1
|
Grabowski PP, Dang P, Jenkins JJ, Sreedasyam A, Webber J, Lamb M, Zhang Q, Sanz-Saez A, Feng Y, Bunting V, Talag J, Clevenger J, Ozias-Akins P, Holbrook CC, Chu Y, Grimwood J, Schmutz J, Chen C, Lovell JT. Relics of interspecific hybridization retained in the genome of a drought-adapted peanut cultivar. G3 (BETHESDA, MD.) 2024; 14:jkae208. [PMID: 39217411 PMCID: PMC11540320 DOI: 10.1093/g3journal/jkae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Peanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts. Here, we present the genome assembly and gene model annotation for "Line8," a peanut genotype bred from drought-tolerant cultivars. Our assembly and annotation are the most contiguous and complete peanut genome resources currently available. The high contiguity of the Line8 assembly allowed us to explore structural variation both between peanut genotypes and subgenomes. We detect several large inversions between Line8 and other peanut genome assemblies, and there is a trend for the inversions between more genetically diverged genotypes to have higher gene content. We also relate patterns of subgenome exchange to structural variation between Line8 homeologous chromosomes. Unexpectedly, we discover that Line8 harbors an introgression from A.cardenasii, a diploid peanut relative and important donor of disease resistance alleles to peanut breeding populations. The fully resolved sequences of both haplotypes in this introgression provide the first in situ characterization of A.cardenasii candidate alleles that can be leveraged for future targeted improvement efforts. The completeness of our genome will support peanut biotechnology and broader research into the evolution of hybridization and polyploidy.
Collapse
Affiliation(s)
- Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Phat Dang
- National Peanut Research Laboratory, USDA-ARS, 1011 Forrester Dr SE, Dawson, GA 39842, USA
| | - Jerry J Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Marshall Lamb
- National Peanut Research Laboratory, USDA-ARS, 1011 Forrester Dr SE, Dawson, GA 39842, USA
| | - Qiong Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Victoria Bunting
- Arizona Genomics Institute, University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| | - Josh Clevenger
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute for Plant Breeding, Genetics & Genomics, University of Georgia, College of Agricultural and Environmental Sciences, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - C Corley Holbrook
- Crop Genetics and Breeding Research Unit, USDA-ARS, 115 Coastal Way, P.O. Box 748, Tifton, GA 31793, USA
| | - Ye Chu
- Department of Horticulture and Institute for Plant Breeding, Genetics & Genomics, University of Georgia, College of Agricultural and Environmental Sciences, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratories, Mail Stop: 91R183, Berkeley, CA 94720, USA
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratories, Mail Stop: 91R183, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Sharma V, Mahadevaiah SS, Latha P, Gowda SA, Manohar SS, Jadhav K, Bajaj P, Joshi P, Anitha T, Jadhav MP, Sharma S, Janila P, Bhat RS, Varshney RK, Pandey MK. Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC PLANT BIOLOGY 2024; 24:1044. [PMID: 39497063 PMCID: PMC11536578 DOI: 10.1186/s12870-024-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments. RESULTS Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions. CONCLUSION The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | | | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - S Anjan Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Surendra S Manohar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Kanchan Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Pushpesh Joshi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - T Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mangesh P Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
| |
Collapse
|
3
|
Li J, Ma M, Zeng T, Gu L, Zhu B, Wang H, Du X, Zhu X. Genome-Wide Identification of the Peanut ASR Gene Family and Its Expression Analysis under Abiotic Stress. Int J Mol Sci 2024; 25:11008. [PMID: 39456791 PMCID: PMC11507290 DOI: 10.3390/ijms252011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil and food legume crops worldwide. ASR (abscisic acid, stress, ripening) plays extremely important roles in plant growth and development, fruit ripening, pollen development, and stress. Here, six ASR genes were identified in peanut. Structural and conserved motif analyses were performed to identify common ABA/WDS structural domains. The vast majority of ASR genes encoded acidic proteins, all of which are hydrophilic proteins and localized on mitochondria and nucleus, respectively. The cis-element analysis revealed that some cis-regulatory elements were related to peanut growth and development, hormone, and stress response. Under normal growth conditions, AhASR4 and AhASR5 were expressed in all tissues of peanut plants. Quantitative real-time PCR (qRT-PCR) results indicated that peanut ASR genes exhibited complex expression patterns in response to abiotic stress. Notably, under drought and cadmium (Cd) stress, the expression levels of AhASR4 and AhASR5 were significantly upregulated, suggesting that these genes may play a crucial role in the peanut plant's resistance to such stressors. These results provide a theoretical basis for studying the evolution, expression, and function of the peanut ASR gene family and will provide valuable information in the identification and screening of genes for peanut stress tolerance breeding.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Mingxia Ma
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang 550003, China;
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| | - Xiu Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550003, China; (J.L.); (T.Z.); (L.G.); (B.Z.); (H.W.)
| |
Collapse
|
4
|
Fang Y, Liu H, Sun Z, Qin L, Zheng Z, Qi F, Wu J, Dong W, Huang B, Zhang X. Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:250. [PMID: 39384636 PMCID: PMC11464562 DOI: 10.1007/s00122-024-04749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
KEY MESSAGE Stable QTL for pod and kernel traits were co-localized on chromosome Arahy05, and an INDEL marker at 106,411,957 on Arahy05 was developed and validated to be useful for marker-assisted selection of kernel weight. Pod and kernel traits, such as hundred pod weight (HPW), and hundred kernel weight (HKW), along with pod and kernel sizes, are pivotal determinants of yield in peanut breeding programs. This study sought to identify quantitative trait loci (QTL) that are associated with these pod and kernel traits in peanuts. To achieve this, a recombinant inbred line (RIL) population, was derived from a cross between Yuhua15, a cultivar known for its high yield, and a germplasm accession W1202. The investigation uncovered stable and major QTL that are significantly associated with both pod and kernel weight and were consistently co-localized on chromosomes Arahy05 and Arahy08. Furthermore, an INDEL marker was identified and characterized in the QTL interval on Arahy05. An extensive re-sequencing analysis comprising 395 germplasm accessions led to the discovery of two principal haplotypes within a 500-kb window flanking the aforementioned INDEL marker. The haplotypes exhibited a significant correlation with the HKW in our diverse panel of germplasm accessions. Notably, the 170 accessions harboring the haplotype associated with an increased HKW primarily represented botanical varieties, specifically Arachis hypogaea var. hypogaea and A. hypogaea var. hirsuta. On the other hand, the 137 accessions associated with the alternative haplotype, which corresponded to a reduced HKW, were predominately identified as belonging to botanical varieties within A. hypogaea subsp. fastigiata. The INDEL marker located on Arahy05, which demonstrates close linkage to the pod and kernel traits, would be an efficient approach for marker-assisted selection (MAS) of pod and kernel weight in breeding programs.
Collapse
Affiliation(s)
- Yuanjin Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jihua Wu
- Shangqiu Academy of Agriculture and Forestry, Shangqiu, 476002, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Deng H, Li X, Cui S, Li L, Meng Q, Shang Y, Liu Y, Hou M, Liu L. Fine-mapping of a QTL and identification of candidate genes associated with the lateral branch angle of peanuts ( Arachis hypogaea L.) on chromosome B05. FRONTIERS IN PLANT SCIENCE 2024; 15:1476274. [PMID: 39421140 PMCID: PMC11484233 DOI: 10.3389/fpls.2024.1476274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Peanuts play a crucial role as an oil crop, serving not only as a primary source of edible oil but also offering ample protein and vitamins for human consumption. The lateral branch angle of peanuts is the angle between the main stem and the first pair of lateral branches, which is an important agronomic trait of peanuts, significantly impacts the peg penetration into the soil, plant growth, and pod yield. It is closely intertwined with planting density, cultivation techniques, and mechanized harvesting methods. Therefore, the lateral branch angle holds substantial importance in enhancing peanut yield and facilitating mechanization. In order to conduct in-depth research on the lateral branch angle of peanuts, this research is grounded in the QTL mapping findings, specifically focusing on the QTL qGH associated with the lateral branch angle of peanuts located on chromosome B05 (142610834-146688220). By using Jihua 5 and PZ42 for backcrossing, a BC1F2 population comprising 8000 individual plants was established. Molecular markers were then developed to screen the offspring plants, recombine individual plants, conduct fine mapping. he results showed that using the phenotype and genotype of 464 recombinant individual plants selected from 8000 offspring, narrow down the localization interval to 48kb, and designate it as qLBA. The gene Arahy.C4FM6Y, responsible for the F-Box protein, was identified within qLBA through screening. Real-time quantitative detection of Arahy.C4FM6Y was carried out using M130 and Jihua 5, revealing that the expression level of Arahy.C4FM6Y at the junction of the main stem and the first lateral branch of peanuts was lower in M130 compared to Jihua 5 during the growth period of the first lateral branch from 1 to 10 centimeters. Consequently, Arahy.C4FM6Y emerges as a gene that restrains the increase in the angle of the first lateral branch in peanuts. This investigation offers novel genetic reservoirs for peanut plant type breeding and furnishes a theoretical foundation for molecular marker-assisted peanut breeding.
