1
|
Akgul B, Aydinoglu F. Evaluation of zma-miR408 and its target genes function on maize (Zea mays) leaf growth response to cold stress by VIGS-based STTM approach. Gene 2025; 938:149161. [PMID: 39674290 DOI: 10.1016/j.gene.2024.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
miR408 is a conserved plant miRNA family that is known to regulate genes involved in copper metabolism. However, the function of miR408 in maize leaf growth regulation under cold stress isn't defined. In this study, endogenous maize miR408 was transiently silenced by using virus-induced gene silencing (VIGS) combined with short tandem target mimic (STTM) approaches. To this end, STTM-miR408a/b was designed, synthesized, and applied to maize seedlings. Subsequently, STTM-miR408a/b (STTM) and mock-treated (M) seedlings were subjected to cold stress (C) and the growth response of the seedlings was monitored. Finally, STTM-miR408a/b-treatment successfully downregulated the expression of endogenous mir408a/b and upregulated their putative targets Basic Blue Protein (BBP) and Blue Copper Protein (BCP) antagonistically in the STTM and STTM_C groups compared to M and M_C groups. On the other hand, their putative target Laccase (LAC22) gene was upregulated in the STTM group compared to the M group, but there were no significant expression differences between the M_C and STTM_C groups. The elongation rate of the STTM-miR408a/b-treated second and third leaves was reduced by 10% and 19% resulting in 19% and 11% shortening, respectively. Furthermore, the activity of catalase (CAT) and glutathione reductase (GR) was decreased by 57% in STTM, M_C, and STTM_C, and 29% and 28% in the M_C and STTM_C groups and ascorbate peroxidase (APX) was increased by 15% in M_C and STTM_C groups, respectively. These findings illuminated the maize leaf growth response to cold via regulation of expression of miR408 and its target genes and antioxidant system.
Collapse
Affiliation(s)
- Burak Akgul
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| | - Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
2
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang B, Zhang X, Li W, Pan D, Ma B, Duan X, Dong C, Wang L, Zhao M, Zhao S, Zhang S, Wu J. A resource for functional investigation of miRNAs in rice responses to viral infection. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3380-3382. [PMID: 39180337 PMCID: PMC11606404 DOI: 10.1111/pbi.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/13/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Baogang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Xiong Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Wenji Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Dezhuo Pan
- Rice Research InstituteFujian Academy of Agricultural SciencesNo. 247, Wusi Road, Gulou DistrictFuzhouChina
| | - Baining Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Xinhui Duan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Chaoyi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Lu Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Mingfu Zhao
- Rice Research InstituteFujian Academy of Agricultural SciencesNo. 247, Wusi Road, Gulou DistrictFuzhouChina
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityNo.15 Shangshangdian Road, Cangshan DistrictFuzhouChina
| |
Collapse
|
4
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Mohd Zahid NII, Syed Othman SMI, Mustaffa AF, Ismail I, Che-Othman MH. Fine-tuning plant valuable secondary metabolite biosynthesis via small RNA manipulation: strategies and potential. PLANTA 2024; 260:89. [PMID: 39254898 DOI: 10.1007/s00425-024-04521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.
Collapse
Affiliation(s)
- Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Shen E, Zhao T, Zhu QH. Are miRNAs applicable for balancing crop growth and defense trade-off? THE NEW PHYTOLOGIST 2024; 243:1670-1680. [PMID: 38952260 DOI: 10.1111/nph.19939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Securing agricultural supplies for the increasing population without negative impacts on environment demands new crop varieties with higher yields, better quality, and stronger stress resilience. But breeding such super crop varieties is restrained by growth-defense (G-D) trade-off. MicroRNAs (miRNAs) are versatile regulators of plant growth and immune responses, with several being demonstrated to simultaneously regulate crop growth and defense against biotic stresses and to balance G-D trade-off. Increasing evidence also links miRNAs to the metabolism and signaling of phytohormones, another type of master regulator of plant growth and defense. Here, we synthesize the reported functions of miRNAs in crop growth, development, and responses to bio-stressors, summarize the regulatory scenarios of miRNAs based on their relationship with target(s), and discuss how miRNAs, particularly those involved in crosstalk with phytohormones, can be applied in balancing G-D trade-off in crops. We also propose several open questions to be addressed for adopting miRNAs in balancing crop G-D trade-off.
Collapse
Affiliation(s)
- Enhui Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Pawłasek N, Sokołowska A, Koter M, Oracz K. The interaction between miR165/166 and miR160 regulates Arabidopsis thaliana seed size, weight, and number in a ROS-dependent manner. PLANTA 2024; 260:72. [PMID: 39138723 PMCID: PMC11322425 DOI: 10.1007/s00425-024-04499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
MAIN CONCLUSION Our data link the miR165/166- and miR160-mediated regulatory modules to ROS and seed formation. Trade-offs of seed size, weight, and number probably require control of the expression of miR165/166 by miR160, modulation of ROS metabolism by miR165/166, and miR160 abundance by ROS-induced oxidative modifications The cycle of plant life and its yield productivity depends fundamentally on the establishment of the trade-offs of seed size, weight, and number. For annual plants, seed number should simply be a positive function of vegetative biomass and a negative function of seed size and/or weight. However, extensive natural variation within species is observed for these traits, for which an optimal solution is environmentally dependent. Understanding the miRNA-mediated post-transcriptional regulation of gene expression determining seed phenotype and number is crucial from both an evolutionary and applied perspective. Although extensive research has concentrated on the individual roles of miRNAs in plant life, fewer studies have centred on their functional interactions, hence this study aimed to examine whether the module of miR165/miR166 and/or miR160 interactions is involved in forming Arabidopsis thaliana seeds, and/or has an impact on their features. Considering that reactive oxygen species (ROS) are among key players in seed-related processes, it was also intriguing to verify if the mechanism of action of these miRNAs is associated with the ROS pathway. The plant material used in this study consisted of flower buds, green siliques, and freshly harvested seeds, of wild type (WT), and STTM165/166 and STTM160 × 165/166 mutants of A. thaliana plants which are powerful tools for functional analysis of miRNAs in plants. The novel results obtained during physiological phenotyping together with two-tailed qRT-PCR analysis of mature miR165, miR166, miR160, and spectrofluorimetric measurement of apoplastic hydrogen peroxide (H2O2) for the first time revealed that interaction between miR165/miR166 and miR160 may regulate seed size, weight and number in ROS-dependent manner.
