landraces from synthetic-based germplasm. Landraces showed wide range of phenotypic variations at 30% FC compared to synthetic-based germplasm and improved cultivars. However, least reduction in grain weight was observed in improved cultivars which indicated the progress in developing drought resilient cultivars. Allelic variations of the drought-related genes including TaSnRK2.9-5A, TaLTPs-11, TaLTPs-12, TaSAP-7B-, TaPPH-13, Dreb-B1 and 1fehw3 were significantly associated with the phenological traits under drought stress in all 91 wheats including 40 landraces, 9 varieties, 34 synthetic hexaploids and 8 synthetic derivatives. The favorable haplotypes of 1fehw3, Dreb-B1, TaLTPs-11 and TaLTPs-12 increased grain weight, and biomass. Our results iterated the fact that landraces could be promising source to deploy drought adaptability in wheat breeding. The study further identified drought tolerant wheat genetic resources across various backgrounds and identified favourable haplotypes of water-saving genes which should be considered to develop drought tolerant varieties.
Collapse
Affiliation(s)
- Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
| | - Saeed Anwar
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan.
| | - Zahid Ullah
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Hassan Sher
- Center for Plant Science and Biodiversity, University of Swat, Charbagh Swat, 19120, Pakistan
| | - Usama K Abdel-Hameed
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 42353, Saudi Arabia
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Khawar Majeed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 329555-6900, Saudi Arabia
| |
Collapse
|
41
|
Amalova A, Yermekbayev K, Griffiths S, Winfield MO, Morgounov A, Abugalieva S, Turuspekov Y. Population Structure of Modern Winter Wheat Accessions from Central Asia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2233. [PMID: 37375859 DOI: 10.3390/plants12122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.
Collapse
Affiliation(s)
- Akerke Amalova
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Kanat Yermekbayev
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Simon Griffiths
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Alexey Morgounov
- Science Department, S. Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
42
|
Machado IP, DoVale JC, Sabadin F, Fritsche-Neto R. On the usefulness of mock genomes to define heterotic pools, testers, and hybrid predictions in orphan crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1164555. [PMID: 37332727 PMCID: PMC10272588 DOI: 10.3389/fpls.2023.1164555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
The advances in genomics in recent years have increased the accuracy and efficiency of breeding programs for many crops. Nevertheless, the adoption of genomic enhancement for several other crops essential in developing countries is still limited, especially for those that do not have a reference genome. These crops are more often called orphans. This is the first report to show how the results provided by different platforms, including the use of a simulated genome, called the mock genome, can generate in population structure and genetic diversity studies, especially when the intention is to use this information to support the formation of heterotic groups, choice of testers, and genomic prediction of single crosses. For that, we used a method to assemble a reference genome to perform the single-nucleotide polymorphism (SNP) calling without needing an external genome. Thus, we compared the analysis results using the mock genome with the standard approaches (array and genotyping-by-sequencing (GBS)). The results showed that the GBS-Mock presented similar results to the standard methods of genetic diversity studies, division of heterotic groups, the definition of testers, and genomic prediction. These results showed that a mock genome constructed from the population's intrinsic polymorphisms to perform the SNP calling is an effective alternative for conducting genomic studies of this nature in orphan crops, especially those that do not have a reference genome.