Collapse
Affiliation(s)
- Hongtao Deng
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Xiukun Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Shunli Cui
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Li Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qinglin Meng
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Yanxia Shang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Yingru Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Mingyu Hou
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| | - Lifeng Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wu C, Hou B, Wu R, Yang L, Lan G, Xia Z, Cao C, Pan Z, Lv B, Li P. Genome-Wide Analysis Elucidates the Roles of AhLBD Genes in Different Abiotic Stresses and Growth and Development Stages in the Peanut ( Arachis hypogea L.). Int J Mol Sci 2024; 25:10561. [PMID: 39408886 PMCID: PMC11476539 DOI: 10.3390/ijms251910561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In this study, 73 AhLBDs were identified in the peanut plant and divided into three groups by phylogenetic tree analysis. Gene structure and conserved protein motif analysis supported the evolutionary conservation of AhLBDs. Tandem and segment duplications contributed to the expansion of AhLBDs. The evolutionary relationship analysis of LBD gene family between A. hypogaea and four other species indicated that the peanut plant had a close relationship with the soybean plant. AhLBDs played a very important role in response to growth and development as well as abiotic stress. Furthermore, gene expression profiling and real-time quantitative qRT-PCR analysis showed that AhLBD16, AhLBD33, AhLBD67, and AhLBD72 were candidate genes for salt stress, while AhLBD24, AhLBD33, AhLBD35, AhLBD52, AhLBD67, and AhLBD71 were candidate genes for drought stress. Our subcellular localization experiment revealed that AhLBD24, AhLBD33, AhLBD67, and AhLBD71 were located in the nucleus. Heterologous overexpression of AhLBD33 and AhLBD67 in Arabidopsis significantly enhanced tolerance to salt stress. Our results provide a theoretical basis and candidate genes for studying the molecular mechanism for abiotic stress in the peanut plant.
Collapse
Affiliation(s)
- Cuicui Wu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| | | | | | | | | | | | | | | | | | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| |
Collapse
|
7
|
Zheng Z, Sun Z, Qi F, Fang Y, Lin K, Pavan S, Huang B, Dong W, Du P, Tian M, Shi L, Xu J, Han S, Liu H, Qin L, Zhang Z, Dai X, Miao L, Zhao R, Wang J, Liao Y, Li A, Ruan J, Delvento C, Aiese Cigliano R, Maliepaard C, Bai Y, Visser RGF, Zhang X. Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts. Nat Genet 2024; 56:1975-1984. [PMID: 39138385 PMCID: PMC11387195 DOI: 10.1038/s41588-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Cultivated peanut (Arachis hypogaea L.) is a widely grown oilseed crop worldwide; however, the events leading to its origin and diversification are not fully understood. Here by combining chloroplast and whole-genome sequence data from a large germplasm collection, we show that the two subspecies of A. hypogaea (hypogaea and fastigiata) likely arose from distinct allopolyploidization and domestication events. Peanut genetic clusters were then differentiated in relation to dissemination routes and breeding efforts. A combination of linkage mapping and genome-wide association studies allowed us to characterize genes and genomic regions related to main peanut morpho-agronomic traits, namely flowering pattern, inner tegument color, growth habit, pod/seed weight and oil content. Together, our findings shed light on the evolutionary history and phenotypic diversification of peanuts and might be of broad interest to plant breeders.
Collapse
Affiliation(s)
- Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China.
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China.
- The Shennong Laboratory, Zhengzhou, China.
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yuanjin Fang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Ke Lin
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Stefano Pavan
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Pei Du
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Mengdi Tian
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Lei Shi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
| | - Jing Xu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Suoyi Han
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Hua Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Li Qin
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Zhongxin Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Xiaodong Dai
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Lijuan Miao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Ruifang Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Juan Wang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
| | - Yanlin Liao
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China
- The Shennong Laboratory, Zhengzhou, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Alun Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chiara Delvento
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China.
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, China.
- National Innovation Centre for Bio-breeding Industry, Xinxiang, China.
- The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
8
|
Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, Yan L, Wang X, Chen W, Kang Y, Ding Y, Jin G, Pandey MK, Janila P, Kishan Sudini H, Varshney RK, Jiang H, Liu S, Liao B. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). J Adv Res 2024; 62:15-26. [PMID: 37739123 PMCID: PMC11331177 DOI: 10.1016/j.jare.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
INTRODUCTION Peanut is susceptible to infection of Aspergillus fungi and conducive to aflatoxin contamination, hence developing aflatoxin-resistant variety is highly meaningful. Identifying functional genes or loci conferring aflatoxin resistance and molecular diagnostic marker are crucial for peanut breeding. OBJECTIVES This work aims to (1) identify candidate gene for aflatoxin production resistance, (2) reveal the related resistance mechanism, and (3) develop diagnostic marker for resistance breeding program. METHODS Resistance to aflatoxin production in a recombined inbred line (RIL) population derived from a high-yielding variety Xuhua13 crossed with an aflatoxin-resistant genotype Zhonghua 6 was evaluated under artificial inoculation for three consecutive years. Both genetic linkage analysis and QTL-seq were conducted for QTL mapping. The candidate gene was further fine-mapped using a secondary segregation mapping population and validated by transgenic experiments. RNA-Seq analysis among resistant and susceptible RILs was used to reveal the resistance pathway for the candidate genes. RESULTS The major effect QTL qAFTRA07.1 for aflatoxin production resistance was mapped to a 1.98 Mbp interval. A gene, AhAftr1 (Arachis hypogaea Aflatoxin resistance 1), was detected structure variation (SV) in leucine rich repeat (LRR) domain of its production, and involved in disease resistance response through the effector-triggered immunity (ETI) pathway. Transgenic plants with overexpression of AhAftr1(ZH6) exhibited 57.3% aflatoxin reduction compared to that of AhAftr1(XH13). A molecular diagnostic marker AFTR.Del.A07 was developed based on the SV. Thirty-six lines, with aflatoxin content decrease by over 77.67% compared to the susceptible control Zhonghua12 (ZH12), were identified from a panel of peanut germplasm accessions and breeding lines through using AFTR.Del.A07. CONCLUSION Our findings would provide insights of aflatoxin production resistance mechanisms and laid meaningful foundation for further breeding programs.
Collapse
Affiliation(s)
- Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yingbin Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Gaorui Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Aird Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China.
| |
Collapse
|
9
|
Zhang H, Tang Y, Yue Y, Chen Y. Advances in the evolution research and genetic breeding of peanut. Gene 2024; 916:148425. [PMID: 38575102 DOI: 10.1016/j.gene.2024.148425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yueyi Tang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yunlai Yue
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Deng Q, Du P, Gangurde SS, Hong Y, Xiao Y, Hu D, Li H, Lu Q, Li S, Liu H, Wang R, Huang L, Wang W, Garg V, Liang X, Varshney RK, Chen X, Liu H. ScRNA-seq reveals dark- and light-induced differentially expressed gene atlases of seedling leaves in Arachis hypogaea L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1848-1866. [PMID: 38391124 PMCID: PMC11182584 DOI: 10.1111/pbi.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.