Collapse
Affiliation(s)
- Natalia Pawłasek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland
| | - Anna Sokołowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland
| | - Marek Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland
| | - Krystyna Oracz
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Poland.
| |
Collapse
|
8
|
Wang Z, Lv R, Su C, Li Y, Fang S, Yang R, Zhu J, Wang R, Meng J, Luan Y. Regulatory Peptide Encoded by the Primary Transcript of miR396a Influences Gene Expression and Root Development in Solanum lycopersicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16390-16402. [PMID: 38994823 DOI: 10.1021/acs.jafc.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
MicroRNAs (miRNAs) are the processing products of primary miRNAs (pri-miRNAs) that regulate the expression of target genes. Recent studies have demonstrated that some pri-miRNAs can encode small peptides (miPEPs) that perform significant biological functions. The function of miPEPs in tomatoes, an important model horticultural crop, remains to be investigated. Here, we characterized the primary sequence of tomato miR396a using 5' RACE and confirmed the presence of miPEP396a in tomato by verifying the translational activity of the start codon. It primarily resides in the nucleus to exert its function and additionally regulates the expression of pri-miR396a, miR396a, and its target genes. Transcriptomic and metabolomic analyses showed that in vitro synthesis of miPEP396a significantly increased the expression of genes related to phenylpropanoid biosynthesis and hormones in tomato. Meanwhile, our in vitro application of miPEP396a in tomato significantly inhibited the elongation of tomato primary roots. In conclusion, our results indicate that miPEP396a regulates root growth in tomato by specifically promoting miR396a expression, provide insight into the function of miPEPs in tomato and potential applications.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruili Lv
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sizhe Fang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruirui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxuan Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
10
|
Zhang Z, Yang T, Li N, Tang G, Tang J. MicroRNA166: Old Players and New Insights into Crop Agronomic Traits Improvement. Genes (Basel) 2024; 15:944. [PMID: 39062723 PMCID: PMC11276106 DOI: 10.3390/genes15070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
MicroRNA (miRNA), a type of non-coding RNA, is crucial for controlling gene expression. Among the various miRNA families, miR166 stands out as a highly conserved group found in both model and crop plants. It plays a key role in regulating a wide range of developmental and environmental responses. In this review, we explore the diverse sequences of MIR166s in major crops and discuss the important regulatory functions of miR166 in plant growth and stress responses. Additionally, we summarize how miR166 interacts with other miRNAs and highlight the potential for enhancing agronomic traits by manipulating the expression of miR166 and its targeted HD-ZIP III genes.
Collapse
Affiliation(s)
- Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Jihua Tang
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
11
|
Meng J, Li W, Qi F, Yang T, Li N, Wan J, Li X, Jiang Y, Wang C, Huang M, Zhang Y, Chen Y, Teotia S, Tang G, Zhang Z, Tang J. Knockdown of microRNA390 Enhances Maize Brace Root Growth. Int J Mol Sci 2024; 25:6791. [PMID: 38928499 PMCID: PMC11203754 DOI: 10.3390/ijms25126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.
Collapse
Affiliation(s)
- Juan Meng
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Weiya Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Feiyan Qi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Xiaoqi Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yajuan Jiang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Chenhui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Meilian Huang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yuanyuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India;
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA;
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
12
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
13
|
Tao Y, Li C, Liu Y, Xu C, Okabe S, Matsushita N, Lian C. Identification of microRNAs involved in ectomycorrhizal formation in Populus tomentosa. TREE PHYSIOLOGY 2023; 43:2012-2030. [PMID: 37777191 DOI: 10.1093/treephys/tpad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 10/02/2023]
Abstract
The majority of woody plants are able to form ectomycorrhizal (ECM) symbioses with fungi. During symbiotic development, plants undergo a complex re-programming process involving a series of physiological and morphological changes. MicroRNAs (miRNAs) are important components of the regulatory network underlying symbiotic development. To elucidate the mechanisms of miRNAs and miRNA-mediated mRNA cleavage during symbiotic development, we conducted high-throughput sequencing of small RNAs and degradome tags from roots of Populus tomentosa inoculated with Cenococcum geophilum. This process led to the annotation of 51 differentially expressed miRNAs between non-mycorrhizal and mycorrhizal roots of P. tomentosa, including 13 novel miRNAs. Increased or decreased accumulation of several novel and conserved miRNAs in ECM roots, including miR162, miR164, miR319, miR396, miR397, miR398, novel-miR44 and novel-miR47, suggests essential roles for these miRNAs in ECM formation. The degradome analysis identified root transcripts as miRNA-mediated mRNA cleavage targets, which was confirmed using real-time quantitative PCR. Several of the identified miRNAs and corresponding targets are involved in arbuscular mycorrhizal symbioses. In summary, increased or decreased accumulation of specific miRNAs and miRNA-mediated cleavage of symbiosis-related genes indicate that miRNAs play important roles in the regulatory network underlying symbiotic development.
