1
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
2
|
Li M, Pan C, Zhang Z, Wang J, Wang S, Li W, Zhou T, Wang X, Liu Z, Hu Z, Sun R, Li D. Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39731607 DOI: 10.1021/acs.jafc.4c10038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere. Analysis of 2 h─28 d pesticide residue dynamics revealed that coumarin dramatically reduced IMI concentration in pepper fruits. Coumarin upregulated the phenylpropane pathway genes, which increased the levels of flavonoids, phenolic acids, phytohormones, and capsaicinoids. Importantly, phyllosphere and rhizosphere microbial diversity results showed that coumarin improved the abundance of beneficial microorganisms and positively correlated with secondary metabolite secretion. Therefore, coumarin exploited the interaction between the phenylpropane and coumarin synthesis pathways and beneficial microbes to enhance the nutritional quality and IMI degradation.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhijia Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Jialing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Wenzhuo Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Tianbing Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Xiaoyi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ziyi Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| |
Collapse
|
3
|
Morcillo RJL, Leal-López J, Férez-Gómez A, López-Serrano L, Baroja-Fernández E, Gámez-Arcas S, Tortosa G, López LE, Estevez JM, Doblas VG, Frías-España L, García-Pedrajas MD, Sarmiento-Villamil J, Pozueta-Romero J. RAPID ALKALINIZATION FACTOR 22 is a key modulator of the root hair growth responses to fungal ethylene emissions in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2890-2904. [PMID: 39283986 DOI: 10.1093/plphys/kiae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 12/14/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana (L.) Heynh), exposure to volatile compounds (VCs) emitted by Penicillium aurantiogriseum promotes root hair (RH) proliferation and hyper-elongation through mechanisms involving ethylene, auxin, and photosynthesis signaling. In addition, this treatment enhances the levels of the small signaling peptide RAPID ALKALINIZATION FACTOR 22 (RALF22). Here, we used genetics to address the role of RALF22 in fungal VC-promoted RH growth and to identify the bioactive fungal VC. We found that RHs of ralf22 and feronia (fer-4) plants impaired in the expression of RALF22 and its receptor FERONIA, respectively, responded weakly to fungal VCs. Unlike in wild-type roots, fungal VC exposure did not enhance RALF22 transcript levels in roots of fer-4 and ethylene- and auxin-insensitive mutants. In ralf22 and fer-4 roots, this treatment did not enhance the levels of ERS2 transcripts encoding one member of the ethylene receptor family and those of some RH-related genes. RHs of ers2-1 and the rsl2rsl4 double mutants impaired in the expression of ERS2 and the ethylene- and auxin-responsive ROOT HAIR DEFECTIVE 6-LIKE 2 and 4 transcription factors, respectively, weakly responded to fungal VCs. Moreover, roots of plants defective in photosynthetic responsiveness to VCs exhibited weak RALF22 expression and RH growth responses to fungal VCs. VCs of ΔefeA strains of P. aurantiogriseum cultures impaired in ethylene synthesis weakly promoted RH proliferation and elongation in exposed plants. We conclude that RALF22 simultaneously functions as a transcriptionally regulated signaling molecule that participates in the ethylene, auxin, and photosynthesis signaling-mediated RH growth response to fungal ethylene emissions and regulation of ethylene perception in RHs.
