1
|
Esazadeh K, Ezzati Nazhad Dolatabadi J, Andishmand H, Mohammadzadeh‐Aghdash H, Mahmoudpour M, Naemi Kermanshahi M, Roosta Y. Cytotoxic and genotoxic effects of tert-butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Sci Nutr 2024; 12:7004-7016. [PMID: 39479655 PMCID: PMC11521724 DOI: 10.1002/fsn3.4373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Synthetic food antioxidants such as tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and propyl gallate (PG) have been extensively utilized in different food industries because of their high protectant activities to stop food spoilage and remove foodborne diseases in humans and animals. It would be emphasized that increasing the intake of antioxidants through intracellular may lead to cyto/genotoxicity, and their complex formation with biological molecules eventually accelerate the progress of various diseases like multiple sclerosis, diabetes, neurological disorders, cardiac vascular disease, cancer, etc. Therefore, their toxicity is one of the challenging subjects due to their extensive use in food-related industries. TBHQ, BHA, and PG antioxidants have cytotoxic, genotoxic, and carcinogenic effects if absorbed in high doses through the gastrointestinal tract. Thermodynamic parameters presented that the hydrophobic bind plays a key role in the complexation of the TBHQ, BHA, and PG with albumin. The molecular modeling results showed that subdomain IIA plays a vital role in the interaction of TBHQ and BHA with albumin. To comprehend the mechanisms of the cyto/genotoxicity effects of these food antioxidants and conformational alterations of albumin macromolecule, we aim to overview numerous types of research that evaluated the cyto/genotoxicity effects of these antioxidants using several procedures.
Collapse
Affiliation(s)
- Karim Esazadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | | | - Mansour Mahmoudpour
- Food and Beverages Safety Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Mohammad Naemi Kermanshahi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Yousef Roosta
- Department of Internal Medicne, School of Medicine, Solid Tumor Research CenterImam Khomeini Hospital, Urmia University of Medical SciencesUrmiaIran
| |
Collapse
|
2
|
Milanović Ž, Antonijević M, Avdović E, Simić V, Milošević M, Dolićanin Z, Kojić M, Marković Z. In silico evaluation of pharmacokinetic parameters, delivery, distribution and anticoagulative effects of new 4,7-dihydroxycoumarin derivative. J Biomol Struct Dyn 2024; 42:8343-8358. [PMID: 37545173 DOI: 10.1080/07391102.2023.2245071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In this study, pharmacological profiling and investigation of the anticoagulant activity of the newly synthesized coumarin derivative: (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (L) were performed. The obtained results were compared with the parameters obtained for Warfarin (WF), which is a standard good oral anticoagulant. The estimated high binding affinity of L toward plasma proteins (PPS% value is > 90%) justifies the investigation of binding affinity and comparative analysis of L and WF to Human Serum Albumin (HSA) using the spectrofluorimetric method (296, 303 and 310 K) as well as molecular docking and molecular dynamics simulations. Compound L shows a very good binding affinity especially to the active site of WF (the active site I -subdomain IIA), quenching HSA fluorescence by a static process. Also, the finite element smeared model (Kojic Transport Model, KTM), which includes blood vessels and tissue, was implemented to compute the convective-diffusion transport of L and WF within the liver. Finally, compound L shows a high degree of inhibitory activity toward the VKOR receptor comparable to the inhibitory activity of WF. Stabilization and limited flexibility of amino acid residues in the active site of the VKOR after binding of L and WF indicates a very good inhibitory potential of compound L. The high affinity of the L for the VKOR enzyme (Vitamin K antagonist), as well as the structural similarity to commercial anticoagulants (WF), provide a basis for further studies and potential application in the treatment of venous thrombosis, pulmonary embolism and ischemic heart disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Žiko Milanović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marko Antonijević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Edina Avdović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Simić
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miljan Milošević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia
| | - Zana Dolićanin
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| | - Miloš Kojić
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
- Houston Methodist Research Institute, Houston, TX, USA
| | - Zoran Marković
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| |
Collapse
|
3
|
Prakash A, Marwah M, Mehta D, Chaudhuri TK, Ojha H, Agrawala PK. Biophysical studies of the binding of histone deacetylase inhibitor (Trichostatin-A) with bovine serum albumin. J Biomol Struct Dyn 2024; 42:7897-7905. [PMID: 37578048 DOI: 10.1080/07391102.2023.2246071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Trichostatin A (TSA), a potential radiomitigator in pre-clinical models, inhibits the class I and II mammalian histone deacetylase (HDAC) enzyme family preferentially. In the current study, the ADME assessment of TSA was explored in terms of its binding affinity for serum protein via spectroscopic and molecular docking techniques. Fluorescence spectroscopy was used to examine changes in the protein microenvironment, and affinity was quantified in terms of binding constant and stoichiometry. Post binding conformational changes were observed using circular dichroism (CD) and UV-Visible spectroscopy. Specific binding was visualized using molecular docking to support experimental studies. UV-vis spectra demonstrated a blue shift in the interaction of TSA to BSA. The calculated binding constants ranged from 3.10 to 0.78 x 10 5(M-1) and quenching constants from 2.75 to 2.15 x 104 (l mol-1), indicating TSA has a strong binding affinity for BSA. Based on the FRET theory, the distance between BSA (donor) and TSA (acceptor) was calculated to be 2.83 nm. The Stern-Volmer plot revealed (Ksv) static quenching. Thermodynamic parameters were calculated, and a negative ΔG value showed that the interaction is spontaneous. The CD spectra analysis further revealed a change in the protein's secondary structure, indicating TSA-BSA interaction. The molecular docking studies also indicated strong binding affinity of TSA with BSA. The results indicate that good bio-availability of TSA is possible because of the spontaneous and strong binding affinity with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Prakash
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Mansi Marwah
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Paban K Agrawala
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| |
Collapse
|
4
|
Babayan-Mashhadi F, Rezvani-Noghani A, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. Exploring the binding behavior mechanism of vitamin B 12 to α-Casein and β-Casein: multi-spectroscopy and molecular dynamic approaches. J Biomol Struct Dyn 2024; 42:5995-6012. [PMID: 37403294 DOI: 10.1080/07391102.2023.2230295] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
The aim of this study was to investigate the behavior interaction of α-Casein-B12 and β-Casein-B12 complexes as binary systems through the methods of multiple spectroscopic, zeta potential, calorimetric, and molecular dynamics (MD) simulation. Fluorescence spectroscopy denoted the role ofB12as a quencher in both cases of α-Casein and β-Casein fluorescence intensities, which also verifies the existence of interactions. The quenching constants of α-Casein-B12 and β-Casein-B12 complexes at 298 K in the first set of binding sites were 2.89 × 104 and 4.41 × 104 M-1, while the constants of second set of binding sites were 8.56 × 104 and 1.58 × 105 M-1, respectively. The data of synchronized fluorescence spectroscopy at Δλ = 60 nm were indicative of the closer location of β-Casein-B12 complex to the Tyr residues. Additionally, the binding distance between B12 and the Trp residues of α-Casein and β-Casein were obtained in accordance to the Förster's theory of nonradioactive energy transfer to be 1.95 nm and 1.85 nm, respectively. Relatively, the RLS results demonstrated the production of larger particles in both systems, while the outcomes of zeta potential confirmed the formation of α-Casein-B12 and β-Casein-B12 complexes and approved the existence of electrostatic interactions. We also evaluated the thermodynamic parameters by considering the fluorescence data at three varying temperatures. According to the nonlinear Stern-Volmer plots of α-Casein and β-Casein in the presence of B12 in binary systems, the two sets of binding sites indicated the detection of two types of interaction behaviors. Time-resolved fluorescence results revealed that the fluorescence quenching of complexes are static mechanism. Furthermore, the outcomes of circular dichroism (CD) represented the occurrence of conformational changes in α-Casein and β-Casein upon their binding to B12 as the binary system. The experimental results that were obtained throughout the binding of α-Casein-B12 and β-Casein-B12 complexes were confirmed by molecular modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Tan R, Tang Q, Xia B, Fu C, Wang L. Organic acid treatments on citrus insoluble dietary fibers and the corresponding effects on starch in vitro digestion. Int J Biol Macromol 2024:134082. [PMID: 39084968 DOI: 10.1016/j.ijbiomac.2024.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Three environmentally friendly organic acids, acetic acid, citric acid and oxalic acid, were used to treat citrus insoluble dietary fiber (CIDF) in present study, aiming to explore the changes in structural properties as well as their inhibitory effects on starch digestion. The results showed that organic acid treatment significantly reduced the particle size of all three CIDFs, with rougher and folded surfaces, improved crystallinity and thermal stability. During in vitro digestion, it was found that organic acid treatment could increase the particle size and viscosity of digestion, and also effectively enhance the inhibitory ability of α-glucosidase activity, resulting in a further blockage of starch digestion. The starch digestion in oxalic acid-treated group (with 3 wt% addition) was significantly reduced by 18.72 % compared to blank group and 9.05 % compared to untreated. These findings provide evidence of the potential of organic acid-treated insoluble dietary fiber as a functional food.
