1
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Zeng L, Gomez Mendez MF, Guo J, Jiang J, Zhang B, Chen H, Le B, Ke H, Dehesh K. Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. MOLECULAR PLANT 2024; 17:884-899. [PMID: 38693693 DOI: 10.1016/j.molp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Maria Fernanda Gomez Mendez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Wang H, Qiu Y, Guo H, Yin Y, Liu P. Information-incorporated gene network construction with FDR control. Bioinformatics 2024; 40:btae125. [PMID: 38430463 PMCID: PMC10937901 DOI: 10.1093/bioinformatics/btae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
MOTIVATION Large-scale gene expression studies allow gene network construction to uncover associations among genes. To study direct associations among genes, partial correlation-based networks are preferred over marginal correlations. However, FDR control for partial correlation-based network construction is not well-studied. In addition, currently available partial correlation-based methods cannot take existing biological knowledge to help network construction while controlling FDR. RESULTS In this paper, we propose a method called Partial Correlation Graph with Information Incorporation (PCGII). PCGII estimates partial correlations between each pair of genes by regularized node-wise regression that can incorporate prior knowledge while controlling the effects of all other genes. It handles high-dimensional data where the number of genes can be much larger than the sample size and controls FDR at the same time. We compare PCGII with several existing approaches through extensive simulation studies and demonstrate that PCGII has better FDR control and higher power. We apply PCGII to a plant gene expression dataset where it recovers confirmed regulatory relationships and a hub node, as well as several direct associations that shed light on potential functional relationships in the system. We also introduce a method to supplement observed data with a pseudogene to apply PCGII when no prior information is available, which also allows checking FDR control and power for real data analysis. AVAILABILITY AND IMPLEMENTATION R package is freely available for download at https://cran.r-project.org/package=PCGII.
Collapse
Affiliation(s)
- Hao Wang
- Department of Statistics, Iowa State University, Ames, IA 50010, United States
| | - Yumou Qiu
- Department of Statistics, Iowa State University, Ames, IA 50010, United States
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50010, United States
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50010, United States
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50010, United States
| |
Collapse
|
4
|
Tang B, Feng L, Hulin MT, Ding P, Ma W. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 2023; 31:1732-1747.e5. [PMID: 37741284 DOI: 10.1016/j.chom.2023.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023]
Abstract
Pathogen infection is a dynamic process. Here, we employ single-cell transcriptomics to investigate plant response heterogeneity. By generating an Arabidopsis thaliana leaf atlas encompassing 95,040 cells during infection by a fungal pathogen, Colletotrichum higginsianum, we unveil cell-type-specific gene expression, notably an enrichment of intracellular immune receptors in vasculature cells. Trajectory inference identifies cells that had different interactions with the invading fungus. This analysis divulges transcriptional reprogramming of abscisic acid signaling specifically occurring in guard cells, which is consistent with a stomatal closure dependent on direct contact with the fungus. Furthermore, we investigate the transcriptional plasticity of genes involved in glucosinolate biosynthesis in cells at the fungal infection sites, emphasizing the contribution of the epidermis-expressed MYB122 to disease resistance. This work underscores spatially dynamic, cell-type-specific plant responses to a fungal pathogen and provides a valuable resource that supports in-depth investigations of plant-pathogen interactions.
Collapse
Affiliation(s)
- Bozeng Tang
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Li Feng
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Michelle T Hulin
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK.
| |
Collapse
|
5
|
Griffin JHC, Toledo-Ortiz G. Plant photoreceptors and their signalling components in chloroplastic anterograde and retrograde communication. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7126-7138. [PMID: 35640572 PMCID: PMC9675593 DOI: 10.1093/jxb/erac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 05/27/2023]
Abstract
The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.