Collapse
Affiliation(s)
- Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Alberto Férez-Gómez
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Lidia López-Serrano
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Germán Tortosa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda, 1, 18008 Granada, Spain
| | - Leonel E López
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Verónica G Doblas
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Laura Frías-España
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - María Dolores García-Pedrajas
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Jorge Sarmiento-Villamil
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM), CSIC-UMA, Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
4
|
Ji W, Osbourn A, Liu Z. Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230359. [PMID: 39343032 PMCID: PMC11439499 DOI: 10.1098/rstb.2023.0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Wenjuan Ji
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, UK
| | - Zhenhua Liu
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
5
|
Zhou X, Zhang J, Shi J, Khashi U Rahman M, Liu H, Wei Z, Wu F, Dini-Andreote F. Volatile-mediated interspecific plant interaction promotes root colonization by beneficial bacteria via induced shifts in root exudation. MICROBIOME 2024; 12:207. [PMID: 39428455 PMCID: PMC11492557 DOI: 10.1186/s40168-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment. RESULTS First, we showed that VOCs emitted by potato-onion plants stimulate the growth of adjacent tomato plants. Then, we demonstrated that this positive effect on tomato biomass was attributed to shifts in the tomato rhizosphere microbiota. Specifically, we found potato-onion VOCs to indirectly affect the recruitment of specific bacteria (e.g., Pseudomonas and Bacillus spp.) in the tomato rhizosphere. Second, we identified and validated the compound dipropyl disulfide as the active molecule within the blend of potato-onion VOCs mediating this interspecific plant communication. Third, we showed that the effect on the tomato rhizosphere microbiota occurs via induced changes in root exudates of tomato plants caused by exposure to dipropyl disulfide. Last, Pseudomonas and Bacillus spp. bacteria enriched in the tomato rhizosphere were shown to have plant growth-promoting activities. CONCLUSIONS Potato-onion VOCs-specifically dipropyl disulfide-can induce shifts in the root exudate of adjacent tomato plants, which results in the recruitment of plant-beneficial bacteria in the rhizosphere. Taken together, this study elucidated a new mechanism of interspecific plant interaction mediated by VOCs resulting in alterations in the rhizosphere microbiota with beneficial outcomes for plant performance. Video Abstract.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Jibo Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Muhammad Khashi U Rahman
- Department of Microbiology and Genetics and Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Wang F, Jia M, Li K, Cui Y, An L, Sheng H. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome. Microbiol Res 2024; 287:127852. [PMID: 39084119 DOI: 10.1016/j.micres.2024.127852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Drought significantly affects crop productivity and poses a considerable threat to agricultural ecosystems. Plant growth-promoting bacteria (PGPB) and plant microbiome play important roles in improving drought resistance and plant performance. However, the response of the rhizosphere microbiota to PGPB during the development of plants and the interaction between inoculum, microbiota, and plants under drought stress remain to be explored. In the present study, we used culturomic, microbiomic, and metabonomic analyses to uncover the mechanisms by which Sphingomonas sp. Hbc-6, a PGPB, promotes Arabidopsis growth and enhances drought resistance. We found that the rhizosphere microbiome assembly was interactively influenced by developmental stage, Hbc-6, and drought; the bacterial composition exhibited three patterns of shifts with developmental stage: resilience, increase, and decrease. Drought diminished microbial diversity and richness, whereas Hbc-6 increased microbial diversity and helped plants recruit specific beneficial bacterial taxa at each developmental stage, particularly during the bolting stage. Some microorganisms enriched by Hbc-6 had the potential to promote carbon and nitrogen cycling processes, and 86.79 % of the isolated strains exhibited PGP characteristics (for example Pseudomonas sp. TA9). They jointly regulated plant physiological metabolism (i.e., upregulated drought resistant-facilitating substances and reduced harmful substances), thereby stimulating the growth of Arabidopsis and increasing plant biomass under drought stress conditions. Collectively, these results indicate that Hbc-6 mediates plant growth and drought resistance by affecting the microbiome. The study thus provides novel insights and strain resources for drought-resistant, high-yielding crop cultivation and breeding.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; The College of Forestry, Beijing Forestry University, Beijing, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Jiang P, Wang Y, Zhang Y, Fei J, Rong X, Peng J, Yin L, Luo G. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. THE NEW PHYTOLOGIST 2024; 243:1506-1521. [PMID: 38874414 DOI: 10.1111/nph.19906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields and resource utilization. However, the precise mechanisms through which the interactions between rhizosphere metabolites and the microbiome contribute to plant production remain ambiguous, thus impeding the understanding of the yield-enhancing advantages of intercropping. This study conducted field experiments (initiated in 2013) and pot experiments, coupled with multi-omics analysis, to investigate plant-metabolite-microbiome interactions in the rhizosphere of maize. Field-based data revealed significant differences in metabolite and microbiome profiles between the rhizosphere soils of maize monoculture and intercropping. In particular, intercropping soils exhibited higher microbial diversity and metabolite chemodiversity. The chemodiversity and composition of rhizosphere metabolites were significantly related to the diversity, community composition, and network complexity of soil microbiomes, and this relationship further impacted plant nutrient uptake. Pot-based findings demonstrated that the exogenous application of a metabolic mixture comprising key components enriched by intercropping (soyasapogenol B, 6-hydroxynicotinic acid, lycorine, shikimic acid, and phosphocreatine) significantly enhanced root activity, nutrient content, and biomass of maize in natural soil, but not in sterilized soil. Overall, this study emphasized the significance of rhizosphere metabolite-microbe interactions in enhancing yields in intercropping systems. It can provide new insights into rhizosphere controls within intensive agroecosystems, aiming to enhance crop production and ecosystem services.