Collapse
Affiliation(s)
- Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Puxuan Du
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi‐Arid TropicHyderabadIndia
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Yuan Xiao
- School of Public HealthWannan Medical CollegeWuhuAnhui ProvinceChina
| | - Dongxiu Hu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Haifen Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Qing Lu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Shaoxiong Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Haiyan Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Wenyi Wang
- College of AgricultureSouth China Agricultural UniversityGuangzhouGuangdong ProvinceChina
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Xuanqiang Liang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Rajeev K. Varshney
- College of AgricultureSouth China Agricultural UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub‐Center of National Center of Oilseed Crops Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouGuangdong ProvinceChina
| |
Collapse
|
11
|
Fang X, Liu L, Li M, Song H, Zhou Y. WRKY transcription factors modulate flowering time in four Arachis species: a bioinformatics analysis. BMC PLANT BIOLOGY 2024; 24:620. [PMID: 38943100 PMCID: PMC11212391 DOI: 10.1186/s12870-024-05343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND WRKY proteins are important transcription factors (TFs) in plants, involved in growth and development and responses to environmental changes. Although WRKY TFs have been studied at the genome level in Arachis genus, including oil crop and turfgrass, their regulatory networks in controlling flowering time remain unclear. The aim of this study was to predict the molecular mechanisms of WRKY TFs regulation flowering time in Arachis genus at the genome level using bioinformatics approaches. RESULTS The flowering-time genes of Arachis genus were retrieved from the flowering-time gene database. The regulatory networks between WRKY TFs and downstream genes in Arachis genus were predicted using bioinformatics tools. The results showed that WRKY TFs were involved in aging, autonomous, circadian clock, hormone, photoperiod, sugar, temperature, and vernalization pathways to modulate flowering time in Arachis duranensis, Arachis ipaensis, Arachis monticola, and Arachis hypogaea cv. Tifrunner. The WRKY TF binding sites in homologous flowering-time genes exhibited asymmetric evolutionary pattern, indicating that the WRKY TFs interact with other transcription factors to modulate flowering time in the four Arachis species. Protein interaction network analysis showed that WRKY TFs interacted with FRUITFULL and APETALA2 to modulate flowering time in the four Arachis species. WRKY TFs implicated in regulating flowering time had low expression levels, whereas their interaction proteins had varying expression patterns in 22 tissues of A. hypogaea cv. Tifrunner. These results indicate that WRKY TFs exhibit antagonistic or synergistic interactions with the associated proteins. CONCLUSIONS This study reveals complex regulatory networks through which WRKY TFs modulate flowering time in the four Arachis species using bioinformatics approaches.
Collapse
Affiliation(s)
- Xiao Fang
- School of Animation and Media, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Lubin Liu
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Meiran Li
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China
| | - Hui Song
- College of Grassland Science, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China.
| | - Yihui Zhou
- School of Animation and Media, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, Shandong, 266019, China.
| |
Collapse
|
12
|
Wang L, Chen H, Zhuang Y, Chen K, Zhang C, Cai T, Yang Q, Fu H, Chen X, Chitkineni A, Wang X, Varshney RK, Zhuang W. Multiple strategies, including 6mA methylation, affecting plant alternative splicing in allopolyploid peanut. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1681-1702. [PMID: 38294334 PMCID: PMC11123434 DOI: 10.1111/pbi.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.
Collapse
Affiliation(s)
- Lihui Wang
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuhui Zhuang
- Center for Legume Plant Genetics and System Biology, College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Kun Chen
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Chong Zhang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Qiang Yang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Huiwen Fu
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Xiangyu Chen
- Crop Research InstituteFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Annapurna Chitkineni
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiyin Wang
- North China University of Science and TechnologyTangshanChina
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Weijian Zhuang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
13
|
Wang Z, Lei Y, Liao B. Omics-driven advances in the understanding of regulatory landscape of peanut seed development. FRONTIERS IN PLANT SCIENCE 2024; 15:1393438. [PMID: 38766472 PMCID: PMC11099219 DOI: 10.3389/fpls.2024.1393438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Peanuts (Arachis hypogaea) are an essential oilseed crop known for their unique developmental process, characterized by aerial flowering followed by subterranean fruit development. This crop is polyploid, consisting of A and B subgenomes, which complicates its genetic analysis. The advent and progression of omics technologies-encompassing genomics, transcriptomics, proteomics, epigenomics, and metabolomics-have significantly advanced our understanding of peanut biology, particularly in the context of seed development and the regulation of seed-associated traits. Following the completion of the peanut reference genome, research has utilized omics data to elucidate the quantitative trait loci (QTL) associated with seed weight, oil content, protein content, fatty acid composition, sucrose content, and seed coat color as well as the regulatory mechanisms governing seed development. This review aims to summarize the advancements in peanut seed development regulation and trait analysis based on reference genome-guided omics studies. It provides an overview of the significant progress made in understanding the molecular basis of peanut seed development, offering insights into the complex genetic and epigenetic mechanisms that influence key agronomic traits. These studies highlight the significance of omics data in profoundly elucidating the regulatory mechanisms of peanut seed development. Furthermore, they lay a foundational basis for future research on trait-related functional genes, highlighting the pivotal role of comprehensive genomic analysis in advancing our understanding of plant biology.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
14
|
Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, Shah P, Joshi P, Bhat RS, Janila P, Bera SK, Varshney RK. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut. BMC PLANT BIOLOGY 2024; 24:262. [PMID: 38594614 PMCID: PMC11005153 DOI: 10.1186/s12870-024-04987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aamir W Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pushpesh Joshi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip K Bera
- ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia.
| |
Collapse
|
15
|
Sun X, Zhang L, Xu W, Zheng J, Yan M, Zhao M, Wang X, Yin Y. A Comprehensive Analysis of the Peanut SQUAMOSA Promoter Binding Protein-like Gene Family and How AhSPL5 Enhances Salt Tolerance in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1057. [PMID: 38674467 PMCID: PMC11055087 DOI: 10.3390/plants13081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription factors, plays an important function in plant growth and development and in response to environmental stresses. Despite SPL gene families having been identified in various plant species, the understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes (AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis. In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications. The analysis of the gene structure and protein motif patterns revealed similarities in the structure of exons and introns, as well as the organization of the motifs within the same group, thereby providing additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved in peanut growth and development, as well as in response to environmental stresses. Furthermore, the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF, WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5 can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and positively regulating the expression of stress-responsive genes. These results provide insight into the evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyu Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| | - Yan Yin
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| |
Collapse
|
16
|
Guo M, Deng L, Gu J, Miao J, Yin J, Li Y, Fang Y, Huang B, Sun Z, Qi F, Dong W, Lu Z, Li S, Hu J, Zhang X, Ren L. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2024; 24:244. [PMID: 38575936 PMCID: PMC10996145 DOI: 10.1186/s12870-024-04937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.
Collapse
Affiliation(s)
- Minjie Guo
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Li Deng
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Jianzhong Gu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Jianli Miao
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Junhua Yin
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Yang Li
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Yuanjin Fang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Bingyan Huang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ziqi Sun
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Feiyan Qi
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenhua Lu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Shaowei Li
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Junping Hu
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Xinyou Zhang
- Shennong Laboratory, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Li Ren
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Li Q, Wang Y, Zhou H, Liu Y, Gichuki DK, Hou Y, Zhang J, Aryal R, Hu G, Wan T, Amenu SG, Gituru RW, Xin H, Wang Q. The Cissus quadrangularis genome reveals its adaptive features in an arid habitat. HORTICULTURE RESEARCH 2024; 11:uhae038. [PMID: 38595910 PMCID: PMC11001597 DOI: 10.1093/hr/uhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Cissus quadrangularis is a tetraploid species belonging to the Vitaceae family and is known for the Crassulacean acid metabolism (CAM) pathway in the succulent stem, while the leaves perform C3 photosynthesis. Here, we report a high-quality genome of C. quadrangularis comprising a total size of 679.2 Mb which was phased into two subgenomes. Genome annotation identified 51 857 protein-coding genes, while approximately 47.75% of the genome was composed of repetitive sequences. Gene expression ratios of two subgenomes demonstrated that the sub-A genome as the dominant subgenome played a vital role during the drought tolerance. Genome divergence analysis suggests that the tetraploidization event occurred around 8.9 million years ago. Transcriptome data revealed that pathways related to cutin, suberine, and wax metabolism were enriched in the stem during drought treatment, suggesting that these genes contributed to the drought adaption. Additionally, a subset of CAM-related genes displayed diurnal expression patterns in the succulent stems but not in leaves, indicating that stem-biased expression of existing genes contributed to the CAM evolution. Our findings provide insights into the mechanisms of drought adaptation and photosynthesis transition in plants.
Collapse
Affiliation(s)
- Qingyun Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Huimin Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duncan Kiragu Gichuki
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Hou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jisen Zhang
- Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Wan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sara Getachew Amenu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert Wahiti Gituru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, 62000-00200, Nairobi, Kenya
| | - Haiping Xin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
18
|
Tang H, Yuan C, Shi H, Liu F, Shan S, Wang Z, Sun Q, Sun J. Genome-Wide Identification of Peanut B-Boxs and Functional Characterization of AhBBX6 in Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:955. [PMID: 38611484 PMCID: PMC11013918 DOI: 10.3390/plants13070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The B-box (BBX) gene family includes zinc finger protein transcription factors that regulate a multitude of physiological and developmental processes in plants. While BBX gene families have been previously determined in various plants, the members and roles of peanut BBXs are largely unknown. In this research, on the basis of the genome-wide identification of BBXs in three peanut species (Arachis hypogaea, A. duranensis, and A. ipaensis), we investigated the expression profile of the BBXs in various tissues and in response to salt and drought stresses and selected AhBBX6 for functional characterization. We identified a total of 77 BBXs in peanuts, which could be grouped into five subfamilies, with the genes from the same branch of the same subgroup having comparable exon-intron structures. In addition, a significant number of cis-regulatory elements involved in the regulation of responses to light and hormones and abiotic stresses were found in the promoter region of peanut BBXs. Based on the analysis of transcriptome data and qRT-PCR, we identified AhBBX6, AhBBX11, AhBBX13, and AhBBX38 as potential genes associated with tolerance to salt and drought. Silencing AhBBX6 using virus-induced gene silencing compromised the tolerance of peanut plants to salt and drought stresses. The results of this study provide knowledge on peanut BBXs and establish a foundation for future research into their functional roles in peanut development and stress response.