Collapse
|
6
|
Wang P, Clark NM, Nolan TM, Song G, Bartz PM, Liao CY, Montes-Serey C, Katz E, Polko JK, Kieber JJ, Kliebenstein DJ, Bassham DC, Walley JW, Yin Y, Guo H. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. THE PLANT CELL 2022; 34:2594-2614. [PMID: 35435236 PMCID: PMC9252503 DOI: 10.1093/plcell/koac111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/09/2022] [Indexed: 05/20/2023]
Abstract
The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Parker M Bartz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Christian Montes-Serey
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Ella Katz
- Department of Plant Science, University of California, Davis, California 95616, USA
| | - Joanna K Polko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011, USA
| | - Yanhai Yin
- Author for correspondence: (H.G.); (Y.Y)
| | | |
Collapse
|
7
|
Wang JZ, van de Ven W, Xiao Y, He X, Ke H, Yang P, Dehesh K. Reciprocity between a retrograde signal and a putative metalloprotease reconfigures plastidial metabolic and structural states. SCIENCE ADVANCES 2022; 8:eabo0724. [PMID: 35658042 PMCID: PMC9166295 DOI: 10.1126/sciadv.abo0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Reconfiguration of the plastidial proteome in response to environmental cues is central to tailoring adaptive responses. To define the underlying mechanisms and consequences of these reconfigurations, we performed a suppressor screen, using a mutant (ceh1) accumulating high levels of a plastidial retrograde signaling metabolite, MEcPP. We isolated a revertant partially suppressing the dwarf stature and high salicylic acid of ceh1 and identified the mutation in a putative plastidial metalloprotease (VIR3). Biochemical analyses showed increased VIR3 levels in ceh1, accompanied by reduced abundance of VIR3-target enzymes, ascorbate peroxidase, and glyceraldehyde 3-phophate dehydrogenase B. These proteomic shifts elicited increased H2O2, salicylic acid, and MEcPP levels, as well as stromule formation. High light recapitulated VIR3-associated reconfiguration of plastidial metabolic and structural states. These results establish a link between a plastidial stress-inducible retrograde signaling metabolite and a putative metalloprotease and reveal how the reciprocity between the two components modulates plastidial metabolic and structural states, shaping adaptive responses.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Wilhelmina van de Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xiang He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Panyu Yang
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana. Sci Rep 2021; 11:21109. [PMID: 34702872 PMCID: PMC8548588 DOI: 10.1038/s41598-021-00564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cesium (Cs) is found at low levels in nature but does not confer any known benefit to plants. Cs and K compete in cells due to the chemical similarity of Cs to potassium (K), and can induce K deficiency in cells. In previous studies, we identified chemicals that increase Cs tolerance in plants. Among them, a small chemical compound (C17H19F3N2O2), named CsToAcE1, was confirmed to enhance Cs tolerance while increasing Cs accumulation in plants. Treatment of plants with CsToAcE1 resulted in greater Cs and K accumulation and also alleviated Cs-induced growth retardation in Arabidopsis. In the present study, potential target proteins of CsToAcE1 were isolated from Arabidopsis to determine the mechanism by which CsToAcE1 alleviates Cs stress, while enhancing Cs accumulation. Our analysis identified one of the interacting target proteins of CsToAcE1 to be BETA-GLUCOSIDASE 23 (AtβGLU23). Interestingly, Arabidopsis atβglu23 mutants exhibited enhanced tolerance to Cs stress but did not respond to the application of CsToAcE1. Notably, application of CsToAcE1 resulted in a reduction of Cs-induced AtβGLU23 expression in wild-type plants, while this was not observed in a high affinity transporter mutant, athak5. Our data indicate that AtβGLU23 regulates plant response to Cs stress and that CsToAcE1 enhances Cs tolerance by repressing AtβGLU23. In addition, AtHAK5 also appears to be involved in this response.