Collapse
Affiliation(s)
- Pan Jiang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yizhe Wang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Xiangmin Rong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Lichu Yin
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| |
Collapse
|
8
|
Li Y, Zhang K, Chen J, Zhang L, Feng F, Cheng J, Ma L, Li M, Wang Y, Jiang W, Yu X. Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12542-12553. [PMID: 38967661 DOI: 10.1021/acs.est.4c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although exogenous chemicals frequently exhibit a biphasic response in regulating plant growth, characterized by low-dose stimulation and high-dose inhibition, the underlying mechanisms remain elusive. This study demonstrates, for the first time, the compensatory function of rhizosphere microbiota in assisting plants to withstand pesticide stress. It was observed that pak choi plants, in response to foliar-spraying imidacloprid at both low and high doses, could increase the total number of rhizosphere bacteria and enrich numerous beneficial bacteria. These bacteria have capabilities for promoting plant growth and degrading the pesticide, such as Nocardioides, Brevundimonas, and Sphingomonas. The beneficial bacterial communities were recruited by stressed plants through increasing the release of primary metabolites in root exudates, such as amino acids, fatty acids, and lysophosphatidylcholines. At low doses of pesticide application, the microbial compensatory effect overcame pesticide stress, leading to plant growth promotion. However, with high doses of pesticide application, the microbial compensatory effect was insufficient to counteract pesticide stress, resulting in plant growth inhibition. These findings pave the way for designing improved pesticide application strategies and contribute to a better understanding of how rhizosphere microbiota can be used as an eco-friendly approach to mitigate chemical-induced stress in crops.
Collapse
Affiliation(s)
- Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Kaiwei Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Leigang Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Fayun Feng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Liya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Mei Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, 288 Farm Lane, Room 243, East Lansing, Michigan 48824, United States
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, 50 Kaifang Avenue, Yancheng 224000, China
| |
Collapse
|
9
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
10
|
Jain A, Sarsaiya S, Singh R, Gong Q, Wu Q, Shi J. Omics approaches in understanding the benefits of plant-microbe interactions. Front Microbiol 2024; 15:1391059. [PMID: 38860224 PMCID: PMC11163067 DOI: 10.3389/fmicb.2024.1391059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Plant-microbe interactions are pivotal for ecosystem dynamics and sustainable agriculture, and are influenced by various factors, such as host characteristics, environmental conditions, and human activities. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revolutionized our understanding of these interactions. Genomics elucidates key genes, transcriptomics reveals gene expression dynamics, proteomics identifies essential proteins, and metabolomics profiles small molecules, thereby offering a holistic perspective. This review synthesizes diverse microbial-plant interactions, showcasing the application of omics in understanding mechanisms, such as nitrogen fixation, systemic resistance induction, mycorrhizal association, and pathogen-host interactions. Despite the challenges of data integration and ethical considerations, omics approaches promise advancements in precision intervention and resilient agricultural practices. Future research should address data integration challenges, enhance omics technology resolution, explore epigenomics, and understand plant-microbe dynamics under diverse conditions. In conclusion, omics technologies hold immense promise for optimizing agricultural strategies and fortifying resilient plant-microbe alliances, paving the way for sustainable agriculture and environmental stewardship.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Ranjan Singh
- Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Das J, Ghosh S, Tyagi K, Sahoo D, Jha G. Methionine biosynthetic genes and methionine sulfoxide reductase A are required for Rhizoctonia solani AG1-IA to cause sheath blight disease in rice. Microb Biotechnol 2024; 17:e14441. [PMID: 38568774 PMCID: PMC10990046 DOI: 10.1111/1751-7915.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.