Collapse
Affiliation(s)
- Ruilin Tan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qingmiao Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Xia
- Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China
| | - Caixia Fu
- HuBei TuLaoHan Ecological Agriculture Technology Co., Ltd., Yichang, Hubei 443000, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Shuai M, Li Y, Guan F, Fu G, Sun C, Ren Q, Wang L, Zhang T. Breaking barriers: How modified citrus pectin inhibits galectin-8. Food Funct 2024; 15:4887-4893. [PMID: 38597504 DOI: 10.1039/d4fo00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by β-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.
Collapse
Affiliation(s)
- Ming Shuai
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guixia Fu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Qianqian Ren
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Li Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
7
|
Vesović M, Jelić R, Nikolić M, Nedeljković N, Živanović A, Bukonjić A, Mrkalić E, Radić G, Ratković Z, Kljun J, Tomović D. Investigation of the interaction between S-isoalkyl derivatives of the thiosalicylic acid and human serum albumin. J Biomol Struct Dyn 2024:1-14. [PMID: 38192057 DOI: 10.1080/07391102.2024.2301745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
S-isoalkyl derivatives of thiosalicylic acid (isopropyl-(L1), isobutyl-(L2) and isoamyl-(L3)) were selected in order to investigate the binding interaction with the human serum albumin (HSA) using different spectroscopic methods and molecular docking simulation. Association constants and number of binding sites were used to analyze the quenching mechanism. The experimental results showed that the fluorescence quenching of HSA by L1, L2 and L3 occurs because of static quenching and that binding processes were spontaneous, with the leading forces in bonding by hydrogen bonding, hydrophobic interactions, and electrostatic interactions. Fluorescence spectroscopy, UV-Vis spectroscopy and synchronous fluorescence spectroscopy showed that ligands (L1, L2 and L3) can bind to HSA and that the binding of ligands induced some microenvironmental and conformational changes in HSA. The calculated distance between the donor and the acceptor according to fiFörster's theory confirms the energy transfer efficiency between the acceptor and HSA. Results of site marker competitive experiments showed that the tested compounds bind to HSA in domain IIA (Site I). Molecular dynamics and docking calculations demonstrated that L3 binds to the Sudlow site I of HSA with lower values of binding energies compared to L1 and L2, indicating the formation of the most stable ligand-HSA complex. Understanding the binding mechanisms of S-isoalkyl derivatives of the thiosalicylic acid to HSA may provide valuable data for the future studies of their biological activity and application as potential antitumor drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marina Vesović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Ratomir Jelić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Miloš Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Nikola Nedeljković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Ana Živanović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Andriana Bukonjić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Emina Mrkalić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, Kragujevac, Serbia
| | - Gordana Radić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| | - Zoran Ratković
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, Kragujevac, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
| | - Dušan Tomović
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac, Serbia
| |
Collapse
|
8
|
Azeem K, Ahmed M, Uddin A, Singh S, Patel R, Abid M. Comparative investigation on interaction between potent antimalarials and human serum albumin using multispectroscopic and computational approaches. LUMINESCENCE 2023; 38:2018-2033. [PMID: 37654050 DOI: 10.1002/bio.4590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study performed a comparative investigation to explore the interaction mechanisms between two potential antimalarial compounds, JMI 346 and JMI 105, and human serum albumin (HSA), a vital carrier protein responsible for maintaining important biological functions. Our aim was to assess the pharmacological efficiency of these compounds while comprehensively analyzing their impact on the dynamic behavior and overall stability of the protein. A comprehensive array of multispectroscopic techniques, including UV-Vis. spectroscopy, steady-state fluorescence analysis, synchronous fluorescence spectroscopy, three-dimensional fluorescence and circular dichroism spectroscopy, docking studies, and molecular dynamics simulations, were performed to probe the intricate details of the interaction between the compounds and HSA. Our results revealed that both JMI 346 and JMI 105 exhibited promising pharmacological effectiveness within the context of malaria therapy. However, JMI 346 was found to exhibit a significantly higher affinity and only minor altered impact on HSA, suggesting a more favorable interaction with the protein on the dynamic behavior and overall stability of the protein in comparison to JMI 105. Further studies can build on these results to optimize the drug-protein interaction and enable the development of more potent and targeted antimalarial treatments.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Gokavi NM, Nandibewoor ST, Gowda JI. Investigations of the Interaction Mechanism Between Orphenadrine Hydrochloride and Bovine Serum Albumin by Spectroscopic and Voltammetric Techniques. J Fluoresc 2023; 33:2061-2073. [PMID: 36976401 DOI: 10.1007/s10895-023-03199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The interaction of orphenadrine hydrochloride (ORD) with the model protein, bovine serum albumin (BSA), was investigated using a variety of spectroscopic techniques such as steady-state fluorescence, ultraviolet-visible, Fourier transform infrared, 3-D spectroscopy, and electrochemical methods under physiological conditions. Stern-Volmer plots were used to calculate fluorescence quenching at various temperatures. The findings point to a static quenching mechanism between ORD and BSA. At various reaction times, the binding sites (n) and binding constants (K) of ORD to BSA were recorded. Thermodynamic parameters ∆H0, ∆S0 and ∆G0 between ORD and BSA were calculated and reported. The average binding distance (r) between the donor (BSA) and acceptor (ORD) molecules was predicted using Förster's theory. Three-dimensional fluorescence spectra, Fourier transform infrared spectra, and synchronous fluorescence studies all supported the alternations in protein structure following the interaction with ORD. A displacement study using site probes such as warfarin, ibuprofen, and digitoxin confirmed ORD binding at Sudlow's site I of BSA. The effect of common metal ions such as Cu2+, Ni2+, Ca2+, Co2+, and Zn2+ on binding constant values was investigated and reported.