Collapse
Affiliation(s)
- Haohong Tang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Haonan Shi
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Zhijun Wang
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China; (C.Y.); (S.S.)
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, China; (H.T.); (H.S.); (F.L.)
| |
Collapse
|
19
|
Li Y, Fu M, Li J, Wu J, Shua Z, Chen T, Yao W, Huai D. Genome-wide identification of SWEET genes reveals their roles during seed development in peanuts. BMC Genomics 2024; 25:259. [PMID: 38454335 PMCID: PMC10921654 DOI: 10.1186/s12864-024-10173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are highly conserved in various organisms and play crucial roles in sugar transport processes. However, SWEET proteins in peanuts, an essential leguminous crop worldwide, remain lacking in systematic characterization. Here, we identified 94 SWEET genes encoding the conservative MtN3/saliva domains in three peanut species, including 47 in Arachis hypogea, 23 in Arachis duranensis, and 24 in Arachis ipaensis. We observed significant variations in the exon-intron structure of these genes, while the motifs and domain structures remained highly conserved. Phylogenetic analysis enabled us to categorize the predicted 286 SWEET proteins from eleven species into seven distinct groups. Whole genome duplication/segment duplication and tandem duplication were the primary mechanisms contributing to the expansion of the total number of SWEET genes. In addition, an investigation of cis-elements in the potential promoter regions and expression profiles across 22 samples uncovered the diverse expression patterns of AhSWEET genes in peanuts. AhSWEET24, with the highest expression level in seeds from A. hypogaea Tifrunner, was observed to be localized on both the plasma membrane and endoplasmic reticulum membrane. Moreover, qRT-PCR results suggested that twelve seed-expressed AhSWEET genes were important in the regulation of seed development across four different peanut varieties. Together, our results provide a foundational basis for future investigations into the functions of SWEET genes in peanuts, especially in the process of seed development.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China.
| | - Mengjia Fu
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jiaming Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jie Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhenyang Shua
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Tiantian Chen
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen Yao
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
20
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
21
|
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet 2024; 56:530-540. [PMID: 38378864 DOI: 10.1038/s41588-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Collapse
Affiliation(s)
- Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Lu Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dandan Guo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Puxuan Du
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| |
Collapse
|
22
|
Cao D, Ma Y, Cao Z, Hu S, Li Z, Li Y, Wang K, Wang X, Wang J, Zhao K, Zhao K, Qiu D, Li Z, Ren R, Ma X, Zhang X, Gong F, Jung MY, Yin D. Coordinated Lipid Mobilization during Seed Development and Germination in Peanut ( Arachis hypogaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3218-3230. [PMID: 38157443 PMCID: PMC10870768 DOI: 10.1021/acs.jafc.3c06697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil crops in the world due to its lipid-rich seeds. Lipid accumulation and degradation play crucial roles in peanut seed maturation and seedling establishment, respectively. Here, we utilized lipidomics and transcriptomics to comprehensively identify lipids and the associated functional genes that are important in the development and germination processes of a large-seed peanut variety. A total of 332 lipids were identified; triacylglycerols (TAGs) and diacylglycerols were the most abundant during seed maturation, constituting 70.43 and 16.11%, respectively, of the total lipids. Significant alterations in lipid profiles were observed throughout seed maturation and germination. Notably, TAG (18:1/18:1/18:2) and (18:1/18:2/18:2) peaked at 23386.63 and 23392.43 nmol/g, respectively, at the final stage of seed development. Levels of hydroxylated TAGs (HO-TAGs) increased significantly during the initial stage of germination. Accumulation patterns revealed an inverse relationship between free fatty acids and TAGs. Lipid degradation was determined to be regulated by diacylglycerol acyltransferase, triacylglycerol lipase, and associated transcription factors, predominantly yielding oleic acid, linoleic acid, and linolenic acid. Collectively, the results of this study provide valuable insights into lipid dynamics during the development and germination of large-seed peanuts, gene resources, and guiding future research into lipid accumulation in an economically important crop.
Collapse
Affiliation(s)
- Di Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yongzhe Ma
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Zenghui Cao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Sasa Hu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhan Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Yanzhe Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kuopeng Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xiaoxuan Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Jinzhi Wang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kunkun Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Kai Zhao
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Ding Qiu
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Zhongfeng Li
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Rui Ren
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingli Ma
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Xingguo Zhang
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Fangping Gong
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| | - Mun Yhung Jung
- College
of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 55338, Republic of Korea
| | - Dongmei Yin
- College
of Agronomy & Peanut Functional Genome and Molecular Breeding
Engineering, Henan Agricultural University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
23
|
Guan J, Zhang Z, Shi G. Genome-Wide Identification of the Ferric Chelate Reductase ( FRO) Gene Family in Peanut and Its Diploid Progenitors: Structure, Evolution, and Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:418. [PMID: 38337951 PMCID: PMC10857631 DOI: 10.3390/plants13030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The ferric chelate reductase (FRO) family plays a vital role in metal ion homeostasis in a variety of locations in the plants. However, little is known about this family in peanut (Arachis hypogaea). This study aimed to identify FRO genes from the genomes of peanut and the two diploid progenitors (A. duranensis and A. ipaensis) and to analyze their gene/protein structures and evolution. In addition, transcriptional responses of AhFRO genes to Fe deficiency and/or Cu exposure were investigated in two peanut cultivars with different Fe deficiency tolerance (Silihong and Fenghua 1). A total of nine, four, and three FRO genes were identified in peanut, A. duranensis, and A. ipaensis, respectively, which were divided into three groups. Most AhFRO genes underwent WGD/segmental duplication, leading to the expansion of the AhFRO gene family. In general, clustered members share similar gene/protein structures. However, significant divergences occurred in AhFRO2 genes. Three out of five AhFRO2 genes were lowly expressed in all tissues under normal conditions, which may be beneficial for avoiding gene loss. Transcription analysis revealed that AhFRO2 and AhFRO7 genes might be involved in the reduction of Fe/Cu in plasma membranes and plastids, respectively. AhFRO8 genes appear to confer Fe reduction in the mitochondria. Moreover, Fe deficiency induced an increase of Cu accumulation in peanut plants in which AhFRO2.2/2.4/2.5 and FRO7.1/7.2 might be involved. Our findings provided new clues for further understanding the roles of AhFRO genes in the Fe/Cu interaction in peanut.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
24
|
Zhong C, He Z, Liu Y, Li Z, Wang X, Jiang C, Kang S, Liu X, Zhao S, Wang J, Zhang H, Zhao X, Yu H. Genome-wide identification of TPS and TPP genes in cultivated peanut ( Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1343402. [PMID: 38312353 PMCID: PMC10834750 DOI: 10.3389/fpls.2023.1343402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Introduction Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.
Collapse
Affiliation(s)
- Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zehua He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Agricultural Vocational and Technical College, Yingkou, China
| |
Collapse
|
25
|
García-Soto I, Andersen SU, Monroy-Morales E, Robledo-Gamboa M, Guadarrama J, Aviles-Baltazar NY, Serrano M, Stougaard J, Montiel J. A collection of novel Lotus japonicus LORE1 mutants perturbed in the nodulation program induced by the Agrobacterium pusense strain IRBG74. FRONTIERS IN PLANT SCIENCE 2024; 14:1326766. [PMID: 38250449 PMCID: PMC10796720 DOI: 10.3389/fpls.2023.1326766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The Lotus japonicus population carrying new Lotus retrotransposon 1 (LORE1) insertions represents a valuable biological resource for genetic research. New insertions were generated by activation of the endogenous retroelement LORE1a in the germline of the G329-3 plant line and arranged in a 2-D system for reverse genetics. LORE1 mutants identified in this collection contributes substantially to characterize candidate genes involved in symbiotic association of L. japonicus with its cognate symbiont, the nitrogen-fixing bacteria Mesorhizobium loti that infects root nodules intracellularly. In this study we aimed to identify novel players in the poorly explored intercellular infection induced by Agrobacterium pusense IRBG74 sp. For this purpose, a forward screen of > 200,000 LORE1 seedlings, obtained from bulk propagation of G329-3 plants, inoculated with IRBG74 was performed. Plants with perturbed nodulation were scored and the offspring were further tested on plates to confirm the symbiotic phenotype. A total of 110 Lotus mutants with impaired nodulation after inoculation with IRBG74 were obtained. A comparative analysis of nodulation kinetics in a subset of 20 mutants showed that most of the lines were predominantly affected in nodulation by IRBG74. Interestingly, additional defects in the main root growth were observed in some mutant lines. Sequencing of LORE1 flanking regions in 47 mutants revealed that 92 Lotus genes were disrupted by novel LORE1 insertions in these lines. In the IM-S34 mutant, one of the insertions was located in the 5´UTR of the LotjaGi5g1v0179800 gene, which encodes the AUTOPHAGY9 protein. Additional mutant alleles, named atg9-2 and atg9-3, were obtained in the reverse genetic collection. Nodule formation was significantly reduced in these mutant alleles after M. loti and IRBG74 inoculation, confirming the effectiveness of the mutant screening. This study describes an effective forward genetic approach to obtain novel mutants in Lotus with a phenotype of interest and to identify the causative gene(s).