Collapse
Affiliation(s)
- Yuanxun Tao
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Maize Research Institute, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Ying Liu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Shin Okabe
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| |
Collapse
|
14
|
Li X, Huang X, Wen M, Yin W, Chen Y, Liu Y, Liu X. Cytological observation and RNA-seq analysis reveal novel miRNAs high expression associated with the pollen fertility of neo-tetraploid rice. BMC PLANT BIOLOGY 2023; 23:434. [PMID: 37723448 PMCID: PMC10506311 DOI: 10.1186/s12870-023-04453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| | - Xu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Minsi Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Wei Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanmou Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
15
|
Zhao Y, Zhang X, Cheng Y, Du X, Teotia S, Miao C, Sun H, Fan G, Tang G, Xue H, Zhao Q, Peng T. The miR167-OsARF12 module regulates rice grain filling and grain size downstream of miR159. PLANT COMMUNICATIONS 2023; 4:100604. [PMID: 37085993 PMCID: PMC10504563 DOI: 10.1016/j.xplc.2023.100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Grain weight and quality are always determined by grain filling. Plant microRNAs have drawn attention as key targets for regulation of grain size and yield. However, the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait. Our earlier studies demonstrated that suppressed expression of miR167 (STTM/MIM167) substantially increased grain weight. In a field test, the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate. Here, biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression. Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling. Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants. Upon in-depth analysis, we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region. Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2. Moreover, RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways. OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid (BR) treatment, confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling. Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.
Collapse
Affiliation(s)
- Yafan Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaofan Zhang
- Joint Center for Single Cell Biology/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangxiang Du
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India
| | - Chunbo Miao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Huwei Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450046, China
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Hongwei Xue
- Joint Center for Single Cell Biology/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China; College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Laboratory of Rice, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
16
|
Wang X, Yuan D, Liu Y, Liang Y, He J, Yang X, Hang R, Jia H, Mo B, Tian F, Chen X, Liu L. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. THE PLANT CELL 2023; 35:2208-2231. [PMID: 36943781 PMCID: PMC10226601 DOI: 10.1093/plcell/koad089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/30/2023]
Abstract
The macronutrient phosphorus is essential for plant growth and development. Plants have evolved multiple strategies to increase the efficiency of phosphate (Pi) acquisition to protect themselves from Pi starvation. However, the crosstalk between Pi homeostasis and plant development remains to be explored. Here, we report that overexpressing microRNA399 (miR399) in maize (Zea mays) is associated with premature senescence after pollination. Knockout of ZmPHO2 (Phosphate 2), a miR399 target, resulted in a similar premature senescence phenotype. Strikingly, we discovered that INDETERMINATE1 (ID1), a floral transition regulator, inhibits the transcription of ZmMIR399 genes by directly binding to their promoters, alleviating the repression of ZmPHO2 by miR399 and ultimately contributing to the maintenance of Pi homeostasis in maize. Unlike ZmMIR399 genes, whose expression is induced by Pi deficiency, ID1 expression was independent of the external inorganic orthophosphate status, indicating that ID1 is an autonomous regulator of Pi homeostasis. Furthermore, we show that ZmPHO2 was under selection during maize domestication and cultivation, resulting in a more sensitive response to Pi starvation in temperate maize than in tropical maize. Our study reveals a direct functional link between Pi-deprivation sensing by the miR399-ZmPHO2 regulatory module and plant developmental regulation by ID1.
Collapse
Affiliation(s)
- Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Dan Yuan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yanchun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Runlai Hang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hong Jia
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
17
|
Li Y, Chen T, Khan WU, An X. Regulatory roles of miRNAs associated with the aging pathway in tree vegetative phase changes. FORESTRY RESEARCH 2023; 3:9. [PMID: 39526265 PMCID: PMC11524259 DOI: 10.48130/fr-2023-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 11/16/2024]
Abstract
The transition from the vegetative juvenile phase to the adult phase is a crucial event in the life cycle of flowering plants, with flowering being the most important milestone. While the regulatory pathways of flowering have been well established in model plants such as Arabidopsis and a few crops, the flowering regulation pathways in perennial forest trees remain poorly understood. This paper summarizes the regulation of flowering time by miR156 and miR172, which are the main members of the aging pathway, and also presents new information on the role of miR159 and miR169. These two microRNAs interact with miR156 and miR172 to jointly regulate flowering time in forest trees. Overall, this review sheds light on the complex regulatory mechanisms underlying flowering time in forest trees and provides insights into potential targets for manipulating the flowering time of these economically and ecologically important species.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tingting Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wasif Ullah Khan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
18
|
Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, Ismail I. Overview of Repressive miRNA Regulation by Short Tandem Target Mimic (STTM): Applications and Impact on Plant Biology. PLANTS (BASEL, SWITZERLAND) 2023; 12:669. [PMID: 36771753 PMCID: PMC9918958 DOI: 10.3390/plants12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Abdul Fatah A. Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
19
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
20
|
Tomato MicroRNAs and Their Functions. Int J Mol Sci 2022; 23:ijms231911979. [PMID: 36233279 PMCID: PMC9569937 DOI: 10.3390/ijms231911979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) define an essential class of non-coding small RNAs that function as posttranscriptional modulators of gene expression. They are coded by MIR genes, several hundreds of which exist in the genomes of Arabidopsis and rice model plants. The functional analysis of Arabidopsis and rice miRNAs indicate that their miRNAs regulate a wide range of processes including development, reproduction, metabolism, and stress. Tomato serves as a major model crop for the study of fleshy fruit development and ripening but until recently, information on the identity of its MIR genes and their coded miRNAs was limited and occasionally contradictory. As a result, the majority of tomato miRNAs remained uncharacterized. Recently, a comprehensive annotation of tomato MIR genes has been carried out by several labs and us. In this review, we curate and organize the resulting partially overlapping MIR annotations into an exhaustive and non-redundant atlas of tomato MIR genes. There are 538 candidate and validated MIR genes in the atlas, of which, 169, 18, and 351 code for highly conserved, Solanaceae-specific, and tomato-specific miRNAs, respectively. Furthermore, a critical review of functional studies on tomato miRNAs is presented, highlighting validated and possible functions, creating a useful resource for future tomato miRNA research.
Collapse
|
21
|
Farooqi MQU, Nawaz G, Wani SH, Choudhary JR, Rana M, Sah RP, Afzal M, Zahra Z, Ganie SA, Razzaq A, Reyes VP, Mahmoud EA, Elansary HO, El-Abedin TKZ, Siddique KHM. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:965878. [PMID: 36212378 PMCID: PMC9538355 DOI: 10.3389/fpls.2022.965878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.