Collapse
|
9
|
Kachroo P, Burch-Smith TM, Grant M. An Emerging Role for Chloroplasts in Disease and Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:423-445. [PMID: 34432508 DOI: 10.1146/annurev-phyto-020620-115813] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK;
| |
Collapse
|
10
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
11
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|
12
|
Jiang J, Dehesh K. Plastidial retrograde modulation of light and hormonal signaling: an odyssey. THE NEW PHYTOLOGIST 2021; 230:931-937. [PMID: 33452833 DOI: 10.1111/nph.17192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The transition from an engulfed autonomous unicellular photosynthetic bacterium to a semiautonomous endosymbiont plastid was accompanied by the transfer of genetic material from the endosymbiont to the nuclear genome of the host, followed by the establishment of plastid-to-nucleus (retrograde) signaling. The retrograde coordinated activities of the two subcellular genomes ensure chloroplast biogenesis and function as the photosynthetic hub and sensing and signaling center that tailors growth-regulating and adaptive processes. This review specifically focuses on the current knowledge of selected stress-induced retrograde signals, genomes uncoupled 1 (GUN1), methylerythritol cyclodiphosphate (MEcPP), apocarotenoid and β-cyclocitral, and 3'-phosphoadenosine 5'-phosphate (PAP), which evolved to establish the photoautotrophic lifestyle and are instrumental in the integration of light and hormonal signaling networks to ultimately fashion adaptive responses in an ever-changing environment.
Collapse
Affiliation(s)
- Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
13
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
14
|
Evolutionary analysis of the Moringa oleifera genome reveals a recent burst of plastid to nucleus gene duplications. Sci Rep 2020; 10:17646. [PMID: 33077763 PMCID: PMC7573628 DOI: 10.1038/s41598-020-73937-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
It is necessary to identify suitable alternative crops to ensure the nutritional demands of a growing global population. The genome of Moringa oleifera, a fast-growing drought-tolerant orphan crop with highly valuable agronomical, nutritional and pharmaceutical properties, has recently been reported. We model here gene family evolution in Moringa as compared with ten other flowering plant species. Despite the reduced number of genes in the compact Moringa genome, 101 gene families, grouping 957 genes, were found as significantly expanded. Expanded families were highly enriched for chloroplastidic and photosynthetic functions. Indeed, almost half of the genes belonging to Moringa expanded families grouped with their Arabidopsis thaliana plastid encoded orthologs. Microsynteny analysis together with modeling the distribution of synonymous substitutions rates, supported most plastid duplicated genes originated recently through a burst of simultaneous insertions of large regions of plastid DNA into the nuclear genome. These, together with abundant short insertions of plastid DNA, contributed to the occurrence of massive amounts of plastid DNA in the Moringa nuclear genome, representing 4.71%, the largest reported so far. Our study provides key genetic resources for future breeding programs and highlights the potential of plastid DNA to impact the structure and function of nuclear genes and genomes.
Collapse
|
15
|
Jiang J, Xiao Y, Chen H, Hu W, Zeng L, Ke H, Ditengou FA, Devisetty U, Palme K, Maloof J, Dehesh K. Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth. PLANT PHYSIOLOGY 2020; 183:1268-1280. [PMID: 32430463 PMCID: PMC7333703 DOI: 10.1104/pp.20.00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 05/19/2023]
Abstract
Exquisitely regulated plastid-to-nucleus communication by retrograde signaling pathways is essential for fine-tuning of responses to the prevailing environmental conditions. The plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) has emerged as a stress signal transduced into a diverse ensemble of response outputs. Here, we demonstrate enhanced phytochrome B protein abundance in red light-grown MEcPP-accumulating ceh1 mutant Arabidopsis (Arabidopsis thaliana) plants relative to wild-type seedlings. We further establish MEcPP-mediated coordination of phytochrome B with auxin and ethylene signaling pathways and uncover differential hypocotyl growth of red light-grown seedlings in response to these phytohormones. Genetic and pharmacological interference with ethylene and auxin pathways outlines the hierarchy of responses, placing ethylene epistatic to the auxin signaling pathway. Collectively, our findings establish a key role of a plastidial retrograde metabolite in orchestrating the transduction of a repertoire of signaling cascades. This work positions plastids at the zenith of relaying information coordinating external signals and internal regulatory circuitry to secure organismal integrity.