Collapse
Affiliation(s)
| | - Júlio César DoVale
- Department of Crop Science, Federal University of Ceará, Fortaleza, Brazil
| | - Felipe Sabadin
- School of Plant and Environmental Sciences, Virginia Tech: Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Roberto Fritsche-Neto
- LSU AgCenter, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
43
|
Zafer MZ, Tahir MHN, Khan Z, Sajjad M, Gao X, Bakhtavar MA, Waheed U, Siddique M, Geng Z, Ur Rehman S. Genome-Wide Characterization and Sequence Polymorphism Analyses of Glycine max Fibrillin ( FBN) Revealed Its Role in Response to Drought Condition. Genes (Basel) 2023; 14:1188. [PMID: 37372368 DOI: 10.3390/genes14061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
The fibrillin (FBN) gene family is widely distributed in all photosynthetic organisms. Members of this gene family are involved in plant growth and development and their response to various biotic and abiotic stress factors. In this study, 16 members of FBN were identified in Glycine max and characterized by using different bioinformatics tools. Phylogenetic analysis classified FBN genes into seven groups. The presence of stress-related cis-elements in the upstream region of GmFBN highlighted their role in tolerance against abiotic stresses. To further decipher the function, physiochemical properties, conserved motifs, chromosomal localization, subcellular localization, and cis-acting regulatory elements were also analyzed. Gene expression analysis based on FPKM values revealed that GmFBNs greatly enhanced soybean drought tolerance and controlled the expression of several genes involved in drought response, except for GmFBN-4, GmFBN-5, GmFBN-6, GmFBN-7 and GmFBN-9. For high throughput genotyping, an SNP-based CAPS marker was also developed for the GmFBN-15 gene. The CAPS marker differentiated soybean genotypes based on the presence of either the GmFBN-15-G or GmFBN-15-A alleles in the CDS region. Association analysis showed that G. max accessions containing the GmFBN-15-A allele at the respective locus showed higher thousand seed weight compared to accessions containing the GmFBN-15-G allele. This research has provided the basic information to further decipher the function of FBN in soybean.
Collapse
Affiliation(s)
- Muhammad Zeshan Zafer
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Zulqurnain Khan
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University, Islamabad (CUI), Park Road, Islamabad 45550, Pakistan
| | - Xiangkuo Gao
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Muhammad Amir Bakhtavar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Shoaib Ur Rehman
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| |
Collapse
|
44
|
Xiao XO, Zhang N, Jin H, Si H. Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1895. [PMID: 37176953 PMCID: PMC10181131 DOI: 10.3390/plants12091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The autotetraploid potato (Solanum tuberosum L.) is an important crop in China, and it is widely cultivated from Northeast China to South China. Thousands of varieties are bred by breeding institutions or companies, and distinguishing the different varieties based on morphological characteristics is difficult. Using DNA fingerprints is an efficient method to identify varieties that plays an increasingly important role in germplasm identification and property rights protection. In this study, the genetic diversity and population structure of 135 autotetraploid potatoes were evaluated using specific-locus amplified fragment sequencing (SLAF-seq) methods. A total of 3,397,137 high-quality single-nucleotide polymorphisms (SNPs), which were distributed across 12 chromosomes, were obtained. Principal component analysis (PCA), neighbour-joining genetic trees, and model-based structure analysis showed that these autotetraploid potato subpopulations, classified by their SNPs, were not consistent with their geographical origins. On the basis of the obtained 3,397,137 SNPs, 160 perfect SNPs were selected, and 71 SNPs were successfully converted to penta-primer amplification refractory mutation (PARMS-SNP) markers. Additionally, 190 autotetraploid potato varieties were analysed using these 71 PARMS-SNP markers. The PCA results show that the accessions were not completely classified on the basis of their geographical origins. The SNP DNA fingerprints of the 190 autotetraploid potato varieties were also constructed. The SNP fingerprint results show that both synonyms and homonyms were present amongst the 190 autotetraploid potatoes. Above all, these novel SNP markers can lay a good foundation for the analysis of potato genetic diversity, DUS (distinctness, uniformity, and stability) testing, and plant variety protection.