Collapse
Affiliation(s)
- Naveen M Gokavi
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka, 580003, India
- Department of Chemistry, Karnatak Science College, Dharwad, Karnataka, 580001, India
| | - Sharanappa T Nandibewoor
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Jayant I Gowda
- Department of Chemistry, BLDEA's Commerce, BHS Arts and TGP Science College, Jamkhandi, Karnataka, 587301, India.
| |
Collapse
|
10
|
Zhang W, Zhu H, Rong L, Chen Y, Yu Q, Shen M, Xie J. Purple red rice bran anthocyanins reduce the digestibility of rice starch by forming V-type inclusion complexes. Food Res Int 2023; 166:112578. [PMID: 36914341 DOI: 10.1016/j.foodres.2023.112578] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Purple red rice bran, a by-product of the rice polishing process, contained abundant anthocyanins. However, most of them were discarded resulting in a waste of resources. This study investigated the effects of purple red rice bran anthocyanin extracts (PRRBAE) on the physicochemical properties and digestive properties of rice starch and its mechanism of action. Infrared spectroscopy and X-ray diffraction indicated that PRRBAE could interact with rice starch through non-covalent bonds to form intrahelical V-type complexes. The DPPH and ABTS+ assays showed that PRRBAE could confer better antioxidant activity on rice starch. In addition, the PRRBAE could increase the resistant starch content and decrease the enzyme activities by changing the tertiary and secondary structure of starch-digesting enzymes. Further, molecular docking suggested that aromatic amino acids play a key role in the interaction of starch-digesting enzymes with PRRBAE. These findings will contribute to a better understanding of the mechanism of PRRBAE reducing starch digestibility, and to the development of high value-added products and low glycemic index (GI) foods.
Collapse
Affiliation(s)
- Weidong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Haibin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Qashqoosh MTA, Alahdal FAM, Manea YK, Zubair S, Khan RH, Khan AM, Naqvi S. Binding ability of roxatidine acetate and roxatidine acetate supported chitosan nanoparticles towards bovine serum albumin: characterization, spectroscopic and molecular docking studies. J Biomol Struct Dyn 2023; 41:106-124. [PMID: 34821213 DOI: 10.1080/07391102.2021.2004234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen T A Qashqoosh
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Faiza A M Alahdal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, Hodeidah University, Al Hudaydah, Yemen
| | - Yahiya Kadaf Manea
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Swaleha Zubair
- Department of Computer science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amjad Mumtaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
12
|
Behjati Hosseini S, Asadzadeh-Lotfabad M, Erfani M, Babayan-Mashhadi F, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives. J Biomol Struct Dyn 2022; 40:11154-11172. [PMID: 34328379 DOI: 10.1080/07391102.2021.1957713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, we investigated the simultaneous binding of curcumin (CUR) to human serum albumin (HSA) and human-holo transferrin (HTF) in the roles of binary and ternary systems. The binding affinity and binding site of protein-protein interaction were studied by the methods of multiple spectroscopic and molecular dynamics (MD) simulation. According to the results, the measurements for binding constant of HSA-CUR, HTF-CUR and (HSA-HTF) CUR complexes were observed to be 1.51 × 105, 7.93 × 104 and 1.44 × 105 M-1 respectively. Thermodynamic parameters were considered to be set at three varying temperatures including 298, 303, and 308 K. In conformity to the negative values of ΔH0 and ΔS0 the significant roles of hydrogen binding and van der-Waals forces in the formation of complexes are quiet evident. The binding distance between Trp residues of HSA, HTF and HSA-HTF upon interaction with CUR, were acquired by applying the Förster's theory of non-radioactive energy transfer and reported to be 2.04 nm, 1.78 nm, and 1.86 nm, respectively. In accordance with the conductometry and Resonance light scattering (RLS) results, there were different interaction behaviors among the HSA-HTF complex and CUR in ternary system when being compared to the outcomes of binary system. The secondary structure of all three cases increased as the CUR concentration was intensified, which confirmed the inducement of proteins conformational changes through the application of circular dichroism (CD) technique. The experimental results that were acquired throughout the binding of HSA-CUR, HTF-CUR, and (HSA-HTF) CUR complexes were approved by molecular modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soroush Behjati Hosseini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Erfani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Babayan-Mashhadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
13
|
Analysis of the interaction between chitosan with different molecular weights and casein based on optical interferometry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Mihajlović K, Joksimović N, Radisavljević S, Petronijević J, Filipović I, Janković N, Milović E, Popović S, Matić S, Baskić D. Examination of antitumor potential of some acylpyruvates, interaction with DNA and binding properties with transport protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels 2022; 8:648. [PMID: 36286148 PMCID: PMC9602414 DOI: 10.3390/gels8100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteochondral structure reconstruction by tissue engineering, a challenge in regenerative medicine, requires a scaffold that ensures both articular cartilage and subchondral bone remodeling. Functional hydrogels and scaffolds present a strategy for the controlled delivery of signaling molecules (growth factors and therapeutic drugs) and are considered a promising therapeutic approach. Icariin is a pharmacologically-active small molecule of prenylated flavonol glycoside and the main bioactive flavonoid isolated from Epimedium spp. The in vitro and in vivo testing of icariin showed chondrogenic and ostseoinductive effects, comparable to bone morphogenetic proteins, and suggested its use as an alternative to growth factors, representing a low-cost, promising approach for osteochondral regeneration. This paper reviews the complex structure of the osteochondral tissue, underlining the main aspects of osteochondral defects and those specifically occurring in osteoarthritis. The significance of icariin's structure and the extraction methods were emphasized. Studies revealing the valuable chondrogenic and osteogenic effects of icariin for osteochondral restoration were also reviewed. The review highlighted th recent state-of-the-art related to hydrogels and scaffolds enriched with icariin developed as biocompatible materials for osteochondral regeneration strategies.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
17
|
Çelik C, Üstün E, Şahin N, Tutar U. Antimicrobial and Antibiofilm Activity, and Bovine Serum Albumin Binding Properties of Benzimidazolium Type NHC Salts and Their Ag(I)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cem Çelik
- Faculty of Medicine, Department of Medical Microbiology Cumhuriyet University Sivas Turkey
| | - Elvan Üstün
- Faculty of Art and Science, Department of Chemistry Ordu University Ordu Turkey
| | - Neslihan Şahin
- Faculty of Education, Department of Science Education Cumhuriyet University Sivas Turkey
| | - Uğur Tutar
- Faculty of Pharmacy, Department of Botanica Cumhuriyet University Sivas Turkey
| |
Collapse
|
18
|
Feng R, Zhu L, Teng F, Wang M, Chen S, Song Z, Li H. Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surf B Biointerfaces 2022; 216:112559. [PMID: 35576880 DOI: 10.1016/j.colsurfb.2022.112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule which selectively recognizes sialic acid (SA) overexpressed in tumors. In the study, PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) by one-step reaction to form amphiphilic polymer for doxorubicin encapsulation. Two drug-carrying micelles with different mass ratio of polymer to drug were prepared by dialysis method to study effect of PBA on doxorubicin release, tumor-targeting and antitumor activity. The study results showed that doxorubicin release from the formulations was acid-sensitive and affected by the polymer dosage, and its acid-induced release behavior improved its insertion into DNA base pairs. Formulation with high polymer dosage showed better tumor targeting and antitumor activity, and activity of inhibiting HepG2 with higher content of SA-containing glycosphingolipids was higher than that of anti-B16. In vivo studies on the activity of B16-bearing mice showed that the doxorubicin-loaded micelles could inhibit the tumor growth and were safer than free doxorubicin. Thus, the PBA-modified nano-polymer micelles have potential biomedical applications due to their nanostructure and tumor-targeting ability.
