1
|
Ali S, Aman A, Hengphasatporn K, Oopkaew L, Todee B, Fujiki R, Harada R, Shigeta Y, Krusong K, Choowongkomon K, Chavasiri W, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Evaluating solubility, stability, and inclusion complexation of oxyresveratrol with various β-cyclodextrin derivatives using advanced computational techniques and experimental validation. Comput Biol Chem 2024; 112:108111. [PMID: 38879954 DOI: 10.1016/j.compbiolchem.2024.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Oxyresveratrol (OXY), a natural stilbenoid in mulberry fruits, is known for its diverse pharmacological properties. However, its clinical use is hindered by low water solubility and limited bioavailability. In the present study, the inclusion complexes of OXY with β-cyclodextrin (βCD) and its three analogs, dimethyl-β-cyclodextrin (DMβCD), hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were investigated using in silico and in vitro studies. Molecular docking revealed two binding orientations of OXY, namely, 4',6'-dihydroxyphenyl (A-form) and 5,7-benzenediol ring (B-form). Molecular Dynamics simulations suggested the formation of inclusion complexes with βCDs through two distinct orientations, with OXY/SBEβCD exhibiting maximum atom contacts and the lowest solvent-exposed area in the hydrophobic cavity. These results corresponded well with the highest binding affinity observed in OXY/SBEβCD when assessed using the MM/GBSA method. Beyond traditional simulation methods, Ligand-binding Parallel Cascade Selection Molecular Dynamics method was employed to investigate how the drug enters and accommodates within the hydrophobic cavity. The in silico results aligned with stability constants: SBEβCD (2060 M-1), HPβCD (1860 M-1), DMβCD (1700 M-1), and βCD (1420 M-1). All complexes exhibited a 1:1 binding mode (AL type), with SBEβCD enhancing OXY solubility (25-fold). SEM micrographs, DSC thermograms, FT-IR and 1H NMR spectra confirm the inclusion complex formation, revealing novel surface morphologies, distinctive thermal behaviors, and new peaks. Notably, the inhibitory impact on the proliferation of breast cancer cell lines, MCF-7, exhibited by inclusion complexes particularly OXY/DMβCD, OXY/HPβCD, and OXY/SBEβCD were markedly superior compared to that of OXY alone.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Lipika Oopkaew
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyaporn Todee
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Lv J, Tan M, Zou J, Yun Y, Ren Y, Guo F, Wang G. Exploring the formation mechanism of ferulic acid/hydroxypropyl-β-cyclodextrin inclusion complex: spectral analyses and computer simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6584-6593. [PMID: 38521988 DOI: 10.1002/jsfa.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 03/24/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The biological functions of ferulic acid (FA) have garnered significant interest but its limited solubility and stability have led to low bioavailability. Hydroxypropyl-β-cyclodextrin (HP-β-CD), with its distinctive hollow structure, offers the potential for encapsulating hydrophobic molecules. The formation of an inclusion complex between FA and HP-β-CD may therefore be a viable approach to address the inherent limitations of FA. To investigate the underlying mechanism of the FA/HP-β-CD inclusion complex formation, a combination of spectral analyses and computer simulation was employed. RESULTS The disappearance of the characteristic peaks of FA in Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the formation of an inclusion complex between FA and HP-β-CD. Thermogravimetry-derivative thermogravimetry (TG-DTG) studies demonstrated that the thermal stability of FA was enhanced due to the encapsulation of FA within HP-β-CD. Molecular dynamics simulation also provided evidence that FA successfully penetrated the HP-β-CD cavity, primarily driven by van der Waals interactions. The formation of the complex resulted in more compact HP-β-CD structures. The bioavailability of FA was also strengthened through the formation of inclusion complexes with HP-β-CD. CONCLUSIONS The findings of this study have contributed to a deeper understanding of the interactions between FA and HP-β-CD, potentially advancing a delivery system for FA and enhancing the bioavailability of insoluble active components. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junli Lv
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Mengmeng Tan
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Jiali Zou
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Yueying Yun
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Yan Ren
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Fucheng Guo
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Guoze Wang
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, China
| |
Collapse
|
3
|
Maxwell A, Modi P, Sequeira K, Punja M, Lewis S. A Novel In Situ Gelling System of Quercetin/Sulfobutyl-Ether-β-Cyclodextrin Complex-Loaded Chitosan Nanoparticles for the Treatment of Vulvovaginitis. Assay Drug Dev Technol 2024; 22:308-324. [PMID: 39029498 DOI: 10.1089/adt.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Affiliation(s)
- Amala Maxwell
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prachi Modi
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Karishma Sequeira
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Masuma Punja
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
4
|
Elmoghayer ME, Saleh NM, Abu Hashim II. Enhanced oral delivery of hesperidin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for augmenting its hypoglycemic activity: in vitro-in vivo assessment study. Drug Deliv Transl Res 2024; 14:895-917. [PMID: 37843733 DOI: 10.1007/s13346-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Hesperidin (Hsd), a bioactive phytomedicine, experienced an antidiabetic activity versus both Type 1 and Type 2 Diabetes mellitus. However, its intrinsic poor solubility and bioavailability is a key challenging obstacle reflecting its oral delivery. From such perspective, the purpose of the current study was to prepare and evaluate Hsd-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles (Hsd/CD/CS NPs) for improving the hypoglycemic activity of the orally administered Hsd. Hsd was first complexed with sulfobutylether-β-cyclodextrin (SBE-β-CD) and the complex (CX) was found to be formed with percent complexation efficiency and percent process efficiency of 50.53 ± 1.46 and 84.52 ± 3.16%, respectively. Also, solid state characterization of the complex ensured the inclusion of Hsd inside the cavity of SBE-β-CD. Then, Hsd/CD/CS NPs were prepared using the ionic gelation technique. The prepared NPs were fully characterized to select the most promising one (F1) with a homogenous particle size of 455.7 ± 9.04 nm, a positive zeta potential of + 32.28 ± 1.12 mV, and an entrapment efficiency of 77.46 ± 0.39%. The optimal formula (F1) was subjected to further investigation of in vitro release, ex vivo intestinal permeation, stability, cytotoxicity, and in vivo hypoglycemic activity. The results of the release and permeation studies of F1 manifested a modulated pattern between Hsd and CX. The preferential stability of F1 was observed at 4 ± 1 °C. Also, the biocompatibility of F1 with oral epithelial cell line (OEC) was retained up to a concentration of 100 µg/mL. After oral administration of F1, a noteworthy synergistic hypoglycemic effect was recorded with decreased blood glucose level until the end of the experiment. In conclusion, Hsd/CD/CS NPs could be regarded as a hopeful oral delivery system of Hsd with enhanced antidiabetic activity.