Collapse
Affiliation(s)
- Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Yanmei Xiao
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
- University of Freiburg, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, 79104 Freiburg, Germany
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Wei Hu
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Franck A Ditengou
- Department of Plant Biology, University of California, Davis, California 95616
| | - Upendra Devisetty
- University of Freiburg, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, 79104 Freiburg, Germany
| | - Klaus Palme
- Department of Plant Biology, University of California, Davis, California 95616
| | - Julin Maloof
- University of Freiburg, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, 79104 Freiburg, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Havaux M. Endoplasmic reticulum-mediated unfolded protein response is an integral part of singlet oxygen signalling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1266-1280. [PMID: 31975462 DOI: 10.1111/tpj.14700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | | | - Brigitte Ksas
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix-Marseille University, CNRS, CEA, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
18
|
Unal D, García-Caparrós P, Kumar V, Dietz KJ. Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190443. [PMID: 32362264 DOI: 10.1098/rstb.2019.0443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chloroplasts compose about one-quarter of the mesophyll cell volume and contain about 60% of the cell protein. Photosynthetic carbon assimilation is the dominating metabolism in illuminated leaves. To optimize the resource expenditure in these costly organelles and to control and adjust chloroplast metabolism, an intensive transfer of information between nucleus-cytoplasm and chloroplasts occurs in both directions as anterograde and retrograde signalling. Recent research identified multiple retrograde pathways that use metabolite transfer and include reaction products of lipids and carotenoids with reactive oxygen species (ROS). Other pathways use metabolites of carbon, sulfur and nitrogen metabolism, low molecular weight antioxidants and hormone precursors to carry information between the cell compartments. This review focuses on redox- and ROS-related retrograde signalling pathways. In analogy to the microbe-associated molecular pattern, we propose the term 'chloroplast-associated molecular pattern' which connects chloroplast performance to extrachloroplast processes such as nuclear gene transcription, posttranscriptional processing, including translation, and RNA and protein fate. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Dilek Unal
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Molecular Biology and Genetic, Faculty of Science and Letter, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.,Department of Agronomy, University of Almeria, Higher Engineering School, Agrifood Campus of International Excellence ceiA3, Carretera de Sacramento s/n, La Cañada de San Urbano 04120, Almeria, Spain
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| |
Collapse
|
19
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
20
|
Wang JZ, Lei Y, Xiao Y, He X, Liang J, Jiang J, Dong S, Ke H, Leon P, Zerbe P, Xiao Y, Dehesh K. Uncovering the functional residues of Arabidopsis isoprenoid biosynthesis enzyme HDS. Proc Natl Acad Sci U S A 2020; 117:355-361. [PMID: 31879352 PMCID: PMC6955319 DOI: 10.1073/pnas.1916434117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The methylerythritol phosphate (MEP) pathway is responsible for producing isoprenoids, metabolites with essential functions in the bacterial kingdom and plastid-bearing organisms including plants and Apicomplexa. Additionally, the MEP-pathway intermediate methylerythritol cyclodiphosphate (MEcPP) serves as a plastid-to-nucleus retrograde signal. A suppressor screen of the high MEcPP accumulating mutant plant (ceh1) led to the isolation of 3 revertants (designated Rceh1-3) resulting from independent intragenic substitutions of conserved amino acids in the penultimate MEP-pathway enzyme, hydroxymethylbutenyl diphosphate synthase (HDS). The revertants accumulate varying MEcPP levels, lower than that of ceh1, and exhibit partial or full recovery of MEcPP-mediated phenotypes, including stunted growth and induced expression of stress response genes and the corresponding metabolites. Structural modeling of HDS and ligand docking spatially position the substituted residues at the MEcPP binding pocket and cofactor binding domain of the enzyme. Complementation assays confirm the role of these residues in suppressing the ceh1 mutant phenotypes, albeit to different degrees. In vitro enzyme assays of wild type and HDS variants exhibit differential activities and reveal an unanticipated mismatch between enzyme kinetics and the in vivo MEcPP levels in the corresponding Rceh lines. Additional analyses attribute the mismatch, in part, to the abundance of the first and rate-limiting MEP-pathway enzyme, DXS, and further suggest MEcPP as a rheostat for abundance of the upstream enzyme instrumental in fine-tuning of the pathway flux. Collectively, this study identifies critical residues of a key MEP-pathway enzyme, HDS, valuable for synthetic engineering of isoprenoids, and as potential targets for rational design of antiinfective drugs.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Yongxing Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Yanmei Xiao