Collapse
Affiliation(s)
- Xi-ou Xiao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Ning Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hui Jin
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
45
|
Yang LN, Ren M, Zhan J. Modeling plant diseases under climate change: evolutionary perspectives. TRENDS IN PLANT SCIENCE 2023; 28:519-526. [PMID: 36593138 DOI: 10.1016/j.tplants.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Infectious plant diseases are a major threat to global agricultural productivity, economic development, and ecological integrity. There is widespread concern that these social and natural disasters caused by infectious plant diseases may escalate with climate change and computer modeling offers a unique opportunity to address this concern. Here, we analyze the intrinsic problems associated with current modeling strategies and highlight the need to integrate evolutionary principles into polytrophic, eco-evolutionary frameworks to improve predictions. We particularly discuss how evolutionary shifts in functional trade-offs, relative adaptability between plants and pathogens, ecosystems, and climate preferences induced by climate change may feedback to future plant disease epidemics and how technological advances can facilitate the generation and integration of this relevant knowledge for better modeling predictions.
Collapse
Affiliation(s)
- Li-Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
46
|
Yang Q, Zhang J, Shi X, Chen L, Qin J, Zhang M, Yang C, Song Q, Yan L. Development of SNP marker panels for genotyping by target sequencing (GBTS) and its application in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:26. [PMID: 37313526 PMCID: PMC10248699 DOI: 10.1007/s11032-023-01372-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/16/2023] [Indexed: 06/15/2023]
Abstract
A high-throughput genotyping platform with customized flexibility, high genotyping accuracy, and low cost is critical for marker-assisted selection and genetic mapping in soybean. Three assay panels were selected from the SoySNP50K, 40K, 20K, and 10K arrays, containing 41,541, 20,748, and 9670 SNP markers, respectively, for genotyping by target sequencing (GBTS). Fifteen representative accessions were used to assess the accuracy and consistency of the SNP alleles identified by the SNP panels and sequencing platform. The SNP alleles were 99.87% identical between technical replicates and 98.86% identical between the 40K SNP GBTS panel and 10× resequencing analysis. The GBTS method was also accurate in the sense that the genotypic dataset of the 15 representative accessions correctly revealed the pedigree of the accessions, and the biparental progeny datasets correctly constructed the linkage maps of the SNPs. The 10K panel was also used to genotype two parent-derived populations and analyze QTLs controlling 100-seed weight, resulting in the identification of the stable associated genetic locus Locus_OSW_06 on chromosome 06. The markers flanking the QTL explained 7.05% and 9.83% of the phenotypic variation, respectively. Compared with GBS and DNA chips, the 40K, 20K, and 10K panels reduced costs by 5.07% and 58.28%, 21.44% and 65.48%, and 35.74% and 71.76%, respectively. Low-cost genotyping panels could facilitate soybean germplasm assessment, genetic linkage map construction, QTL identification, and genomic selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01372-6.
Collapse
Affiliation(s)
- Qing Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Jianan Zhang
- Mol Breeding Biotechnology Co., Ltd., 136 Huanghe Parkway, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Lei Chen
- School of Life Sciences, Yantai University, 30# Qingquan Road, Lai Shan District, Yantai, 264005 Shandong People’s Republic of China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD USA
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| |
Collapse
|
47
|
Peng P, Jiang H, Luo L, Ye C, Xiao Y. Pyramiding of Multiple Genes to Improve Rice Blast Resistance of Photo-Thermo Sensitive Male Sterile Line, without Yield Penalty in Hybrid Rice Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1389. [PMID: 36987076 PMCID: PMC10058063 DOI: 10.3390/plants12061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Rice blast caused by pathogenic fungus Magnaporthe oryzae is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, Pigm, Pi48 and Pi49, were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection. The results showed that the blast resistance of improved lines increased significantly compared with Chuang5S, and the three gene pyramiding lines (Pigm + Pi48 + Pi49) had higher rice blast resistance level than monogenic line and digenic lines (Pigm +Pi48, Pigm + Pi49). The genetic backgrounds of the improved lines were highly similar (>90%) to the recurrent parent Chuang5S by using the RICE10K SNP chip. In addition, agronomic traits evaluation also showed pyramiding lines with two or three genes similar to Chuang5S. The yields of the hybrids developed from improved PTGMS lines and Chuang5S are not significantly different. The newly developed PTGMS lines can be practically used for the breeding of parental lines and hybrid varieties with broad spectrum blast resistance.