Collapse
Affiliation(s)
- Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Fangfang Teng
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Min Wang
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
19
|
Deciphering the mechanism of interaction of an ester-functionalized cationic gemini surfactant with bovine serum albumin: A biophysical and molecular modeling study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Naz F, Khan I, Islam A, Khan LA. Interaction of fungal lipase with potential phytotherapeutics. PLoS One 2022; 17:e0264460. [PMID: 35617167 PMCID: PMC9135303 DOI: 10.1371/journal.pone.0264460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Interaction of thymol, carvacrol and linalool with fungal lipase and Human Serum Albumin (HSA) have been investigated employing UV-Vis spectroscopy Fluorescence and Circular dichroism spectroscopy (CD) along with docking studies. Thymol, carvacrol and linalool displayed approximately 50% inhibition at 1.5 mmol/litre concentrations using para-nitrophenyl palmitate (pNPP). UV-Vis spectroscopy give evidence of the formation of lipase-linalool, lipase-carvacrol and lipase—thymol complex at the ground state. Three molecules also showed complex formation with HSA at the ground state. Fluorescence spectroscopy shows strong binding of lipase to thymol (Ka of 2.6 x 109 M-1) as compared to carvacrol (4.66 x 107 M-1) and linalool (5.3 x 103 M-1). Number of binding sites showing stoichiometry of association process on lipase is found to be 2.52 (thymol) compared to 2.04 (carvacrol) and 1.12 (linalool). Secondary structure analysis by CD spectroscopy results, following 24 hours incubation at 25°C, with thymol, carvacrol and linalool revealed decrease in negative ellipticity for lipase indicating loss in helical structure as compared with the native protein. The lowering in negative ellipticity was in the order of thymol > carvacrol > linalool. Fluorescence spectra following binding of all three molecules with HSA caused blue shift which suggests the compaction of the HSA structure. Association constant of thymol and HSA is 9.6 x 108 M-1 which along with ‘n’ value of 2.41 suggests strong association and stable complex formation, association constant for carvacrol and linalool was in range of 107 and 103 respectively. Docking results give further insight into strong binding of thymol, carvacrol and linalool with lipase having free energy of binding as -7.1 kcal/mol, -5.0 kcal/mol and -5.2 kcal/mol respectively. To conclude, fungal lipases can be attractive target for controlling their growth and pathogenicity. Employing UV-Vis, Fluorescence and Circular dichroism spectroscopy we have shown that thymol, carvacrol and linalool strongly bind and disrupt structure of fungal lipase, these three phytochemicals also bind well with HSA. Based on disruption of lipase structure and its binding nature with HSA, we concluded thymol as a best anti-lipase molecule among three molecules tested. Results of Fluorescence and CD spectroscopy taken together suggests that thymol and carvacrol are profound disrupter of lipase structure.
Collapse
Affiliation(s)
- Farheen Naz
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Imran Khan
- Department of Computer Science, Deanship of Educational Services, Qassim University, Buraidah, Al Qassim, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Huang M, Huang X, Yong L, Jia D, Miao W, Liu H, Yi Z. Insight on the microscopic binding mechanism of bisphenol compounds (BPs) with transthyretin (TTR) based on multi-spectroscopic methods and computational simulations. Anal Bioanal Chem 2022; 414:3765-3780. [PMID: 35394160 DOI: 10.1007/s00216-022-04028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system. In this study, three typical bisphenol compounds were selected to explore the interaction between BPs and TTR by computer simulations and multi-spectroscopic methods. The results revealed that BPs quenched the endogenous fluorescence of TTR via the combination of static quenching and non-radiative energy transfer, and the van der Waals forces and hydrogen bonding played a synergistic role in the binding process of BPs and TTR. Furthermore, the three-dimensional fluorescence spectroscopy, UV-vis spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, which were employed to determine the conformation of protein, revealed that binding of BPs with TTR could induce conformational changes in TTR. In addition, the binding sites and the residues surrounding the BPs within the TTR were determined through molecular docking and molecular dynamics simulation. Therefore, this work provides new insights into the interaction between BPs and TTR to evaluate the potential toxicity of BPs.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Li Yong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
22
|
Insights from alpha-Lactoalbumin and beta-Lactoglobulin into mechanisms of nanoliposome-whey protein interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Synthesis, characterization and investigating the binding mechanism of novel coumarin derivatives with human serum albumin: Spectroscopic and computational approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Huang X, Huang M, Yong L, Jia D, Miao W, Yi Z, Liu H. Study on Spectral Method and Computational Simulation of Chlorinated Bisphenol Compound and Thyroxine‐Binding Globulin. ChemistrySelect 2022. [DOI: 10.1002/slct.202104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomei Huang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Muwei Huang
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Li Yong
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Dan Jia
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Wangli Miao
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Hongyan Liu
- College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
25
|
Photoactive homomolecular bis(n)-Lophine dyads: Multicomponent synthesis, photophysical properties, theoretical investigation, docking and interaction studies with biomacromolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Sovrlić M, Mrkalić E, Jelić R, Ćendić Serafinović M, Stojanović S, Prodanović N, Tomović J. Effect of Caffeine and Flavonoids on the Binding of Tigecycline to Human Serum Albumin: A Spectroscopic Study and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:266. [PMID: 35337065 PMCID: PMC8951011 DOI: 10.3390/ph15030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Human serum albumin (HSA) has a very significant role in the transport of drugs, in their pharmacokinetic and pharmacodynamic properties, as well as the unbound concentration of drugs in circulating plasma. The aim of this study was to look into the competition between tigecycline (TGC) and alkaloid (ALK) (caffeine (CAF)), and flavonoids (FLAVs) (catechin (CAT), quercetin (QUE), and diosmin (DIO)) in binding to HSA in simulated physiological conditions using multiple spectroscopic measurements and docking simulations. Fluorescence analysis was used to find the binding and quenching properties of double HSA-TGC and triple HSA-TGC-CAF/FLAV systems. The conformational change of the HSA was analyzed using synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy, and circular dichroism. Obtained results of spectroscopic analyses indicate that triple complexes of HSA-TGC-CAF/FLAVs are formed without problems and have higher binding affinities than double HSA-TGC. In addition, TGC does not change the microenvironments around the tryptophan (Trp) and tyrosine (Tyr) residues in the presence of ALK and FLAVs. Ultimately, the binding affinity, competition, and interaction nature were explored by docking modeling. Computational outcomes are in good accordance with experimentally obtained results. Accordingly, concluding remarks may be very useful for potential interactions between common food components and drugs.