Collapse
Affiliation(s)
| | - Ghazala Nawaz
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Jeet Ram Choudhary
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Maneet Rana
- Division of Crop Improvement, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rameswar Prasad Sah
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - Muhammad Afzal
- College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA, United States
| | | | - Ali Razzaq
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | | | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, Johannesburg, South Africa
| | - Tarek K. Zin El-Abedin
- Department of Agriculture & Biosystems Engineering, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
22
|
Kumar K, Mandal SN, Neelam K, de los Reyes BG. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC PLANT BIOLOGY 2022; 22:351. [PMID: 35850632 PMCID: PMC9290239 DOI: 10.1186/s12870-022-03723-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/29/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is the major source of daily caloric intake for more than 30% of the human population. However, the sustained productivity of this staple food crop is continuously threatened by various pathogens and herbivores. Breeding has been successful in utilizing various mechanisms of defense by gene pyramiding in elite cultivars, but the continuous resurgence of highly resistant races of pathogens and herbivores often overcomes the inherent capacity of host plant immunity. MicroRNAs (miRNAs) are endogenous, short, single-stranded, non-coding RNA molecules that regulate gene expression by sequence-specific cleavage of target mRNA or suppressing target mRNA translation. While miRNAs function as upstream regulators of plant growth, development, and host immunity, their direct effects on growth and development in the context of balancing defenses with agronomic potential have not been extensively discussed and explored as a more viable strategy in breeding for disease and pest resistant cultivars of rice with optimal agronomic potentials. RESULTS Using the available knowledge in rice and other model plants, this review examines the important roles of miRNAs in regulating host responses to various fungal, bacterial, and viral pathogens, and insect pests, in the context of gains and trade-offs to crop yield. Gains from R-gene-mediated resistance deployed in modern rice cultivars are often undermined by the rapid breakdown of resistance, negative pleiotropic effects, and linkage drags with undesirable traits. In stark contrast, several classes of miRNAs are known to efficiently balance the positive gains from host immunity without significant costs in terms of losses in agronomic potentials (i.e., yield penalty) in rice. Defense-related miRNAs such as Osa-miR156, Osa-miR159, Osa-miR162, Osa-miR396, Osa-530, Osa-miR1432, Osa-miR1871, and Osa-miR1873 are critical in fine-tuning and integrating immune responses with physiological processes that are necessary to the maintenance of grain yield. Recent research has shown that many defense-related miRNAs regulate complex and agronomically important traits. CONCLUSIONS Identification of novel immune-responsive miRNAs that orchestrate physiological processes critical to the full expression of agronomic potential will facilitate the stacking of optimal combinations of miRNA-encoding genes to develop high-yielding cultivars with durable resistance to disease and insect pests with minimal penalties to yield.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700103 India
| | - Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX-79415 USA
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101 India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | | |
Collapse
|
23
|
Ražná K, Harenčár Ľ, Kučka M. The Involvement of microRNAs in Plant Lignan Biosynthesis—Current View. Cells 2022; 11:cells11142151. [PMID: 35883592 PMCID: PMC9323225 DOI: 10.3390/cells11142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lignans, as secondary metabolites synthesized within a phenylpropanoid pathway, play various roles in plants, including their involvement in growth and plant defense processes. The health and nutritional benefits of lignans are unquestionable, and many studies have been devoted to these attributes. Although the regulatory role of miRNAs in the biosynthesis of secondary metabolites has been widely reported, there is no systematic review available on the miRNA-based regulatory mechanism of lignans biosynthesis. However, the genetic background of lignan biosynthesis in plants is well characterized. We attempted to put together a regulatory mosaic based on current knowledge describing miRNA-mediated regulation of genes, enzymes, or transcription factors involved in this biosynthesis process. At the same time, we would like to underline the fact that further research is necessary to improve our understanding of the miRNAs regulating plant lignan biosynthesis by exploitation of current approaches for functional identification of miRNAs.
Collapse
|
24
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
25
|
Zhao C, Ma J, Zhang Y, Yang S, Feng X, Yan J. The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:995-1006. [PMID: 35312167 DOI: 10.1111/jipb.13253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play critical roles in regulating plant growth and development. Here, we used Short Tandem Target Mimic (STTM) technology to generate soybean (Glycine max (L.) Merr.) miRNA knockdown lines and identify miRNAs that regulate plant height, a key agronomic trait that affects yield. STTM166 successfully silenced miR166 in soybean and upregulated the expression of miR166 target genes, such as ATHB14-LIKE. The miR166 knockdown lines (GmSTTM166) displayed a reduced plant height phenotype. Moreover, GmSTTM166 plants contained lower levels of bioactive gibberellic acid (GA3) than wild-type plants, and application of exogenous GA partially rescued the dwarf phenotype of GmSTTM166. Knockdown of miR166 altered the expression of genes involved in GA biosynthesis and catabolism. Further analysis revealed that ATHB14-LIKE directly represses transcription of the GA biosynthesis genes GmGA1 and GmGA2, while activating transcription of the GA catabolic gene GIBBERLLIN 2 OXIDASE 2 (GmGA2ox2). Collectively, these results reveal a pivotal role for miR166 in the genetic control of plant height in soybean, thereby providing invaluable insights for molecular breeding to improve soybean yield.