Collapse
Affiliation(s)
- Pei Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haoyu Jiang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Changrong Ye
- Huazhi Biotech Co., Ltd., Changsha 410125, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
48
|
Shaikh TM, Rahman M, Smith T, Anderson JV, Chao WS, Horvath DP. Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in Camelina sativa. THE PLANT GENOME 2023:e20318. [PMID: 36896462 DOI: 10.1002/tpg2.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes. We performed whole genome homozygosity mapping to identify markers and candidate genes responsible for freezing tolerance difference between these two genotypes. A total of 28 F3 RILs were sequenced to ∼30× coverage, and parental lines were sequenced to >30-40× coverage with Pacific Biosciences high fidelity technology and 60× coverage using Illumina whole genome sequencing. Overall, about 126k homozygous single nucleotide polymorphism markers were identified that differentiate both parents. Moreover, 617 markers were also homozygous in F3 families fixed for freezing tolerance/susceptibility. All these markers mapped to two contigs forming a contiguous stretch of chromosome 11. The homozygosity mapping detected 9 homozygous blocks among the selected markers and 22 candidate genes with strong similarity to regions in or near the homozygous blocks. Two such genes were differentially expressed during cold acclimation in camelina. The largest block contained a cold-regulated plant thionin and a putative rotamase cyclophilin 2 gene previously associated with freezing resistance in arabidopsis (Arabidopsis thaliana). The second largest block contains several cysteine-rich RLK genes and a cold-regulated receptor serine/threonine kinase gene. We hypothesize that one or more of these genes may be primarily responsible for freezing tolerance differences in camelina varieties.
Collapse
Affiliation(s)
- T M Shaikh
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Timothy Smith
- USDA/ARS, Genetics and Animal Breeding, Clay Center, NE, USA
| | - James V Anderson
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - David P Horvath
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
49
|
Zhao S, Zhang C, Wang L, Luo M, Zhang P, Wang Y, Malik WA, Wang Y, Chen P, Qiu X, Wang C, Lu H, Xiang Y, Liu Y, Ruan J, Qian Q, Zhi H, Chang Y. A prolific and robust whole-genome genotyping method using PCR amplification via primer-template mismatched annealing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:633-645. [PMID: 36269601 DOI: 10.1111/jipb.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Whole-genome genotyping methods are important for breeding. However, it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species. In our study, we accidently discovered that in adapter ligation-mediated PCR, the amplification by primer-template mismatched annealing (PTMA) along the genome could generate thousands of stable PCR products. Based on this observation, we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing (FBI-seq) using one specific primer, in which foreground genotyping is performed by primer-template perfect annealing (PTPA), while background genotyping employs PTMA. Unlike DNA arrays, multiple PCR, or genome target enrichments, FBI-seq requires little preliminary work for primer design and synthesis, and it is easily adaptable to different foreground genes and species. FBI-seq therefore provides a prolific, robust, and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the post-genomics era.
Collapse
Affiliation(s)
- Sheng Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cuicui Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liqun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minxuan Luo
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Peng Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yue Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Waqar Afzal Malik
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yue Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Peng Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, 434023, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hong Lu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yong Xiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuwen Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jue Ruan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qian Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Haijian Zhi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxiao Chang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
50
|
Abstract
Over the past decade, advances in plant genotyping have been critical in enabling the identification of genetic diversity, in understanding evolution, and in dissecting important traits in both crops and native plants. The widespread popularity of single-nucleotide polymorphisms (SNPs) has prompted significant improvements to SNP-based genotyping, including SNP arrays, genotyping by sequencing, and whole-genome resequencing. More recent approaches, including genotyping structural variants, utilizing pangenomes to capture species-wide genetic diversity and exploiting machine learning to analyze genotypic data sets, are pushing the boundaries of what plant genotyping can offer. In this chapter, we highlight these innovations and discuss how they will accelerate and advance future genotyping efforts.
Collapse
|