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Xiang He
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Jiubo Liang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Shangzhi Dong
- Chinese Academy of Sciences (CAS) Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, México
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Youli Xiao
- Chinese Academy of Sciences (CAS) Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
21
|
Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite. Nat Commun 2019; 10:2904. [PMID: 31266952 PMCID: PMC6606753 DOI: 10.1038/s41467-019-10867-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022] Open
Abstract
Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) are evolutionarily conserved sensing and signaling components eliciting responses through unknown connection(s). Here, via a suppressor screen, we identify two phyB mutant alleles that revert the dwarf and high salicylic acid phenotypes of the high MEcPP containing mutant ceh1. Biochemical analyses show high phyB protein levels in MEcPP-accumulating plants resulting from reduced expression of phyB antagonists and decreased auxin levels. We show that auxin treatment negatively regulates phyB abundance. Additional studies identify CAMTA3, a MEcPP-activated calcium-dependent transcriptional regulator, as critical for maintaining phyB abundance. These studies provide insights into biological organization fundamentals whereby a signal from a single plastidial metabolite is transduced into an ensemble of regulatory networks controlling the abundance of phyB, positioning plastids at the information apex directing adaptive responses. MEcPP is an evolutionarily conserved metabolite that acts as a plastid-to-nucleus retrograde signal to regulate adaptive responses to fluctuating light. Here the authors show that MEcPP regulates seedling development by stabilizing the phyB photoreceptor in an auxin and Ca2+ dependent manner.
Collapse
|
22
|
Wang Z, Li X, Liu N, Peng Q, Wang Y, Fan B, Zhu C, Chen Z. A Family of NAI2-Interacting Proteins in the Biogenesis of the ER Body and Related Structures. PLANT PHYSIOLOGY 2019; 180:212-227. [PMID: 30770459 PMCID: PMC6501091 DOI: 10.1104/pp.18.01500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 05/16/2023]
Abstract
Plants produce different types of endoplasmic reticulum (ER)-derived vesicles that accumulate and transport proteins, lipids, and metabolites. In the Brassicales, a distinct ER-derived structure called the ER body is found throughout the epidermis of cotyledons, hypocotyls, and roots. NAI2 is a key factor for ER body formation in Arabidopsis (Arabidopsis thaliana). Homologs of NAI2 are found only in the Brassicales and therefore may have evolved specifically to enable ER body formation. Here, we report that three related Arabidopsis NAI2-interacting proteins (NAIP1, NAIP2, and NAIP3) play a critical role in the biogenesis of ER bodies and related structures. Analysis using GFP fusions revealed that all three NAIPs are components of the ER bodies found in the cotyledons, hypocotyls, and roots. Genetic analysis with naip mutants indicates that they have a critical and redundant role in ER body formation. NAIP2 and NAIP3 are also components of other vesicular structures likely derived from the ER that are formed independent of NAI2 and are present not only in the cotyledons, hypocotyls, and roots, but also in the rosettes. Thus, while NAIP1 is a specialized ER body component, NAIP2 and NAIP3 are components of different types of ER-derived structures. Analysis of chimeric NAIP proteins revealed that their N-terminal domains play a major role in the functional specialization between NAIP1 and NAIP3. Unlike NAI2, NAIPs have homologs in all plants; therefore, NAIP-containing ER structures, from which the ER bodies in the Brassicales may have evolved, are likely to be present widely in plants.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Nana Liu
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, China
| | - Qi Peng
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuexia Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
23
|
Blanco NE, Liebsch D, Guinea Díaz M, Strand Å, Whelan J. Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2325-2338. [PMID: 30753728 DOI: 10.1093/jxb/erz023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Sucrose non-fermenting 1 (SNF1)-related protein kinase 1.1 (SnRK1.1; also known as KIN10 or SnRK1α) has been identified as the catalytic subunit of the complex SnRK1, the Arabidopsis thaliana homologue of a central integrator of energy and stress signalling in eukaryotes dubbed AMPK/Snf1/SnRK1. A nuclear localization of SnRK1.1 has been previously described and is in line with its function as an integrator of energy and stress signals. Here, using two biological models (Nicotiana benthamiana and Arabidopsis thaliana), native regulatory sequences, different microscopy techniques, and manipulations of cellular energy status, it was found that SnRK1.1 is localized dynamically between the nucleus and endoplasmic reticulum (ER). This distribution was confirmed at a spatial and temporal level by co-localization studies with two different fluorescent ER markers, one of them being the SnRK1.1 phosphorylation target HMGR. The ER and nuclear localization displayed a dynamic behaviour in response to perturbations of the plastidic electron transport chain. These results suggest that an ER-associated SnRK1.1 fraction might be sensing the cellular energy status, being a point of crosstalk with other ER stress regulatory pathways.