Collapse
Affiliation(s)
- Chen Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Chinese Academy of Sciences, Changchun, 130102, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Chinese Academy of Sciences, Changchun, 130102, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Chinese Academy of Sciences, Changchun, 130102, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Chinese Academy of Sciences, Changchun, 130102, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
26
|
Upregulated miR-206 Aggravates Deep Vein Thrombosis by Regulating GJA1-Mediated Autophagy of Endothelial Progenitor Cells. Cardiovasc Ther 2022; 2022:9966306. [PMID: 35360546 PMCID: PMC8956392 DOI: 10.1155/2022/9966306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Deep vein thrombosis (DVT) is the third most prevalent vascular disease worldwide. MicroRNAs (miRNAs) play regulatory roles in functions of endothelial progenitor cells (EPCs), which is becoming a promising therapeutic choice for thrombus resolution. Nevertheless, the role of miR-206 in EPCs is unclear. Methods EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-206 and gap junction protein alpha 1 (GJA1) in EPCs and vascular tissues of DVT mice were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, apoptosis, and angiogenesis were tested by cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry analysis, and in vitro tube formation assay. The levels of autophagy-related proteins as well as the level of GJA1 in EPCs and vascular tissues were evaluated by western blotting. DVT formation in vivo was observed through hematoxylin-eosin (HE) staining. The expression of thrombus resolution markers, CD34 molecule (CD34) and matrix metallopeptidase 2 (MMP2), in the thrombi was measured by immunofluorescence staining. Results miR-206 overexpression inhibited proliferation, migration, and angiogenesis and promoted apoptosis of EPCs, while miR-206 knockdown exerted an opposite effect on EPC phenotypes. Downregulation of GJA1, the target of miR-206, abolished the influence of miR-206 on EPC phenotypes. Furthermore, silencing of miR-206 suppressed the autophagy of EPCs via upregulating GJA1. miR-206 knockdown repressed thrombus formation, enhanced the homing ability of EPCs to the thrombosis site, and facilitated thrombus resolution in DVT mouse models. Additionally, miR-206 was upregulated while GJA1 was downregulated in vascular tissues of DVT mice. miR-206 knockdown elevated GJA1 expression in vascular tissues of DVT mice. The expression of miR-206 was negatively correlated with that of GJA1 in DVT mice. Conclusion miR-206 knockdown upregulates GJA1 to inhibit autophagy of EPCs and then promote EPC proliferation, migration, and angiogenesis, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
|
27
|
Yang J, Zhang N, Zhang J, Jin X, Zhu X, Ma R, Li S, Lui S, Yue Y, Si H. Knockdown of MicroRNA160a/b by STTM leads to root architecture changes via auxin signaling in Solanum tuberosum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:939-949. [PMID: 34247108 DOI: 10.1016/j.plaphy.2021.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.
Collapse
Affiliation(s)
- Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinlin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xin Jin
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Lui
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yun Yue
- Gansu Pharmaceutical Investment Group Co., Ltd, Lanzhou, 730030, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
28
|
Chu L, He X, Shu W, Wang L, Tang F. Knockdown of miR393 Promotes the Growth and Biomass Production in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:714907. [PMID: 34335671 PMCID: PMC8317616 DOI: 10.3389/fpls.2021.714907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Short tandem target mimic (STTM), which is composed of two short sequences mimicking small RNA target sites, separated by a linker of optimal size, can block the functions of all members in a miRNA family. microRNA393 (miR393), which is one of the conserved miRNA families in plants, can regulate plant root growth, leaf development, plant architecture, and stress resistance. In order to verify the role of miR393 in the secondary growth of trees, we created its STTM transgenic poplar lines (STTM393). The expression of miR393 in STTM393 lines was reduced by over 10 times compared with the control plants. STTM393 lines showed promoted growth with about 20% higher, 15% thicker, and 2-4 more internodes than the control plants after 3 months of growth. The cross-section of the stems showed that STTM393 lines had wider phloem, xylem, and more cambium cell layers than control plants, and the lignin content in STTM393 lines was also higher as revealed by staining and chemical determination. Based on the transcriptome analysis, the genes related to the auxin signaling pathway, cell cyclin, cell expansion, and lignin synthesis had higher expression in STTM393 lines than that in control plants. The higher expression levels of FBL family members suggested that the auxin signaling pathway was strengthened in STTM393 lines to promote plant growth. Therefore, the knockdown of miR393 using the STTM approach provides a way to improve poplar growth and biomass production.
Collapse
Affiliation(s)
- Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenbo Shu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
29
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
30
|
Molecular Cloning, Transcriptional Profiling, Subcellular Localization, and miRNA-Binding Site Analysis of Six SCL9 Genes in Poplar. PLANTS 2021; 10:plants10071338. [PMID: 34208997 PMCID: PMC8309000 DOI: 10.3390/plants10071338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
The SCL9 subfamily is a key member of the GRAS family that regulates plant development and stress responses. Nevertheless, the functional role of these genes in the growth and development of poplar still unclear. Here, we reported the six SCL9 genes, which were found to be differentially expressed during poplar adventitious root formation. The full-length sequences of PeSCL9 genes of ‘Nanlin895’ poplar (Populus deltoids × Populus euramericana) were cloned by the RACE technique All PeSCL9 genes lacked introns. RT-qPCR revealed that PeSCL9 genes displayed a dynamic expression pattern in the adventitious root of poplar, according to RT-qPCR data. A series of comprehensive genes characteristics analysis were carried out for six genes by bioinformation. Meanwhile, transient expression analysis of the Populus protoplasts showed that all the PeSCL9 proteins were localized in the nucleus. In addition, the degradome and sRNA of ‘Nanlin895’ poplar in combination were used to predict miRNAs that regulate PeSCL9. It was found that miR396a and miR396c may affect PeSCL9 expression via cleavage, which was further verified by a transient expression experiment in Populus protoplasts. Overall, the development of poplar adventitious root and other tissues was closely related to these six SCL9 genes, and they serve as a starting point for further research into the mechanisms regulating poplar growth and development.