Collapse
Affiliation(s)
- Miroslav Sovrlić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Emina Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Ratomir Jelić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Marina Ćendić Serafinović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Stefan Stojanović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Nevena Prodanović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| | - Jovica Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.S.); (R.J.); (S.S.); (N.P.); (J.T.)
| |
Collapse
|
27
|
Gao H, Liang H, Chen N, Shi B, Zeng W. Potential of phenolic compounds in
Ligustrum robustum
(Rxob.) Blume as antioxidant and lipase inhibitors: Multi‐spectroscopic methods and molecular docking. J Food Sci 2022; 87:651-663. [DOI: 10.1111/1750-3841.16020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023]
Affiliation(s)
- Hao‐Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
| | - Heng‐Yu Liang
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
| | - Nan Chen
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu People's Republic of China
| | - Bi Shi
- Department of Biomass and Leather Engineering Sichuan University Chengdu People's Republic of China
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu People's Republic of China
| |
Collapse
|
28
|
Singh I, Luxami V, Choudhury D, Paul K. Synthesis and photobiological applications of naphthalimide-benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition. RSC Adv 2021; 12:483-497. [PMID: 35424470 PMCID: PMC8694140 DOI: 10.1039/d1ra04148g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM. Compounds 12 and 13 substituted with ethanolamine and propargyl groups reveal potent cytotoxicity towards A549 cancer cells with IC50 values of 140 and 310 nM, respectively. These compounds are further evaluated as potent inhibitors of human type IIα topoisomerase. These conjugates also reveal strong interaction towards human serum albumin (HSA) with binding constant values of 1.75 × 105 M−1 and 1.88 × 105 M−1, respectively, and formation of the stable complex at ground state with static quenching. Docking studies also confirm the effective interactions between conjugates and topoisomerase. Conjugates of naphthalimide, benzothiazole, and indole moieties are synthesized that show excellent cytotoxicity against A549 (lung), MCF7 (breast), and HeLa (cervix) cancer cell lines with IC50 values in the range of 0.14–8.59 μM.![]()
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147001 India
| |
Collapse
|
29
|
Zheng Z, Huang Q, Kang Y, Liu Y, Luo W. Different molecular sizes and chain conformations of water-soluble yeast β-glucan fractions and their interactions with receptor Dectin-1. Carbohydr Polym 2021; 273:118568. [PMID: 34560979 DOI: 10.1016/j.carbpol.2021.118568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 02/09/2023]
Abstract
Although β-glucan could bind to Dectin-1 to exert bioactivity, the influence of molecular size and chain conformation of β-glucan on its interaction with Dectin-1 is still unclear. This work investigated the molecular sizes and chain conformations of five water-soluble yeast β-glucan (WYG1-5) fractions as well as their interactions with Dectin-1 by fluorescence spectroscopy and microscale thermophoresis. Results revealed a spherical conformation for higher molecular weight WYG and a stiff chain conformation for smaller molecular weight WYG. The WYG and Dectin-1 interactions were in the order of WYG-2 > WYG-1 > WYG-3 > WYG-4 > WYG-5. The spherical WYG-2 exhibited the largest binding constant of 7.91 × 105 M1 and the lowest dissociation constant of 22.1 nM to Dectin-1. Additionally, the underlying interaction mechanism showed that it may be easier for spherical WYG with longer side chains to interact with receptor Dectin-1.
Collapse
Affiliation(s)
- Zhaomin Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Cuisine and Nutrition, Hubei University of Economics, Wuhan 430205, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Wei Luo
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
30
|
Khan MS, Rehman MT, Ismael MA, AlAjmi MF, Alruwaished GI, Alokail MS, Khan MR. Bioflavonoid (Hesperidin) Restrains Protein Oxidation and Advanced Glycation End Product Formation by Targeting AGEs and Glycolytic Enzymes. Cell Biochem Biophys 2021; 79:833-844. [PMID: 34110566 DOI: 10.1007/s12013-021-00997-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Alpha-amylase (α-amylase) not long ago has acquire recognition as a possible drug target for the management of diabetes. Here, we have investigated the binding and enzyme activity of α-amylase by hesperidin; a naturally occurring flavanone having wide therapeutic potential. Hesperidin exerted an inhibitory influence on α-amylase activity with an IC50 value of 16.6 µM. Hesperidin shows a significant binding toward α-amylase with a binding constant (Ka) of the order of 104 M-1. The evaluation of thermodynamic parameters (∆H and ∆S) suggested that van der Waals force and hydrogen bonding drive seemingly specific hesperidin-α-amylase complex formation. Glycation and oxidation studies were performed using human serum albumin (HSA) as ideal protein. Hesperidin inhibited fructosamine content ≈40% at 50 µM and inhibited advanced glycation end products (AGEs) formation by 71.2% at the same concentration. Moreover, significant recovery was evident in free -SH groups and carbonyl content of HSA. Additionally, molecular docking also entrenched in vitro observations and provided an insight into the important residues (Trp58, Gln63, His101, Glu233, Asp300, and His305) at the heart of hesperidin-α-amylase interaction. This study delineates mechanistic insight of hesperidin-α-amylase interaction and provides a platform for use of hesperidin to treat AGEs directed diseases.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ismael
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghaida I Alruwaished
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Cosmetic Department, National Drug and Cosmetic Control Laboratory, Saudi Food and Drug Authority (SFDA), Riyadh, 11561, Saudi Arabia
| | - Majed S Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Yanti S, Wu ZW, Agrawal DC, Chien WJ. Interaction between phloretin and insulin: a spectroscopic study. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractDiabetes is among the top ten deadly diseases in the world. It occurs either when the pancreas does not produce enough insulin (INS) or when the body cannot effectively use the insulin it produces. Phloretin (PHL) has a biological effect that can treat diabetes. A spectroscopic study was carried out to explore the interaction between phloretin and insulin. UV/Vis spectroscopy, fluorescence spectroscopy, and circular dichroism spectropolarimeter were used in the study. UV/Vis spectra showed that the interaction between PHL and INS produced strong absorption at a wavelength of 282 nm. The fluorescence analysis results showed that the excitation and emission occurred at 280-nm and 305-nm wavelengths, respectively. Temperature changes did not affect INS emissions. However, the interaction of PHL–INS caused a redshift at 305 to 317 nm. Temperature affected the binding constant (Ka) and the binding site (n). Ka decreased with increasing temperature and increased the binding site. The thermodynamic parameters such as enthalpy (ΔH0) and entropy (ΔS0) each had a value of − 16,514 kJ/mol and 22.65 J/mol·K. PHL and INS interaction formed hydrogen bonds and hydrophobic interaction. The free energy (ΔG0) recorded was negative. PHL and INS interactions took place spontaneously. The quenching effect was dynamic and static. KD values were greater than KS. The higher the temperature, the less was KD and KS. The appearance of two negative signals on circular dichroism (CD) spectropolarimeter implies that phloretin could induce regional configuration changes in insulin. The addition of PHL has revealed that the proportion of α-helix in the insulin stabilizes its structure. Phloretin’s stabilization and enhancement of the α-helix structural configuration in insulin indicate that phloretin can improve insulin resistance.