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elizabeth Monroy-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Mariana Robledo-Gamboa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jesús Guadarrama
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Montiel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
26
|
Li J, Zhang Z, Shi G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int J Mol Sci 2024; 25:613. [PMID: 38203784 PMCID: PMC10779257 DOI: 10.3390/ijms25010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The heavy metal ATPase (HMA) family belongs to the P-type ATPase superfamily and plays an essential role in the regulation of metal homeostasis in plants. However, the gene family has not been fully investigated in peanut. Here, a genome-wide identification and bioinformatics analysis was performed on AhHMA genes in peanut, and the expression of 12 AhHMA genes in response to Cu, Zn, and Cd was evaluated in two peanut cultivars (Silihong and Fenghua 1) differing in Cd accumulation. A total of 21 AhHMA genes were identified in the peanut genome, including ten paralogous gene pairs derived from whole-genome duplication, and an additional gene resulting from tandem duplication. AhHMA proteins could be divided into six groups (I-VI), belonging to two clades (Zn/Co/Cd/Pb-ATPases and Cu/Ag-ATPases). Most AhHMA proteins within the same clade or group generally have a similar structure. However, significant divergence exists in the exon/intron organization even between duplicated gene pairs. RNA-seq data showed that most AhHMA genes are preferentially expressed in roots, shoots, and reproductive tissues. qRT-PCR results revealed that AhHMA1.1/1.2, AhHMA3.1/3.2, AhHMA7.1/7.4, and AhHMA8.1 might be involved in Zn transport in peanut plants, while AhHMA3.2 and AhHMA7.5 might be involved in Cd transport. Our findings provide clues to further characterize the functions of AhHMA genes in metal uptake and translocation in peanut plants.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (J.L.); (Z.Z.)
| |
Collapse
|
27
|
Yuan L, Lei L, Jiang F, Wang A, Chen R, Wang H, Meng S, Fan W. The genomes of 5 underutilized Papilionoideae crops provide insights into root nodulation and disease resistance. Gigascience 2024; 13:giae063. [PMID: 39190925 PMCID: PMC11348429 DOI: 10.1093/gigascience/giae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The Papilionoideae subfamily contains a large amount of underutilized legume crops, which are important for food security and human sustainability. However, the lack of genomic resources has hindered the breeding and utilization of these crops. RESULTS Here, we present chromosome-level reference genomes for 5 underutilized diploid Papilionoideae crops: sword bean (Canavalia gladiata), scarlet runner bean (Phaseolus coccineus), winged bean (Psophocarpus tetragonolobus), smooth rattlebox (Crotalaria pallida), and butterfly pea (Clitoria ternatea), with assembled genome sizes of 0.62 Gb, 0.59 Gb, 0.71 Gb, 1.22 Gb, and 1.72 Gb, respectively. We found that the long period of higher long terminal repeat retrotransposon activity is the major reason that the genome size of smooth rattlebox and butterfly pea is enlarged. Additionally, there have been no recent whole-genome duplication (WGD) events in these 5 species except for the shared papilionoid-specific WGD event (∼55 million years ago). Then, we identified 5,328 and 10,434 species-specific genes between scarlet runner bean and common bean, respectively, which may be responsible for their phenotypic and functional differences and species-specific functions. Furthermore, we identified the key genes involved in root-nodule symbiosis (RNS) in all 5 species and found that the NIN gene was duplicated in the early Papilionoideae ancestor, followed by the loss of 1 gene copy in smooth rattlebox and butterfly pea lineages. Last, we identified the resistance (R) genes for plant defenses in these 5 species and characterized their evolutionary history. CONCLUSIONS In summary, this study provides chromosome-scale reference genomes for 3 grain and vegetable beans (sword bean, scarlet runner bean, winged bean), along with genomes for a green manure crop (smooth rattlebox) and a food dyeing crop (butterfly pea). These genomes are crucial for studying phylogenetic history, unraveling nitrogen-fixing RNS evolution, and advancing plant defense research.
Collapse
Affiliation(s)
- Lihua Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Rong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sihan Meng
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
28
|
Liu H, Guo Z, Gangurde SS, Garg V, Deng Q, Du P, Lu Q, Chitikineni A, Xiao Y, Wang W, Hong Y, Varshney RK, Chen X. A Single-Nucleus Resolution Atlas of Transcriptome and Chromatin Accessibility for Peanut (Arachis Hypogaea L.) Leaves. Adv Biol (Weinh) 2024; 8:e2300410. [PMID: 37828417 DOI: 10.1002/adbi.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Indexed: 10/14/2023]
Abstract
The peanut is an important worldwide cash-crop for edible oil and protein. However, the kinetic mechanisms that determine gene expression and chromatin accessibility during leaf development in peanut represented allotetraploid leguminous crops are poorly understood at single-cell resolution. Here, a single-nucleus atlas of peanut leaves is developed by simultaneously profiling the transcriptome and chromatin accessibility in the same individual-cell using fluorescence-activated sorted single-nuclei. In total, 5930 cells with 50 890 expressed genes are classified into 18 cell-clusters, and 5315 chromatin fragments are enriched with 26 083 target genes in the chromatin accessible landscape. The developmental trajectory analysis reveals the involvement of the ethylene-AP2 module in leaf cell differentiation, and cell-cycle analysis demonstrated that genome replication featured in distinct cell-types with circadian rhythms transcription factors (TFs). Furthermore, dual-omics illustrates that the fatty acid pathway modulates epidermal-guard cells differentiation and providescritical TFs interaction networks for understanding mesophyll development, and the cytokinin module (LHY/LOG) that regulates vascular growth. Additionally, an AT-hook protein AhAHL11 is identified that promotes leaf area expansion by modulating the auxin content increase. In summary, the simultaneous profiling of transcription and chromatin accessibility landscapes using snRNA/ATAC-seq provides novel biological insights into the dynamic processes of peanut leaf cell development at the cellular level.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Zenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agriculture Sciences, Heilongjiang Province, Jiamusi, 154026, China
| | - Sunil S Gangurde
- USDA-ARS, Crop Genetics and Breeding Research Unit, Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Vanika Garg
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University (MU), Murdoch, Western Australia, 6150, Australia
| | - Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Puxuan Du
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Qing Lu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University (MU), Murdoch, Western Australia, 6150, Australia
| | - Yuan Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Wenyi Wang
- College of Agriculture, South China Agriculture University, Guangzhou, Guangdong Province, 510642, China
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University (MU), Murdoch, Western Australia, 6150, Australia
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| |
Collapse
|
29
|
Brasileiro ACM, Gimenes MA, Pereira BM, Mota APZ, Aguiar MN, Martins ACQ, Passos MAS, Guimaraes PM. The Stilbene Synthase Family in Arachis: A Genome-Wide Study and Functional Characterization in Response to Stress. Genes (Basel) 2023; 14:2181. [PMID: 38137003 PMCID: PMC10742623 DOI: 10.3390/genes14122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Peanut (Arachis hypogaea) and its wild relatives are among the few species that naturally synthesize resveratrol, a well-known stilbenoid phytoalexin that plays a crucial role in plant defense against biotic and abiotic stresses. Resveratrol has received considerable attention due to its health benefits, such as preventing and treating various human diseases and disorders. Chalcone (CHS) and Stilbene (STS) Synthases are plant-specific type III Polyketide Synthases (PKSs) that share the same substrates and are key branch enzymes in the biosynthesis of flavonoids and stilbenoids, respectively. Although resveratrol accumulation in response to external stimulus has been described in peanut, there are no comprehensive studies of the CHS and STS gene families in the genus Arachis. In the present study, we identified and characterized 6 CHS and 46 STS genes in the tetraploid peanut and an average of 4 CHS and 22 STS genes in three diploid wild species (Arachis duranensis, Arachis ipaënsis and Arachis stenosperma). The CHS and STS gene and protein structures, chromosomal distributions, phylogenetic relationships, conserved amino acid domains, and cis-acting elements in the promoter regions were described for all Arachis species studied. Based on gene expression patterns of wild A. stenosperma STS genes in response to different biotic and abiotic stresses, we selected the candidate AsSTS4 gene, which is strongly induced by ultraviolet (UV) light exposure, for further functional investigation. The AsSTS4 overexpression in peanut hairy roots significantly reduced (47%) root-knot nematode infection, confirming that stilbene synthesis activation in transgenic plants can increase resistance to pathogens. These findings contribute to understanding the role of resveratrol in stress responses in Arachis species and provide the basis for genetic engineering for improved production of valuable secondary metabolites in plants.