Collapse
Affiliation(s)
- Joyati Das
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
- Department of BiosciencesDurham UniversityDurhamUK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Debashis Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| |
Collapse
|
12
|
Yang J, Chen R, Wang C, Li C, Ye W, Zhang Z, Wang S. A widely targeted metabolite modificomics strategy for modified metabolites identification in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:810-823. [PMID: 38375781 DOI: 10.1111/jipb.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
The structural and functional diversity of plant metabolites is largely created via chemical modification of a basic backbone. However, metabolite modifications in plants have still not been thoroughly investigated by metabolomics approaches. In this study, a widely targeted metabolite modificomics (WTMM) strategy was developed based on ultra-high performance liquid chromatography-quadrupole-linear ion trap (UHPLC-Q-Trap) and UHPLC-Q-Exactive-Orbitrap (UHPLC-QE-Orbitrap), which greatly improved the detection sensitivity and the efficiency of identification of modified metabolites. A metabolite modificomics study was carried out using tomato as a model, and over 34,000 signals with MS2 information were obtained from approximately 232 neutral loss transitions. Unbiased metabolite profiling was also performed by utilizing high-resolution mass spectrometry data to annotate a total of 2,118 metabolites with 125 modification types; of these, 165 modified metabolites were identified in this study. Next, the WTMM database was used to assess diseased tomato tissues and 29 biomarkers were analyzed. In summary, the WTMM strategy is not only capable of large-scale detection and quantitative analysis of plant-modified metabolites in plants, but also can be used for plant biomarker development.
Collapse
Affiliation(s)
- Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Ridong Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Weizhen Ye
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| |
Collapse
|
13
|
Nicolle C, Gayrard D, Noël A, Hortala M, Amiel A, Grat S, Le Ru A, Marti G, Pernodet JL, Lautru S, Dumas B, Rey T. Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization. THE ISME JOURNAL 2024; 18:wrae112. [PMID: 38896026 PMCID: PMC11463028 DOI: 10.1093/ismejo/wrae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.
Collapse
Affiliation(s)
- Clément Nicolle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Alba Noël
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marion Hortala
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Sabine Grat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélie Le Ru
- Plateforme d’Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane 31320, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| |
Collapse
|
14
|
Kumar GA, Kumar S, Bhardwaj R, Swapnil P, Meena M, Seth CS, Yadav A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. FRONTIERS IN PLANT SCIENCE 2024; 14:1297706. [PMID: 38250451 PMCID: PMC10796613 DOI: 10.3389/fpls.2023.1297706] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
The rhizosphere consists of a plethora of microbes, interacting with each other as well as with the plants present in proximity. The root exudates consist of a variety of secondary metabolites such as strigolactones and other phenolic compounds such as coumarin that helps in facilitating communication and forming associations with beneficial microbes in the rhizosphere. Among different secondary metabolites flavonoids (natural polyphenolic compounds) continuously increasing attention in scientific fields for showing several slews of biological activities. Flavonoids possess a benzo-γ-pyrone skeleton and several classes of flavonoids have been reported on the basis of their basic structure such as flavanones, flavonols, anthocyanins, etc. The mutualistic association between plant growth-promoting rhizobacteria (PGPR) and plants have been reported to help the host plants in surviving various biotic and abiotic stresses such as low nitrogen and phosphorus, drought and salinity stress, pathogen attack, and herbivory. This review sheds light upon one such component of root exudate known as flavonoids, which is well known for nodulation in legume plants. Apart from the well-known role in inducing nodulation in legumes, this group of compounds has anti-microbial and antifungal properties helping in establishing defensive mechanisms and playing a major role in forming mycorrhizal associations for the enhanced acquisition of nutrients such as iron and phosphorus. Further, this review highlights the role of flavonoids in plants for recruiting non-mutualistic microbes under stress and other important aspects regarding recent findings on the functions of this secondary metabolite in guiding the plant-microbe interaction and how organic matter affects its functionality in soil.