Collapse
|
31
|
Fang L, Wei XY, Liu LZ, Zhou LX, Tian YP, Geng C, Li XD. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. PLANT PHYSIOLOGY 2021; 186:853-864. [PMID: 33764466 PMCID: PMC8195500 DOI: 10.1093/plphys/kiab146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/11/2021] [Indexed: 06/01/2023]
Abstract
Cucurbits are economically important crops worldwide. The genomic data of many cucurbits are now available. However, functional analyses of cucurbit genes and noncoding RNAs have been impeded because genetic transformation is difficult for many cucurbitaceous plants. Here, we developed a set of tobacco ringspot virus (TRSV)-based vectors for gene and microRNA (miRNA) function studies in cucurbits. A TRSV-based expression vector could simultaneously express GREEN FLUORESCENT PROTEIN (GFP) and heterologous viral suppressors of RNA silencing in TRSV-infected plants, while a TRSV-based gene silencing vector could knock down endogenous genes exemplified by PHYTOENE DESATURASE (PDS) in Cucumis melo, Citrullus lanatus, Cucumis sativus, and Nicotiana benthamiana plants. We also developed a TRSV-based miRNA silencing vector to dissect the functions of endogenous miRNAs. Four representative miRNAs, namely, miR159, miR166, miR172, and miR319, from different cucurbits were inserted into the TRSV vector using a short tandem target mimic strategy and induced characteristic phenotypes in TRSV-miRNA-infected plants. This TRSV-based vector system will facilitate functional genomic studies in cucurbits.
Collapse
Affiliation(s)
- Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xin-Yu Wei
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Ling-Zhi Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Ling-Xi Zhou
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
32
|
Meng X, Li A, Yu B, Li S. Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol J 2021; 19:2567-2574. [PMID: 34025943 PMCID: PMC8114054 DOI: 10.1016/j.csbj.2021.04.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022] Open
Abstract
Plants employ sophisticated mechanisms to control developmental processes and to cope with environmental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stresses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and computational predication methods of the interplay between miRNAs and lncRNAs in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
33
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
34
|
Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, Lv Q, Chen Q. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2021; 21:132. [PMID: 33750309 PMCID: PMC7941931 DOI: 10.1186/s12870-021-02914-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Hengling Meng
- Key Laboratory of High-Quality Crops Cultivation and Safety Control of Yunnan Province, Honghe University, Honghe, 661100, China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
35
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ, Wang JW. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 2021; 19:e3001044. [PMID: 33529193 PMCID: PMC7853526 DOI: 10.1371/journal.pbio.3001044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields. This study uses CRISPR-Cas9 technology to investigate the functions of all five miR172 genes in Arabidopsis, finding that miRNA172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching and floral competence.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Henan University, Kaifeng, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Chen J, Teotia S, Lan T, Tang G. MicroRNA Techniques: Valuable Tools for Agronomic Trait Analyses and Breeding in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:744357. [PMID: 34616418 PMCID: PMC8489592 DOI: 10.3389/fpls.2021.744357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the post-transcriptional level. Extensive studies have revealed that miRNAs have critical functions in plant growth, development, and stress responses and may provide valuable genetic resources for plant breeding research. We herein reviewed the development, mechanisms, and characteristics of miRNA techniques while highlighting widely used approaches, namely, the short tandem target mimic (STTM) approach. We described STTM-based advances in plant science, especially in the model crop rice, and introduced the CRISPR-based transgene-free crop breeding. Finally, we discussed the challenges and unique opportunities related to combining STTM and CRISPR technology for crop improvement and agriculture.
Collapse
Affiliation(s)
- Jiwei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Ting Lan,
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI, United States
- Guiliang Tang,
| |
Collapse
|
38
|
Maize microRNA166 Inactivation Confers Plant Development and Abiotic Stress Resistance. Int J Mol Sci 2020; 21:ijms21249506. [PMID: 33327508 PMCID: PMC7764941 DOI: 10.3390/ijms21249506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs are important regulators in plant developmental processes and stress responses. In this study, we generated a series of maize STTM166 transgenic plants. Knock-down of miR166 resulted in various morphological changes, including rolled leaves, enhanced abiotic stress resistance, inferior yield-related traits, vascular pattern and epidermis structures, tassel architecture, as well as abscisic acid (ABA) level elevation and indole acetic acid (IAA) level reduction in maize. To profile miR166 regulated genes, we performed RNA-seq and qRT-PCR analysis. A total of 178 differentially expressed genes (DEGs) were identified, including 118 up-regulated and 60 down-regulated genes. These DEGs were strongly enriched in cell and intercellular components, cell membrane system components, oxidoreductase activity, single organism metabolic process, carbohydrate metabolic process, and oxidation reduction process. These results indicated that miR166 plays important roles in auxin and ABA interaction in monocots, yet the specific mechanism may differ from dicots. The enhanced abiotic stress resistance is partly caused via rolling leaves, high ABA content, modulated vascular structure, and the potential changes of cell membrane structure. The inferior yield-related traits and late flowering are partly controlled by the decreased IAA content, the interplay of miR166 with other miRNAs and AGOs. Taken together, the present study uncovered novel functions of miR166 in maize, and provide insights on applying short tandem target mimics (STTM) technology in plant breeding.
Collapse
|
39
|
Genetic and Physical Localization of the Gene Controlling Leaf Pigmentation Pattern in Medicago truncatula. G3-GENES GENOMES GENETICS 2020; 10:4159-4165. [PMID: 32912932 PMCID: PMC7642937 DOI: 10.1534/g3.120.401689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In Medicago truncatula, some ecotypes form a black or purple stain in the middle of adaxial leaf surface due to accumulation of anthocyanins. However, this morphological marker is missing in some other ecotypes, although anthocyanin biosynthesis pathway is not disrupted. Genetic analysis indicated that the lack of the leaf spot of anthocyanins accumulation is a dominant trait, which is controlled by a single gene, LPP1. Genetic mapping indicated that the LPP1 gene was delimited to a 280 kb-region on Chromosome 7. A total of 8 protein-coding genes were identified in the LPP1 locus through gene annotation and sequence analysis. Of those, two genes, putatively encoding MYB-transcriptional suppressors, were selected as candidates for functional validation.