Collapse
|
32
|
Kumar P, Mondal I, Kulshreshtha R, Patra AK. Development of novel ruthenium(II)-arene complexes displaying potent anticancer effects in glioblastoma cells. Dalton Trans 2021; 49:13294-13310. [PMID: 32936191 DOI: 10.1039/d0dt02167a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glioblastomas (GBs) are highly aggressive and malignant brain tumors, which are highly resistant to conventional multimodal treatments, leading to their abysmal prognosis. Herein, we designed two organometallic half-sandwich Ru(ii)-η6-p-cymene complexes containing Schiff bases derived from 3-aminoquinoline and 2-hydroxy-benzaldehyde (L1) and 2-hydroxy-naphthaldehyde (L2), namely [Ru(η6-p-cymene)(L1)Cl] (1) and [Ru(η6-p-cymene)(L2)Cl] (2), respectively, and studied their activity on GB cells. Both complexes were structurally characterized using single-crystal X-ray diffraction, which exhibited their half-sandwich three-legged piano-stool geometry. Furthermore, we studied their physicochemical behavior, solution speciation, aquation kinetics, and photo-substitution reactions using various spectroscopic methods. The complexes exhibited a moderate binding affinity with calf-thymus (CT)-DNA (Kb ∼ 105 M-1). The complexes effectively interacted with human serum albumin (HSA) (K ∼ 105 M-1) with preferential tryptophan binding, as determined via synchronous fluorescence studies. The in vitro studies showed their significant antiproliferative activity against an aggressive human GB cell line, LN-229 (IC50 = 22.8 μM), with moderate selectivity relative to normal mouse fibroblast L929 cells. Notably, [Ru(η6-p-cymene)(L1)Cl] (1) exhibited a higher selectivity index (S.I.) than [Ru(η6-p-cymene)(L2)Cl] (2) and cisplatin. We evaluated the clonogenic potential of the GB cells using a colony formation assay in the presence of complex 1. Excitingly, it showed ∼75% inhibition of the clonogenic potential of GB cells at the IC50 concentration. Complex 1 also effectively lowered the migratory potential of the GB cells, as assessed by the wound healing assay. The studied compound led to the apoptosis of GB cells, as evidenced by nuclear condensation, blebbing, and enhanced caspase 3/7 activity, and thus has anticipated utility in the treatment of GBs using photochemotherapy.
Collapse
Affiliation(s)
- Priyaranjan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | | | | | | |
Collapse
|
33
|
Kirtani DU, Ghatpande NS, Suryavanshi KR, Kulkarni PP, Kumbhar AA. Fluorescent Copper(II) Complexes of Asymmetric Bis(Thiosemicarbazone)s: Electrochemistry, Cellular Uptake and Antiproliferative Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deepti U. Kirtani
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Niraj S. Ghatpande
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Komal R. Suryavanshi
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Prasad P. Kulkarni
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| |
Collapse
|
34
|
Pavani P, Kumar K, Rani A, Venkatesu P, Lee MJ. The influence of sodium phosphate buffer on the stability of various proteins: Insights into protein-buffer interactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Kaushal D, Lal H, Ansari SS, Naqvi S. Effect of local anesthetic drug procaine hydrochloride on the conformational stability of bovine hemoglobin: Multi-spectroscopic and computational approaches. J Biomol Struct Dyn 2021; 40:8938-8948. [PMID: 33970817 DOI: 10.1080/07391102.2021.1920465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between bovine hemoglobin (BHb) and local anesthetic drug procaine hydrochloride (PCH) was examined by spectroscopic and computational studies. Intrinsic fluorescence analysis explored the ground-state complex formation in the binding of PCH with BHb through static quenching mechanism. The binding constants (Kb) are 29.38 × 103, 22.54 × 103 and 17.99 × 103 M-1 at 288, 298 and 308 K, respectively, and the ratio of BHb:PCH was 1:1 in the interaction mechanism of PCH and BHb. The acquired thermodynamic parameters (ΔH0, ΔG0 and ΔS0) demonstrated that interaction mechanism is spontaneous and enthalpy driven. The van der Waals forces and hydrogen bonding have been played a predominant role in the binding mechanism. The UV-vis spectroscopy validates the ground-state complexation between PCH and BHb and the binding constant (Kb) has been evaluated utilizing Benesi-Hildebrand equation. Fluorescence resonance energy transfer (FRET) results have demonstrated that the distance between donor (BHb) and acceptor (PCH) is very short (2.34 nm) suggesting a significant probability to energy transfer from BHb to PCH. Synchronous fluorescence results revealed that the alteration in the micro-environment of Tyrosine (Tyr) is more than tryptophan (Trp) residues suggesting that PCH molecule is close to Tyr residue. The secondary structure alterations were confirmed by CD, 3-D fluorescence and FT-IR spectroscopic measurements. Moreover, computational analyses further corroborated that PCH molecules are closer to Tyr residues as compared to Trp residues of BHb during the interaction process. The BHb-PCH complexes may contribute to a deeper understanding of the metabolism of drug, blood circulation process and may help to illustrate the relationship between functions and structure of BHb.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Kaushal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hira Lal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
36
|
Du H, Hu RW, Zhao HM, Huang HB, Xiang L, Liu BL, Feng NX, Li H, Li YW, Cai QY, Mo CH. Mechanistic insight into esterase-catalyzed hydrolysis of phthalate esters (PAEs) based on integrated multi-spectroscopic analyses and docking simulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124901. [PMID: 33360702 DOI: 10.1016/j.jhazmat.2020.124901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A novel PAE-hydrolyzing esterase (named Hyd) gene was screened from the genomic library of Rhodococcus sp. 2G and was successfully expressed in heterologous E. coli, which was defined as a new family of esterolytic enzymes. The purified Hyd could efficiently degrade various PAEs, displaying high activity and stability with a broad range of pH (4-10) and temperature (20-60 °C). Interaction mechanism of Hyd with dibutyl phthalate (DBP) was investigated by integrated multi-spectroscopic and docking simulation methods. Fluorescence and UV-vis spectra revealed that DBP could quench the fluorescence of Hyd through a static quenching mechanism. The results from synchronous fluorescence and CD spectra confirmed that the DBP binding to Hyd triggered conformational and micro-environmental changes of Hyd, which were characterized by increased stretching extent and random coil, and decreased α-helix and β-sheet. Molecular docking study showed that DBP could be bound to the cavity of Hyd with hydrogen bonding and hydrophobic interaction. A novel and distinctive catalytic mechanism was proposed: two key residues Thr190 and Ser191 might catalyze the hydrolysis of DBP, instead of the conserved catalytic triad (Ser-His-Asp) reported elsewhere, which was confirmed by site-directed mutagenesis.