Collapse
Affiliation(s)
- Gokul Anil Kumar
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Rupesh Bhardwaj
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Prashant Swapnil
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | | | - Ankush Yadav
- School of Basic Science, Department of Botany, Central University of Punjab, Bhatinda, Punjab, India
| |
Collapse
|
15
|
Basak AK, Piasecka A, Hucklenbroich J, Türksoy GM, Guan R, Zhang P, Getzke F, Garrido-Oter R, Hacquard S, Strzałka K, Bednarek P, Yamada K, Nakano RT. ER body-resident myrosinases and tryptophan specialized metabolism modulate root microbiota assembly. THE NEW PHYTOLOGIST 2024; 241:329-342. [PMID: 37771245 DOI: 10.1111/nph.19289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.
Collapse
Affiliation(s)
- Arpan Kumar Basak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jana Hucklenbroich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Gözde Merve Türksoy
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Rui Guan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Pengfan Zhang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Stephane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Krakow, 30-387, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
16
|
Wippel K. Plant and microbial features governing an endophytic lifestyle. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102483. [PMID: 37939457 DOI: 10.1016/j.pbi.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Beneficial microorganisms colonizing internal plant tissues, the endophytes, support their host through plant growth promotion, pathogen protection, and abiotic stress alleviation. Their efficient application in agriculture requires the understanding of the molecular mechanisms and environmental conditions that facilitate in planta accommodation. Accumulating evidence reveals that commensal microorganisms employ similar colonization strategies as their pathogenic counterparts. Fine-tuning of immune response, motility, and metabolic crosstalk accounts for their differentiation. For a holistic perspective, in planta experiments with microbial collections and comprehensive genome data exploration are crucial. This review describes the most recent findings on factors involved in endophytic colonization processes, focusing on bacteria and fungi, and discusses required methodological approaches to unravel their relevance within a community context.
Collapse
Affiliation(s)
- Kathrin Wippel
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Wu M, Northen TR, Ding Y. Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1272363. [PMID: 38023861 PMCID: PMC10663375 DOI: 10.3389/fpls.2023.1272363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Plants produce a diverse range of specialized metabolites that play pivotal roles in mediating environmental interactions and stress adaptation. These unique chemical compounds also hold significant agricultural, medicinal, and industrial values. Despite the expanding knowledge of their functions in plant stress interactions, understanding the intricate biosynthetic pathways of these natural products remains challenging due to gene and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with broad substrate specificity. In the past decade, substantial progress in genomics, transcriptomics, metabolomics, and proteomics has made the exploration of plant specialized metabolism more feasible than ever before. Notably, recent advances in integrative multi-omics and computational approaches, along with other technologies, are accelerating the discovery of plant specialized metabolism. In this review, we present a summary of the recent progress in the discovery of plant stress-related specialized metabolites. Emphasis is placed on the application of advanced omics-based approaches and other techniques in studying plant stress-related specialized metabolism. Additionally, we discuss the high-throughput methods for gene functional characterization. These advances hold great promise for harnessing the potential of specialized metabolites to enhance plant stress resilience in the future.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Trent R. Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yezhang Ding
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|