Collapse
|
40
|
López-Márquez D, Del-Espino Á, Bejarano ER, Beuzón CR, Ruiz-Albert J. Protocol: low cost fast and efficient generation of molecular tools for small RNA analysis. PLANT METHODS 2020; 16:41. [PMID: 32206081 PMCID: PMC7082952 DOI: 10.1186/s13007-020-00581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Small RNAs are sequence-dependent negative regulators of gene expression involved in many relevant plant processes such as development, genome stability, or stress response. Functional characterization of sRNAs in plants typically relies on the modification of the steady state levels of these molecules. State-of-the-art strategies to reduce plant sRNA levels include molecular tools such as Target Mimics (MIMs or TMs), Short Tandem Target Mimic (STTMs), or molecular SPONGES (SPs). Construction of these tools routinely involve many different molecular biology techniques, steps, and reagents rendering such processes expensive, time consuming, and difficult to implement, particularly high-throughput approaches. RESULTS We have developed a vector and a cloning strategy that significantly reduces the number of steps required for the generation of MIMs against any given small RNA (sRNA). Our pGREEN-based binary expression vector (pGREEN-DLM100) contains the IPS1 gene from A. thaliana bisected by a ccdB cassette that is itself flanked by restriction sites for a type IIS endonuclease. Using a single digestion plus a sticky-end ligation step, the ccdB cassette that functions as a negative (counter) selection system is replaced by a pair of 28 nt self-annealing primers that provide specificity against the selected target miRNA/siRNA. The method considerably reduces the number of steps and the time required to generate the construct, minimizes the errors derived from long-range PCRs, bypasses bottlenecks derived from subcloning steps, and eliminates the need for any additional cloning technics and reagents, overall saving time and reagents. CONCLUSIONS Our streamlined system guarantees a low cost, fast and efficient cloning process that it can be easily implemented into high-throughput strategies, since the same digested plasmid can be used for any given sRNA. We believe this method represents a significant technical improvement on state-of-the-art methods to facilitate the characterization of functional aspects of sRNA biology.
Collapse
Affiliation(s)
- Diego López-Márquez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, 29071 Spain
| | - Ángel Del-Espino
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, 29071 Spain
| | - Eduardo R. Bejarano
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, 29071 Spain
| | - Carmen R. Beuzón
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, 29071 Spain
| | - Javier Ruiz-Albert
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, 29071 Spain
| |
Collapse
|
41
|
Yang T, Wang Y, Liu H, Zhang W, Chai M, Tang G, Zhang Z. MicroRNA1917-CTR1-LIKE PROTEIN KINASE 4 impacts fruit development via tuning ethylene synthesis and response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110334. [PMID: 31928661 DOI: 10.1016/j.plantsci.2019.110334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/04/2019] [Accepted: 11/08/2019] [Indexed: 05/20/2023]
Abstract
MicroRNA1917 (miR1917) is a newly identified miRNAs that regulate ethylene responses in tomato. However, evidence is still limited about its functions in fruit development and ripening. Here, we investigated the possible roles of miR1917-SlCTR4 module in tomato fruit development. We generated miR1917 knock-down mutants by expressing Short Tandem Target Mimic (STTM1917). qRT-PCR and northern-blot analyses suggested that the expression of miR1917 are down-regulated in STTM1917. Concomitantly, miR1917-targeted SlCTR4 gene was up-regulated. STTM1917 plants showed a series of developmental phenotypes, including larger biomass, longer terminal leaflet, bigger floral organ and enhanced fruit and seed size. RNA-seq and qRT-PCR analyses suggested that the expression levels of numerous miRNAs and genes in the transgenic line were significantly altered compared to the wild type. These miRNAs and genes include fruit development-related miRNAs, fruit ripening-related transcription factors and ethylene metabolism genes. Altogether, our results demonstrated that working in concert with ripening regulators, miR1917 might regulate multiple genes in ethylene pathway, thereby modulating fruit development. Our results further indicated that fine-tuning miRNAs expression via STTM can be deployed for agronomic improvement of tomato.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Haiping Liu
- Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Mao Chai
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China; Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
42
|
Technologies to Address Plant microRNA Functions. CONCEPTS AND STRATEGIES IN PLANT SCIENCES 2020. [DOI: 10.1007/978-3-030-35772-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi‐de‐Sa MF. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1482-1500. [PMID: 30947398 PMCID: PMC6662102 DOI: 10.1111/pbi.13116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) modulate the abundance and spatial-temporal accumulation of target mRNAs and indirectly regulate several plant processes. Transcriptional regulation of the genes encoding miRNAs (MIR genes) can be activated by numerous transcription factors, which themselves are regulated by other miRNAs. Fine-tuning of MIR genes or miRNAs is a powerful biotechnological strategy to improve tolerance to abiotic or biotic stresses in crops of economic importance. Current approaches for miRNA fine-tuning are based on the down- or up-regulation of MIR gene transcription and the use of genetic engineering tools to manipulate the final concentration of these miRNAs in the cytoplasm. Transgenesis, cisgenesis, intragenesis, artificial MIR genes, endogenous and artificial target mimicry, MIR genes editing using Meganucleases, ZNF proteins, TALENs and CRISPR/Cas9 or CRISPR/Cpf1, CRISPR/dCas9 or dCpf1, CRISPR13a, topical delivery of miRNAs and epigenetic memory have been successfully explored to MIR gene or miRNA modulation and improve agronomic traits in several model or crop plants. However, advantages and drawbacks of each of these new biotechnological tools (NBTs) are still not well understood. In this review, we provide a brief overview of the biogenesis and role of miRNAs in response to abiotic or biotic stresses, we present critically the main NBTs used for the manipulation of MIR genes and miRNAs, we show current efforts and findings with the MIR genes and miRNAs modulation in plants, and we summarize the advantages and drawbacks of these NBTs and provide some alternatives to overcome. Finally, challenges and future perspectives to miRNA modulating in important crops are also discussed.