Collapse
Affiliation(s)
- Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| | - Marcos Aparecido Gimenes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Bruna Medeiros Pereira
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Ana Paula Zotta Mota
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Matheus Nascimento Aguiar
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Andressa Cunha Quintana Martins
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
| | - Mario Alfredo Saraiva Passos
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| | - Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil; (M.A.G.); (B.M.P.); (A.P.Z.M.); (M.N.A.); (A.C.Q.M.); (M.A.S.P.); (P.M.G.)
- National Institute of Science and Technology-INCT PlantStress Biotech-Embrapa, Brasília 70770-917, DF, Brazil
| |
Collapse
|
30
|
Gangurde SS, Khan AW, Janila P, Variath MT, Manohar SS, Singam P, Chitikineni A, Varshney RK, Pandey MK. Whole-genome sequencing based discovery of candidate genes and diagnostic markers for seed weight in groundnut. THE PLANT GENOME 2023; 16:e20265. [PMID: 36478184 DOI: 10.1002/tpg2.20265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 06/17/2023]
Abstract
Seed weight in groundnut (Arachis hypogaea L.) has direct impact on yield as well as market price because of preference for bold seeds by consumers and industry, thereby making seed-size improvement as one of the most important objectives of groundnut breeding programs globally. Marker-based early generation selection can accelerate the process of breeding for developing large-seeded varieties. In this context, we deployed the quantitative trait locus-sequencing (QTL-seq) approach on a biparental mapping population (Chico × ICGV 02251) to identify candidate genes and develop markers for seed weight in groundnut. A total of 289.4-389.4 million reads sequencing data were generated from three libraries (ICGV 02251 and two extreme bulks) achieving 93.9-95.1% genome coverage and 8.34-9.29× average read depth. The analysis of sequencing data using QTL-seq pipeline identified five genomic regions (three on chromosome B06 and one each on chromosomes B08 and B09) for seed weight. Detailed analysis of above associated genomic regions detected 182 single-nucleotide polymorphisms (SNPs) in genic and intergenic regions, and 11 of these SNPs were nonsynonymous in the genomic regions of 10 candidate genes including Ulp proteases and BIG SEED locus genes. Kompetitive allele specific polymerase chain reaction (KASP) markers for 14 SNPs were developed, and four of these markers (snpAH0031, snpAH0033, snpAH0037, and snpAH0038) were successfully validated for deployment in breeding for large-seeded groundnut varieties.
Collapse
Affiliation(s)
- Sunil S Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- Dep. of Genetics, Osmania Univ., Hyderabad, 500007, India
| | - Aamir W Khan
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Murali T Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Surendra S Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch Univ., Murdoch, Western Australia, 6150, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| |
Collapse
|
31
|
Bu M, Fan W, Li R, He B, Cui P. Lipid Metabolism and Improvement in Oilseed Crops: Recent Advances in Multi-Omics Studies. Metabolites 2023; 13:1170. [PMID: 38132852 PMCID: PMC10744971 DOI: 10.3390/metabo13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oilseed crops are rich in plant lipids that not only provide essential fatty acids for the human diet but also play important roles as major sources of biofuels and indispensable raw materials for the chemical industry. The regulation of lipid metabolism genes is a major factor affecting oil production. In this review, we systematically summarize the metabolic pathways related to lipid production and storage in plants and highlight key research advances in characterizing the genes and regulatory factors influencing lipid anabolic metabolism. In addition, we integrate the latest results from multi-omics studies on lipid metabolism to provide a reference to better understand the molecular mechanisms underlying oil anabolism in oilseed crops.
Collapse
Affiliation(s)
- Mengjia Bu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruonan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing He
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
32
|
Song H, Guo Z, Duan Z, Li M, Zhang J. WRKY transcription factors in Arachis hypogaea and its donors: From identification to function prediction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108131. [PMID: 37897893 DOI: 10.1016/j.plaphy.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiran Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | |
Collapse
|
33
|
Pan Y, Zhuang Y, Liu T, Chen H, Wang L, Varshney RK, Zhuang W, Wang X. Deciphering peanut complex genomes paves a way to understand its origin and domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2173-2181. [PMID: 37523347 PMCID: PMC10579718 DOI: 10.1111/pbi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023]
Abstract
Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.
Collapse
Affiliation(s)
- Yuxin Pan
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuhui Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tao Liu
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Wang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, and Centre for Crop & Food InnovationFood Futures InstituteMurdoch UniversityMurdochWest AustraliaAustralia
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiyin Wang
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
34
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
35
|
Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F, Yin D. PSW1, an LRR receptor kinase, regulates pod size in peanut. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2113-2124. [PMID: 37431286 PMCID: PMC10502750 DOI: 10.1111/pbi.14117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pod size is a key agronomic trait that greatly determines peanut yield, the regulatory genes and molecular mechanisms that controlling peanut pod size are still unclear. Here, we used quantitative trait locus analysis to identify a peanut pod size regulator, POD SIZE/WEIGHT1 (PSW1), and characterized the associated gene and protein. PSW1 encoded leucine-rich repeat receptor-like kinase (LRR-RLK) and positively regulated pod stemness. Mechanistically, this allele harbouring a 12-bp insertion in the promoter and a point mutation in the coding region of PSW1 causing a serine-to-isoleucine (S618I) substitution substantially increased mRNA abundance and the binding affinity of PSW1 for BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). Notably, PSW1HapII (super-large pod allele of PSW1) expression led to up-regulation of a positive regulator of pod stemness PLETHORA 1 (PLT1), thereby resulting in larger pod size. Moreover, overexpression of PSW1HapII increased seed/fruit size in multiple plant species. Our work thus discovers a conserved function of PSW1 that controls pod size and provides a valuable genetic resource for breeding high-yield crops.
Collapse
Affiliation(s)
- Kunkun Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Ding Qiu
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zenghui Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Kuopeng Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhan Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xiaoxuan Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Jinzhi Wang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Qian Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Yinyao Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Kai Zhao
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Rui Ren
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental RegulationHunan UniversityChangshaChina
| | - Dongmei Yin
- College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural UniversityZhengzhouChina
| |
Collapse
|
36
|
Miao P, Meng X, Li Z, Sun S, Chen CY, Yang X. Mapping Quantitative Trait Loci (QTLs) for Hundred-Pod and Hundred-Seed Weight under Seven Environments in a Recombinant Inbred Line Population of Cultivated Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1792. [PMID: 37761932 PMCID: PMC10531390 DOI: 10.3390/genes14091792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The cultivated peanut (Arachis hypogaea L.) is a significant oil and cash crop globally. Hundred-pod and -seed weight are important components for peanut yield. To unravel the genetic basis of hundred-pod weight (HPW) and hundred-seed weight (HSW), in the current study, a recombinant inbred line (RIL) population with 188 individuals was developed from a cross between JH5 (JH5, large pod and seed weight) and M130 (small pod and seed weight), and was utilized to identify QTLs for HPW and HSW. An integrated genetic linkage map was constructed by using SSR, AhTE, SRAP, TRAP and SNP markers. This map consisted of 3130 genetic markers, which were assigned to 20 chromosomes, and covered 1998.95 cM with an average distance 0.64 cM. On this basis, 31 QTLs for HPW and HSW were located on seven chromosomes, with each QTL accounting for 3.7-10.8% of phenotypic variance explained (PVE). Among these, seven QTLs were detected under multiple environments, and two major QTLs were found on B04 and B08. Notably, a QTL hotspot on chromosome A08 contained seven QTLs over a 2.74 cM genetic interval with an 0.36 Mb physical map, including 18 candidate genes. Of these, Arahy.D52S1Z, Arahy.IBM9RL, Arahy.W18Y25, Arahy.CPLC2W and Arahy.14EF4H might play a role in modulating peanut pod and seed weight. These findings could facilitate further research into the genetic mechanisms influencing pod and seed weight in cultivated peanut.