Collapse
Affiliation(s)
- Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Wen Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Pessu B, Tonukari NJ. Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase. Biophys Chem 2021; 269:106529. [PMID: 33360111 DOI: 10.1016/j.bpc.2020.106529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The present study investigated the antioxidant and invitro antidiabetic capacities of Justicia carnea aqueous leaf extract (JCAE) using α-amylase inhibition model. α-Amylase binding-interaction with JCAE was also investigated using fluorescence spectroscopy and molecular docking. Phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated presence of bioactive compounds. Phenolic (132 mg GAE/g) and flavonoid contents (31.08 mg CE/g) were high. JCAE exhibited high antioxidant capacity and effectively inhibited α-amylase activity (IC50, 671.43 ± 1.88 μg/mL), though lesser than acarbose effect (IC50, 108.91 ± 0.61 μg/mL). α-Amylase intrinsic fluorescence was quenched in the presence of JCAE. Ultraviolet-visible and FT-IR spectroscopies affirmed mild changes in α-amylase conformation. Synchronous fluorescence analysis indicated alterations in the microenvironments of tryptophan residues near α-amylase active site. Molecular docking affirmed non-polar interactions of compounds 6 and 7 in JCAE with Asp-197 and Trp-58 residues of α-amylase, respectively. Overall, JCAE indicated potential to prevent postprandial hyperglycemia by slowing down carbohydrate hydrolysis.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria; Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Oghenenyore A Ohwokevwo
- Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Choba, Rivers State, Nigeria
| | - Beruoritse Pessu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
38
|
Sadeghzadeh F, Entezari AA, Behzadian K, Habibi K, Amiri-Tehranizadeh Z, Asoodeh A, Saberi MR, Chamani J. Characterizing the Binding of Angiotensin Converting Enzyme I Inhibitory Peptide to Human Hemoglobin: Influence of Electromagnetic Fields. Protein Pept Lett 2020; 27:1007-1021. [DOI: 10.2174/1871530320666200425203636] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/28/2023]
Abstract
Background:
Drug-protein complexes is one of the crucial factors when analyzing the
pharmacokinetics and pharmacodynamics of a drug because they can affect the excretion, distribution,
metabolism and interaction with target tissues.
Objectives:
The aim of this study was to investigate the interaction of human hemoglobin (Hb) and
angiotensin I converting enzyme inhibitory peptide (ACEIP) in the absence and presence of different-
frequency electromagnetic fields (EMF).
Methods:
Various spectroscopic methods like fluorescence spectroscopy, ultraviolet, circular
dichroism and conductometry techniques were applied to investigate Hb-ACEIP interaction in the
absence and presence of EMF.
Result:
The presented spectroscopic studies indicated that EMF changed the interaction between
Hb and ACEIP. The a-helix content of Hb decreased upon binding to ACEIP and conductivity of
the solution enhanced upon binding. Based on Stern-Volmer equations, it could be stated that the
Hb-ACEIP affinity was higher in the presence of EMF.
Conclusion:
It can be concluded that for patients who use the drug to control blood pressure, a
low-frequency electromagnetic field would have a positive effect on the uptake of the drug.
Collapse
Affiliation(s)
- Farzaneh Sadeghzadeh
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amir Arsalan Entezari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kiana Behzadian
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kimia Habibi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
39
|
Wu F, Song XM, Qiu YL, Zheng HQ, Hu FL, Li HL. Unique dynamic mode between Artepillin C and human serum albumin implies the characteristics of Brazilian green propolis representative bioactive component. Sci Rep 2020; 10:17277. [PMID: 33057209 PMCID: PMC7560867 DOI: 10.1038/s41598-020-74197-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
As a representative bioactive component in Brazil green propolis, Artepillin C (ArtC; 3, 5-diprenyl-4-hydroxycinnamic acid) has been reported a wide variety of physiological activities including anti-tumor, anti-inflammatory, and antimicrobial activity etc. However, it seems incompatible that ArtC in vivo was characterized as low absorption efficiency and low bioavailability. In order to obtain the elucidation, we further investigated the physicochemical basis of ArtC interacting with human serum albumin (HSA) in vitro. We found a unique dynamic mode interaction between ArtC and HSA, which is completely different from other reported propolis bioactive components. Thermodynamic analysis showed that hydrophobic interactions and electrostatic forces are the main driving force. The competitive assay indicates that the binding site of ArtC with HSA is close to the Sudlow’s site I. The findings of this study reveal the unique physicochemical transport mechanism of ArtC in the human body, which helps to further understand the uniqueness of the representative functional components of Brazilian green propolis in the human body.
Collapse
Affiliation(s)
- Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xin-Mi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yi-Lei Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Huo-Qing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Liang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
40
|
Zhang H, Deng H, Wang Y. Comprehensive investigations about the binding interaction of acesulfame with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118410. [PMID: 32361316 DOI: 10.1016/j.saa.2020.118410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, the binding interaction of an artificial sweetener, acesulfame (ACS) with human serum albumin (HSA) are investigated at the molecular level by using spectral methods and molecular modeling. ACS has the ability to induce static quenching of the intrinsic fluorescence of HSA by a complex formed between HSA and ACS through weak multi-noncovalent forces including hydrophobic, hydrogen bond and van der Waals forces. ACS enters subdomain IIA of HSA to induce the tertiary structure changes of HSA and decreased the hydrophobicity of protein. In addition, ACS binding does not obviously alter the secondary structure of HSA. This study is hoped to provide some crucial information for further investigations of the biosafety of sweetener.
Collapse
Affiliation(s)
- Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hao Deng
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
41
|
Tanzadehpanah H, Bahmani A, Hosseinpour Moghadam N, Gholami H, Mahaki H, Farmany A, Saidijam M. Synthesis, anticancer activity, and β‐lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. LUMINESCENCE 2020; 36:117-128. [DOI: 10.1002/bio.3929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Asrin Bahmani
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | | | - Hamid Gholami
- Department of Biochemistry, School of Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Hanie Mahaki
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry Hamadan University of Medical Sciences Hamadan Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
42
|
Liu T, Liu M, Guo Q, Liu Y, Zhao Y, Wu Y, Sun B, Wang Q, Liu J, Han J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Singh I, Luxami V, Paul K. Spectroscopy and molecular docking approach for investigation on the binding of nocodazole to human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118289. [PMID: 32222625 DOI: 10.1016/j.saa.2020.118289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
The interaction between nocodazole (Nz) and human serum albumin (HSA) under controlled physiological condition (pH 7.4) is examined using absorption, emission, fluorescence lifetime (FLT) and circular dichroism (CD) spectroscopic techniques. The binding constant (order of 105 M-1) from UV-vis and fluorescence spectroscopy reveals a strong interaction between Nz and HSA. Fluorescence quenching study shows that Nz binds with HSA through static quenching process. It is induced by formation of Nz-HSA complex because the Stern-Volmer quenching constant is inversely correlated with the temperature which is further verified by time-resolved fluorescence spectroscopy. The thermodynamic parameters at different temperatures indicate that the binding process is spontaneous where hydrogen bonding interactions and Van der Waals forces play major roles during the interaction between Nz and HSA. By means of spectroscopy and molecular modeling, we have discovered and interpreted the alteration of the secondary structure of HSA by Nz complexation. Synchronous, three-dimensional fluorescence and CD spectroscopic results reveal that the addition of Nz to HSA affects changes in the micro-environment and conformation of HSA. According to Förster Resonance Energy Transfer (FRET), the binding distance (r) between Nz and residue of HSA is <8 nm with excellent energy efficiency. The docking study suggests that nocodazole binds at Domain IIA in the hydrophobic pocket of human serum albumin.