Collapse
Affiliation(s)
| | | | | | - Frank G. Harmon
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCAUSA
| | | | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Post‐Graduation Program in Genomic Sciences and BiotechnologyCatholic University of BrasíliaBrasíliaDFBrazil
- Post‐Graduation Program in BiotechnologyPotiguar University (UNP)NatalRNBrazil
| |
Collapse
|
44
|
Peng T, Teotia S, Tang G, Zhao Q. MicroRNAs meet with quantitative trait loci: Small powerful players in regulating quantitative yield traits in rice. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1556. [DOI: 10.1002/wrna.1556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ting Peng
- Collaborative Innovation Center of Henan Grain Crops Henan Agricultural University Zhengzhou China
- Research Center for Rice Engineering in Henan Province Henan Agricultural University Zhengzhou China
| | - Sachin Teotia
- Collaborative Innovation Center of Henan Grain Crops Henan Agricultural University Zhengzhou China
- Department of Biological Sciences Michigan Technological University Houghton Michigan
| | - Guiliang Tang
- Collaborative Innovation Center of Henan Grain Crops Henan Agricultural University Zhengzhou China
- Department of Biological Sciences Michigan Technological University Houghton Michigan
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops Henan Agricultural University Zhengzhou China
- Research Center for Rice Engineering in Henan Province Henan Agricultural University Zhengzhou China
| |
Collapse
|
45
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
46
|
Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 2019; 9:2832. [PMID: 30808969 PMCID: PMC6391385 DOI: 10.1038/s41598-019-39397-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development and abiotic stresses. To date, studies have mainly focused on the roles of individual miRNAs, however, a few have addressed the interactions among multiple miRNAs. In this study, we investigated the interplay and regulatory circuit between miR160 and miR165/166 and its effect on leaf development and drought tolerance in Arabidopsis using Short Tandem Target Mimic (STTM). By crossing STTM160 Arabidopsis with STTM165/166, we successfully generated a double mutant of miR160 and miR165/166. The double mutant plants exhibited a series of compromised phenotypes in leaf development and drought tolerance in comparison to phenotypic alterations in the single STTM lines. RNA-seq and qRT-PCR analyses suggested that the expression levels of auxin and ABA signaling genes in the STTM-directed double mutant were compromised compared to the two single mutants. Our results also suggested that miR160-directed regulation of auxin response factors (ARFs) contribute to leaf development via auxin signaling genes, whereas miR165/166- mediated HD-ZIP IIIs regulation confers drought tolerance through ABA signaling. Our studies further indicated that ARFs and HD-ZIP IIIs may play opposite roles in the regulation of leaf development and drought tolerance that can be further applied to other crops for agronomic traits improvement.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Sachin Teotia
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA.,Department of Biotechnology, Sharda University, Greater Noida, 201306, India
| | - Zhaohui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Huwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yiyou Gu
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China. .,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA.
| |
Collapse
|
47
|
Kravchik M, Stav R, Belausov E, Arazi T. Functional Characterization of microRNA171 Family in Tomato. PLANTS (BASEL, SWITZERLAND) 2019; 8:E10. [PMID: 30621201 PMCID: PMC6358981 DOI: 10.3390/plants8010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
Abstract
Deeply conserved plant microRNAs (miRNAs) function as pivotal regulators of development. Nevertheless, in the model crop Solanum lycopersicum (tomato) several conserved miRNAs are still poorly annotated and knowledge about their functions is lacking. Here, the tomato miR171 family was functionally analyzed. We found that the tomato genome contains at least 11 SlMIR171 genes that are differentially expressed along tomato development. Downregulation of sly-miR171 in tomato was successfully achieved by transgenic expression of a short tandem target mimic construct (STTM171). Consequently, sly-miR171-targeted mRNAs were upregulated in the silenced plants. Target upregulation was associated with irregular compound leaf development and an increase in the number of axillary branches. A prominent phenotype of STTM171 expressing plants was their male sterility due to a production of a low number of malformed and nonviable pollen. We showed that sly-miR171 was expressed in anthers along microsporogenesis and significantly silenced upon STTM171 expression. Sly-miR171-silenced anthers showed delayed tapetum ontogenesis and reduced callose deposition around the tetrads, both of which together or separately can impair pollen development. Collectively, our results show that sly-miR171 is involved in the regulation of anther development as well as shoot branching and compound leaf morphogenesis.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
48
|
Liu X, Liu S, Wang R, Chen X, Fan Z, Wu B, Zhou T. Analyses of MiRNA Functions in Maize Using a Newly Developed ZMBJ-CMV-2b N81-STTM Vector. FRONTIERS IN PLANT SCIENCE 2019; 10:1277. [PMID: 31681375 PMCID: PMC6811604 DOI: 10.3389/fpls.2019.01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/12/2019] [Indexed: 05/21/2023]
Abstract
Endogenous microRNAs (miRNAs) play pivotal roles in plant development and responses to various biotic or abiotic stresses. Up to now, more than 500 maize miRNAs have been identified. However, functions of these identified miRNAs remained largely unknown due mainly to the lack of rapid and reliable tools. We previously reported a cucumber mosaic virus strain ZMBJ (ZMBJ-CMV)-based gene silencing vector for rapid and efficient gene function studies in maize lines with agronomical importance. Because ZMBJ-CMV induces very mild disease symptoms but strong gene silencing in maize, we decided to further modify this vector to suppress miRNA expressions in maize. The newly developed ZMBJ-CMV-2bN81-STTM vector expresses a short tandem target mimic (STTM) containing two target-mimic sequences separated by a short spacer sequence. Our results showed that ZMBJ-CMV-2bN81-STTM can be used to investigate miRNA function in Nicotiana benthamiana and maize seedlings. The ZMBJ-CMV-2bN81-STTM-based downregulation of Nbe-miR165/166 or Nbe-miR159 induced specific and strong miRNA-sequestering phenotypes, and increased the expressions of their predicted target genes. For maize, the ZMBJ-CMV-2bN81-STTM based downregulation of zma-miR167 or zma-miR482 caused a decrease of lateral roots growth and a plant stunting phenotypes, respectively. In both cases, the target genes of zma-miR167- or zma-miR482 were increased significantly. Thus, we consider ZMBJ-CMV based VbMS system as a useful tool for high-throughput investigations of miRNA functions in maize.
Collapse
Affiliation(s)
- Xuedong Liu
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Sijia Liu
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Rong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
- *Correspondence: Boming Wu, ; Tao Zhou,
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing, China
- *Correspondence: Boming Wu, ; Tao Zhou,
| |
Collapse
|