Collapse
Affiliation(s)
- Penghui Miao
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xinhao Meng
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Zeren Li
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Sainan Sun
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Charles Y. Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xinlei Yang
- State Key Laboratory of North China for Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory of Crop Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
37
|
Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y, Liu F. Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1785-1798. [PMID: 37256840 PMCID: PMC10440995 DOI: 10.1111/pbi.14076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2 , recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yuying Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Huadong Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xiurong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Kun Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Suqing Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Xuanlin Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yingjie Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop BiologyCollege of Agronomy, Shandong Agricultural UniversityTai'anChina
| |
Collapse
|
38
|
Fang Y, Liu H, Qin L, Qi F, Sun Z, Wu J, Dong W, Huang B, Zhang X. Identification of QTL for kernel weight and size and analysis of the pentatricopeptide repeat (PPR) gene family in cultivated peanut (Arachis hypogaea L.). BMC Genomics 2023; 24:495. [PMID: 37641021 PMCID: PMC10463326 DOI: 10.1186/s12864-023-09568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.
Collapse
Affiliation(s)
- Yuanjin Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jihua Wu
- Shangqiu Academy of Agriculture and Forestry, Shangqiu, 476002, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
39
|
Yan L, Song W, Wang Z, Yu D, Sudini H, Kang Y, Lei Y, Huai D, Chen Y, Wang X, Wang Q, Liao B. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts ( Arachis hypogaea L.) through Genome-Wide Association Study. Genes (Basel) 2023; 14:1447. [PMID: 37510351 PMCID: PMC10378806 DOI: 10.3390/genes14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut.
Collapse
Affiliation(s)
- Liying Yan
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wanduo Song
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongyang Yu
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hari Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Yanping Kang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianqian Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
40
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
41
|
Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS, Srikanth S, Bajaj P, Sharma S, Varshney RK, Latha P, Janila P, Bhat RS, Pandey MK. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. FRONTIERS IN PLANT SCIENCE 2023; 14:1182867. [PMID: 37287715 PMCID: PMC10243373 DOI: 10.3389/fpls.2023.1182867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/09/2023]
Abstract
Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Anjan S. Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B.S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - T. Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - S.N. Srikanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| |
Collapse
|
42
|
Zhang X, Zhang X, Wang L, Liu Q, Liang Y, Zhang J, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Nie P, Feng S, Liao B, Bai D. Fine mapping of a QTL and identification of candidate genes associated with cold tolerance during germination in peanut ( Arachis hypogaea L.) on chromosome B09 using whole genome re-sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1153293. [PMID: 37223785 PMCID: PMC10200878 DOI: 10.3389/fpls.2023.1153293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/25/2023]
Abstract
Low temperatures significantly affect the growth and yield of peanuts. Temperatures lower than 12 °C are generally detrimental for the germination of peanuts. To date, there has been no report on precise information on the quantitative trait loci (QTL) for cold tolerance during the germination in peanuts. In this study, we developed a recombinant inbred line (RIL) population comprising 807 RILs by tolerant and sensitive parents. Phenotypic frequencies of germination rate low-temperature conditions among RIL population showed normally distributed in five environments. Then, we constructed a high density SNP-based genetic linkage map through whole genome re-sequencing (WGRS) technique and identified a major quantitative trait locus (QTL), qRGRB09, on chromosome B09. The cold tolerance-related QTLs were repeatedly detected in all five environments, and the genetic distance was 6.01 cM (46.74 cM - 61.75 cM) after taking a union set. To further confirm that qRGRB09 was located on chromosome B09, we developed Kompetitive Allele Specific PCR (KASP) markers for the corresponding QTL regions. A regional QTL mapping analysis, which was conducted after taking the intersection of QTL intervals of all environments into account, confirmed that qRGRB09 was between the KASP markers, G22096 and G220967 (chrB09:155637831-155854093), and this region was 216.26 kb in size, wherein a total of 15 annotated genes were detected. This study illustrates the relevance of WGRS-based genetic maps for QTL mapping and KASP genotyping that facilitated QTL fine mapping of peanuts. The results of our study also provided useful information on the genetic architecture underlying cold tolerance during germination in peanuts, which in turn may be useful for those engaged in molecular studies as well as crop improvement in the cold-stressed environment.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Xiaoji Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luhuan Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Qimei Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Yuying Liang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jiayu Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Suping Feng
- College of Food Science and Engineering, Hainan Tropical Ocean College, Hainan, China
| | - Boshou Liao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
43
|
Fang Y, Zhang X, Liu H, Wu J, Qi F, Sun Z, Zheng Z, Dong W, Huang B. Identification of quantitative trait loci and development of diagnostic markers for growth habit traits in peanut (Arachis hypogaea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:105. [PMID: 37027030 PMCID: PMC10082100 DOI: 10.1007/s00122-023-04327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE QTLs for growth habit are identified on Arahy.15 and Arahy.06 in peanut, and diagnostic markers are developed and validated for further use in marker-assisted breeding. Peanut is a unique legume crop because its pods develop and mature underground. The pegs derive from flowers following pollination, then reach the ground and develop into pods in the soil. Pod number per plant is influenced by peanut growth habit (GH) that has been categorized into four types, including erect, bunch, spreading and prostrate. Restricting pod development at the plant base, as would be the case for peanut plants with upright lateral branches, would decrease pod yield. On the other hand, GH characterized by spreading lateral branches on the ground would facilitate pod formation on the nodes, thereby increasing yield potential. We describe herein an investigation into the GH traits of 521 peanut recombinant inbred lines grown in three distinct environments. Quantitative trait loci (QTLs) for GH were identified on linkage group (LG) 15 between 203.1 and 204.2 cM and on LG 16 from 139.1 to 139.3 cM. Analysis of resequencing data in the identified QTL regions revealed that single nucleotide polymorphism (SNP) or insertion and/or deletion (INDEL) at Arahy15.156854742, Arahy15.156931574, Arahy15.156976352 and Arahy06.111973258 may affect the functions of their respective candidate genes, Arahy.QV02Z8, Arahy.509QUQ, Arahy.ATH5WE and Arahy.SC7TJM. These SNPs and INDELs in relation to peanut GH were further developed for KASP genotyping and tested on a panel of 77 peanut accessions with distinct GH features. This study validates four diagnostic markers that may be used to distinguish erect/bunch peanuts from spreading/prostrate peanuts, thereby facilitating marker-assisted selection for GH traits in peanut breeding.
Collapse
Affiliation(s)
- Yuanjin Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Hua Liu
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jihua Wu
- Shangqiu Academy of Agriculture and Forestry, Shangqiu, 476002, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences, Henan Institute of Crop Molecular Breeding, Shennong Laboratory, Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
44
|
Gangurde SS, Pasupuleti J, Parmar S, Variath MT, Bomireddy D, Manohar SS, Varshney RK, Singam P, Guo B, Pandey MK. Genetic mapping identifies genomic regions and candidate genes for seed weight and shelling percentage in groundnut. Front Genet 2023; 14:1128182. [PMID: 37007937 PMCID: PMC10061104 DOI: 10.3389/fgene.2023.1128182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Janila Pasupuleti
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Murali T. Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Deekshitha Bomireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Baozhu Guo
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- *Correspondence: Manish K. Pandey,
| |
Collapse
|
45
|
Wankhade AP, Chimote VP, Viswanatha KP, Yadaru S, Deshmukh DB, Gattu S, Sudini HK, Deshmukh MP, Shinde VS, Vemula AK, Pasupuleti J. Genome-wide association mapping for LLS resistance in a MAGIC population of groundnut (Arachis hypogaea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:43. [PMID: 36897383 DOI: 10.1007/s00122-023-04256-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The identified 30 functional nucleotide polymorphisms or genic SNP markers would offer essential information for marker-assisted breeding in groundnut. A genome-wide association study (GWAS) on component traits of LLS resistance in an eight-way multiparent advance generation intercross (MAGIC) population of groundnut in the field and in a light chamber (controlled conditions) was performed via an Affymetrix 48 K single-nucleotide polymorphism (SNP) 'Axiom Arachis' array. Multiparental populations with high-density genotyping enable the detection of novel alleles. In total, five quantitative trait loci (QTLs) with marker - log10(p value) scores ranging from 4.25 to 13.77 for the incubation period (IP) and six QTLs with marker - log10(p value) scores ranging from 4.33 to 10.79 for the latent period (LP) were identified across the A- and B-subgenomes. A total of 62 markers‒trait associations (MTAs) were identified across the A- and B-subgenomes. Markers for LLS scores and the area under the disease progression curve (AUDPC) recorded for plants in the light chamber and under field conditions presented - log10 (p value) scores ranging from 4.22 to 27.30. The highest number of MTAs (six) was identified on chromosomes A05, B07 and B09. Out of a total of 73 MTAs, 37 and 36 MTAs were detected in subgenomes A and B, respectively. Taken together, these results suggest that both subgenomes have equal potential genomic regions contributing to LLS resistance. A total of 30 functional nucleotide polymorphisms or genic SNP markers were detected, among which eight genes were found to encode leucine-rich repeat (LRR) receptor-like protein kinases and putative disease resistance proteins. These important SNPs can be used in breeding programmes for the development of cultivars with improved disease resistance.