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| |
Collapse
|
44
|
Mokaberi P, Babayan-Mashhadi F, Amiri Tehrani Zadeh Z, Saberi MR, Chamani J. Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. J Biomol Struct Dyn 2020; 39:3358-3377. [DOI: 10.1080/07391102.2020.1766570] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Babayan-Mashhadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri Tehrani Zadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
45
|
Song C, Luo H, Lin X, Peng Z, Weng L, Tang X, Xu S, Song M, Jin L, Zheng X. Study on AgInZnS-Graphene Oxide Non-toxic Quantum Dots for Biomedical Sensing. Front Chem 2020; 8:331. [PMID: 32432079 PMCID: PMC7215081 DOI: 10.3389/fchem.2020.00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
In recent years, non-toxic quantum dot has caught the attention of biomedical fields. However, the inherent cytotoxicity of QDs makes its biomedical application painful, and is a major drawback of this method. In this paper, a non-toxic and water-soluble quantum dot AgInZnS-GO using graphene oxide was synthesized. A simple model of state complex was also established, which is produced through a combination of quantum dots and protein. The interaction between AIZS-GO QDs and human serum albumin (HSA) has significant meaning in vivo biological application. Herein, the binding of AIZS-GO QDs and HSA were researched using fluorescence spectra, Uv-visible absorption spectra, FT-IR spectra, and circular dichroism (CD) spectra. The results of fluorescence spectra demonstrate that AIZS-GO QDs have an obvious fluorescence quenching effect on HSA. The quenching mechanism is static quenching, which implies that some type of complex was produced by the binding of QDs and HSA. These results were further proved by Uv-visible absorption spectroscopy. The Stern-Volmer quenching constant Ksv at various temperatures (298 K, 303 K, 308 K) were acquired from analyzing Stern-Volmer plots of the fluorescence quenching information. The Van't Hoff equation could describe the thermodynamic parameters, which demonstrated that the van der Waals and hydrogen bonds had an essential effect on the interaction. FT-IR spectra and CD spectra further indicate that AIZS-GO QDs can alter the structure of HSA. These spectral methods show that the quantum dot can combine well with HSA. The experimental results showed that AgInZn-GO water-soluble quantum dots have good biocompatibility, which can be combined with proteins to form new compounds which have no cytotoxicity and biological practicability. It provides an important basis for the combination of quantum dots and specific proteins as well as fluorescent labeling.
Collapse
Affiliation(s)
- Chi Song
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, China
| | - Haoyue Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Zhijia Peng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lingdong Weng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Shibin Xu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Ming Song
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lifeng Jin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaodong Zheng
- Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
46
|
Wang BL, Kou SB, Lin ZY, Shi JH. Insight into the binding behavior of ceritinib on human α-1 acid glycoprotein: Multi-spectroscopic and molecular modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118160. [PMID: 32113179 DOI: 10.1016/j.saa.2020.118160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Ceritinib is a second-generation anaplastic lymphoma kinase (ALK) inhibitor for mainly treating non-small cell lung cancer (NSCLC). This investigation focused on to clarify in detail the binding behavior between human α-1 acid glycoprotein (HAG) and ceritinib by means of multi-spectroscopic and molecular modeling approaches. Fluorescence data obtained at four different temperatures indicated ceritinib quenched the endogenous fluorescence of HAG by a static quenching mechanism. Based on the Kb value at 105 M-1 level, it can be inferred that the binding affinity between both is strong. From findings of thermodynamic parameter analysis, the competitive experiments with ANS and sucrose as well as molecular dynamic (MD) simulation, it can be inferred that hydrophobicity, hydrogen bonding, van der Waals forces as well as electrostatic interactions exist in the binding interaction between ceritinib and HAG. The findings from UV absorption, circular dichroism, and synchronous fluorescence spectroscopy indicated that the change in the microenvironment around the protein structure, secondary structure and tryptophan residues occurred after interaction with ceritinib. The data from FRET analysis confirmed that the non-radiative energy transfer between the two existed and the binding distance between the acceptor (ceritinib) and donor (HAG) was 2.11 nm. Meantime, the influence of Ca2+, Cu2+, Ni2+, Co2+, and Zn2+ ions on the binding interaction of ceritinib with HAG were obvious, especially Zn2+ ion.
Collapse
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Bakar KA, Lam SD, Sidek HM, Feroz SR. Characterization of the interaction of diosgenin with human serum albumin and α1-acid glycoprotein using biophysical and bioinformatic tools. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Huang R, Zhang Y, Shen S, Zhi Z, Cheng H, Chen S, Ye X. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem 2020; 326:126785. [PMID: 32438224 DOI: 10.1016/j.foodchem.2020.126785] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
Obesity and oxidative damage are two important risk factors associated closely with metabolic syndrome. Utilization of functional food ingredients is considered as a feasible way to tackle these challenges. In the present study, eight representative species of citrus peel extracts (CPEs) were evaluated and compared for their flavonoid profiles, antioxidant activities, and pancreatic lipase (PL) inhibitory capacities and mechanisms. Results indicated that hesperidin, naringin, neohesperidin, narirutin and eriocitrin were the five major flavonoids in CPEs, among which hesperidin was the main active PL inhibitor. Moreover, hesperidin could interact with PL by hydrogen bonds and van der Waals forces, and the interaction would not obviously change the secondary structure of PL. Overall, ponkan peel extract, having the strongest overall antioxidant activity, the highest content of hesperidin and total phenolic compounds among all tested CPEs, is a promising natural ingredient to scavenge free radicals and manage obesity.
Collapse
Affiliation(s)
- Rui Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shuyu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zijian Zhi
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
49
|
Chen H, Li J, Yao R, Yan S, Wang Q. Mechanism of lipid metabolism regulation by soluble dietary fibre from micronized and non-micronized powders of lotus root nodes as revealed by their adsorption and activity inhibition of pancreatic lipase. Food Chem 2020; 305:125435. [DOI: 10.1016/j.foodchem.2019.125435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
50
|
Zhan F, Hu J, He C, Sun J, Li J, Li B. Complexation between sodium caseinate and gallic acid: Effects on foam properties and interfacial properties of foam. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|