Collapse
Affiliation(s)
- Nicolás E Blanco
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario (CEFOBI-CONICET/UNR), Rosario, Argentina
- Umeå Plant Science Centre, Department of Plant Physiologyogy, Umeå University, Sweden
| | - Daniela Liebsch
- Umeå Plant Science Centre, Department of Plant Physiologyogy, Umeå University, Sweden
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Manuel Guinea Díaz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiologyogy, Umeå University, Sweden
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
24
|
Jiang J, Rodriguez-Furlan C, Wang JZ, de Souza A, Ke H, Pasternak T, Lasok H, Ditengou FA, Palme K, Dehesh K. Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. Nat Commun 2018; 9:2262. [PMID: 29891932 PMCID: PMC5995930 DOI: 10.1038/s41467-018-04708-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
The ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress. We demonstrate that in vivo accumulation or exogenous application of MEcPP alters the expression of two auxin reporters, DR5:GFP and DII-VENUS, and reduces the abundance of the auxin-efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane. However, pharmacological intervention with clathrin-mediated endocytosis blocks the PIN1 reduction. This study provides insight into the interplay between these two indispensable signaling metabolites by establishing the mode of MEcPP action in altering auxin homeostasis, and as such, positioning plastidial function as the primary driver of adaptive growth. MEcPP is an evolutionarily conserved plastidial metabolite functioning as a retrograde signal to the nucleus in response to environmental stresses. Here Jiang et al. show that MEcPP can reduce the abundance of auxin and an auxin transporter, providing a mechanistic link between plastids and adaptive growth responses.
Collapse
Affiliation(s)
- Jishan Jiang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Jin-Zheng Wang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Amancio de Souza
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA
| | - Taras Pasternak
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Hanna Lasok
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Franck A Ditengou
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Klaus Palme
- University of Freiburg, Faculty of Biology; BIOSS Centre for Biological Signaling Studies and ZBSA Centre for Biosystems Studies, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92506, USA.
| |
Collapse
|
25
|
Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 2018. [PMID: 29540758 PMCID: PMC5939044 DOI: 10.1038/s41422-018-0024-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process. Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase, leads to the accumulation of reactive oxygen species (ROS) and PCD, which can be suppressed by mitochondrial complex I mutations, indicating a signal from chloroplasts to mitochondria. However, this signal remains to be elucidated. In this study, through cloning and analyzing a series of mod1 suppressors, we reveal a comprehensive organelle communication pathway that regulates the generation of mitochondrial ROS and triggers PCD. We show that mutations in PLASTIDIAL NAD-DEPENDENT MALATE DEHYDROGENASE (plNAD-MDH), chloroplastic DICARBOXYLATE TRANSPORTER 1 (DiT1) and MITOCHONDRIAL MALATE DEHYDROGENASE 1 (mMDH1) can each rescue the ROS accumulation and PCD phenotypes in mod1, demonstrating a direct communication from chloroplasts to mitochondria via the malate shuttle. Further studies demonstrate that these elements play critical roles in the redox homeostasis and plant growth under different photoperiod conditions. Moreover, we reveal that the ROS level and PCD are significantly increased in malate-treated HeLa cells, which can be dramatically attenuated by knockdown of the human gene MDH2, an ortholog of Arabidopsis mMDH1. These results uncover a conserved malate-induced PCD pathway in plant and animal systems, revolutionizing our understanding of the communication between organelles.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Plant Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lin Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|