Collapse
Affiliation(s)
- Ankush Purushottam Wankhade
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
- Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri, Maharashtra, 413 722, India
| | | | | | - Shasidhar Yadaru
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Dnyaneshwar Bandu Deshmukh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Swathi Gattu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | | | | | - Anil Kumar Vemula
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India
| | - Janila Pasupuleti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502 324, India.
| |
Collapse
|
46
|
Wang S, Xu Z, Yang Y, Ren W, Fang J, Wan L. Genome-wide analysis of R2R3-MYB genes in cultivated peanut ( Arachis hypogaea L.): Gene duplications, functional conservation, and diversification. FRONTIERS IN PLANT SCIENCE 2023; 14:1102174. [PMID: 36866371 PMCID: PMC9971814 DOI: 10.3389/fpls.2023.1102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The cultivated Peanut (Arachis hypogaea L.), an important oilseed and edible legume, are widely grown worldwide. The R2R3-MYB transcription factor, one of the largest gene families in plants, is involved in various plant developmental processes and responds to multiple stresses. In this study we identified 196 typical R2R3-MYB genes in the genome of cultivated peanut. Comparative phylogenetic analysis with Arabidopsis divided them into 48 subgroups. The motif composition and gene structure independently supported the subgroup delineation. Collinearity analysis indicated polyploidization, tandem, and segmental duplication were the main driver of the R2R3-MYB gene amplification in peanut. Homologous gene pairs between the two subgroups showed tissue specific biased expression. In addition, a total of 90 R2R3-MYB genes showed significant differential expression levels in response to waterlogging stress. Furthermore, we identified an SNP located in the third exon region of AdMYB03-18 (AhMYB033) by association analysis, and the three haplotypes of the SNP were significantly correlated with total branch number (TBN), pod length (PL) and root-shoot ratio (RS ratio), respectively, revealing the potential function of AdMYB03-18 (AhMYB033) in improving peanut yield. Together, these studies provide evidence for functional diversity in the R2R3-MYB genes and will contribute to understanding the function of R2R3-MYB genes in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | - Liyun Wan
- *Correspondence: Jiahai Fang, ; Liyun Wan,
| |
Collapse
|
47
|
Newman CS, Andres RJ, Youngblood RC, Campbell JD, Simpson SA, Cannon SB, Scheffler BE, Oakley AT, Hulse-Kemp AM, Dunne JC. Initiation of genomics-assisted breeding in Virginia-type peanuts through the generation of a de novo reference genome and informative markers. FRONTIERS IN PLANT SCIENCE 2023; 13:1073542. [PMID: 36777543 PMCID: PMC9911918 DOI: 10.3389/fpls.2022.1073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Virginia-type peanut, Arachis hypogaea subsp. hypogaea, is the second largest market class of peanut cultivated in the United States. It is mainly used for large-seeded, in-shell products. Historically, Virginia-type peanut cultivars were developed through long-term recurrent phenotypic selection and wild species introgression projects. Contemporary genomic technologies represent a unique opportunity to revolutionize the traditional breeding pipeline. While there are genomic tools available for wild and cultivated peanuts, none are tailored specifically to applied Virginia-type cultivar development programs. Methods and respective results Here, the first Virginia-type peanut reference genome, "Bailey II", was assembled. It has improved contiguity and reduced instances of manual curation in chromosome arms. Whole-genome sequencing and marker discovery was conducted on 66 peanut lines which resulted in 1.15 million markers. The high marker resolution achieved allowed 34 unique wild species introgression blocks to be cataloged in the A. hypogaea genome, some of which are known to confer resistance to one or more pathogens. To enable marker-assisted selection of the blocks, 111 PCR Allele Competitive Extension assays were designed. Forty thousand high quality markers were selected from the full set that are suitable for mid-density genotyping for genomic selection. Genomic data from representative advanced Virginia-type peanut lines suggests this is an appropriate base population for genomic selection. Discussion The findings and tools produced in this research will allow for rapid genetic gain in the Virginia-type peanut population. Genomics-assisted breeding will allow swift response to changing biotic and abiotic threats, and ultimately the development of superior cultivars for public use and consumption.
Collapse
Affiliation(s)
- Cassondra S. Newman
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ryan J. Andres
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ramey C. Youngblood
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Jacqueline D. Campbell
- United States Department of Agriculture–Agricultural Research Service (USDA–ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Sheron A. Simpson
- United States Department of Agriculture–Agricultural Research Service Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Steven B. Cannon
- United States Department of Agriculture–Agricultural Research Service (USDA–ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Brian E. Scheffler
- United States Department of Agriculture–Agricultural Research Service Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Andrew T. Oakley
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Amanda M. Hulse-Kemp
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
- United States Department of Agriculture–Agricultural Research Service Genomics and Bioinformatics Research Unit, Raleigh, NC, United States
| | - Jeffrey C. Dunne
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
48
|
Chen M, Li M, Zhao L, Song H. Deciphering evolutionary dynamics of WRKY genes in Arachis species. BMC Genomics 2023; 24:48. [PMID: 36707767 PMCID: PMC9881300 DOI: 10.1186/s12864-023-09149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their number and evolutionary patterns across various Arachis spp. remain unclear. RESULTS WRKY TFs were identified and compared across different Arachis species, including A. duranensis, A. ipaensis, A. monticola, A. hypogaea cultivars (cv.) Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The results showed that the WRKY TFs underwent dynamic equilibrium between diploid and tetraploid peanut species, characterized by the loss of old WRKY TFs and retention of the new ones. Notably, cultivated peanuts inherited more conserved WRKY orthologs from wild tetraploid peanuts than their wild diploid donors. Analysis of the W-box elements and protein-protein interactions revealed that different domestication processes affected WRKY evolution across cultivated peanut varieties. WRKY TFs of A. hypogaea cv. Fuhuasheng and Shitouqi exhibited a similar domestication process, while those of cv. Tifrunner of the same species underwent a different domestication process based on protein-protein interaction analysis. CONCLUSIONS This study provides new insights into the evolution of WRKY TFs in Arachis spp.
Collapse
Affiliation(s)
- Mingwei Chen
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Meiran Li
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Longgang Zhao
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
49
|
Liu Y, Huang Y, Li Z, Feng M, Ge W, Zhong C, Xue R. Genome-wide identification of the TGA genes in common bean ( Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection. Front Genet 2023; 14:1137634. [PMID: 36755571 PMCID: PMC9901207 DOI: 10.3389/fgene.2023.1137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt.
Collapse
Affiliation(s)
- Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| | - Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China,Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Shenyang, China,*Correspondence: Chao Zhong, ; Renfeng Xue,
| |
Collapse
|
50
|
Tan Z, Li J, Guan J, Wang C, Zhang Z, Shi G. Genome-Wide Identification and Expression Analysis Reveals Roles of the NRAMP Gene Family in Iron/Cadmium Interactions in Peanut. Int J Mol Sci 2023; 24:ijms24021713. [PMID: 36675227 PMCID: PMC9866697 DOI: 10.3390/ijms24021713] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The natural resistance-associated macrophage protein (NRAMP) family plays crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. To understand the roles of AhNRAMP genes in iron/cadmium interactions in peanut, genome-wide identification and bioinformatics analysis was performed. A total of 15 AhNRAMP genes were identified from the peanut genome, including seven gene pairs derived from whole-genome duplication and a segmental duplicated gene. AhNRAMP proteins were divided into two distinct subfamilies. Subfamily I contains eight acid proteins with a specific conserved motif 7, which were predicted to localize in the vacuole membrane, while subfamily II includes seven basic proteins sharing specific conserved motif 10, which were localized to the plasma membrane. Subfamily I genes contained four exons, while subfamily II had 13 exons. AhNRAMP proteins are perfectly modeled on the 5m94.1.A template, suggesting a role in metal transport. Most AhNRAMP genes are preferentially expressed in roots, stamens, or developing seeds. In roots, the expression of most AhNRAMPs is induced by iron deficiency and positively correlated with cadmium accumulation, indicating crucial roles in iron/cadmium interactions. The findings provide essential information to understand the functions of AhNRAMPs in the iron/cadmium interactions in peanuts.
Collapse
|