Collapse
Affiliation(s)
- Mona Ebrahim Elmoghayer
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
5
|
Zheng W, Zhao Y, Zhang H, Zhang L, Zhang Z. Extending the Cycle Lifetime of Solid-State Zinc-Air Batteries by Arranging Stable Zinc Species Channels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8885-8894. [PMID: 38330505 DOI: 10.1021/acsami.3c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The solid-state zinc-air batteries have attracted extensive attention due to their high theoretical energy density, high safety, and the compact structure. In this work, a novel hydrogel solid-state electrolyte was developed that was equipped with an interpenetrating network of zinc polyacrylate (PAZn) and polyacrylamide (PAM). At the same time, a cyclodextrin derivative with sulfonate groups was introduced as an additive. From the design of anionic groups in the network, effective and stable channels for zinc species have been established. The unique structure of the additives regulates the uniform deposition of zinc. After using this solid-state electrolyte, the cycle lifetime of solid-state zinc-air batteries assembled have been significantly extended. The byproducts were greatly suppressed and generated the smooth zinc electrode surface after the charge-discharge cycling.
Collapse
Affiliation(s)
- Wei Zheng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Hui Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhongyi Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
6
|
Mahdi WA, Alanazi MM, Imam SS, Alshehri S, Hussain A, Altamimi MA, Alhudaithi SS. Formulation of multicomponent inclusion complex of cyclodextrin-amino acid with Chrysin: Physicochemical characterization, cell viability and apoptosis assessment in human primary glioblastoma cell line. Int J Pharm X 2023; 6:100211. [PMID: 37736236 PMCID: PMC10510083 DOI: 10.1016/j.ijpx.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Chrysin (CR) is a water-insoluble drug reported for different therapeutic effects. The microwave irradiation method was used in this study to create a multicomponent inclusion complex (CR-MC) containing CR (drug) and carrier hydroxyl propyl beta cyclodextrin (HP β CD) and L-arginine (LA). The prepared inclusion complex (CR-MC) was evaluated for dissolution study and results were compared with chrysin physical mixture (CR-PM). Further, the samples were assessed for infra-red (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and molecular docking. Finally, the cell viability, reactive oxygen species and flow cytometer studies were also assessed to check the potential of the prepared inclusion complex on the human primary glioblastoma cell line (U87-MG cell). The phase solubility findings revealed a stability constant (773 mol L-1) as well as a complexation efficiency of 0.027. The dissolution study displayed a significant increase in CR release from CR-MC (99.03 ± 0.39%) > CR-PM (70.58 ± 1.16%) > pure CR (35.29 ± 1.55%). NMR and IR spectral data revealed no interaction between CR and carriers. SEM and DSC study results revealed the conversion into amorphous form. The molecular docking results illustrated a high docking score, which supports the findings of complex formation. The cell viability, reactive oxygen species, and flow cytometry studies results showed enhanced activity from CR-MC against the tested human primary glioblastoma cell line. From the results it has been observed that chrysin solubility significantly increased after complexation and there in vitro activity also enhanced against cancer cell line.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman S. Alhudaithi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Naseri A, Taymouri S, Hosseini Sharifabadi A, Varshosaz J. Chrysin loaded bilosomes improve the hepatoprotective effects of chrysin against CCl4 induced hepatotoxicity in mice. J Biomater Appl 2023; 38:509-526. [PMID: 37632164 DOI: 10.1177/08853282231198948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In the present work, chrysin loaded bilosomes were formulated, characterized and evaluated to enhance the hepatoprotective activity of drug. Accordingly, chrysin loaded bilosomes were prepared by applying the thin film hydration method; also, fractional factorial design was used to optimize the production conditions of nanoformulations. The prepared formulations were subjected to different methods of characterization; then the hepatoprotective activity of the optimized one was evaluated in the CCl4 hepatointoxicated mice model. Optimized chrysin loaded bilosomes showed a spherical shape with a particle size of 232.97 ± 23 nm, the polydispersity index of 0.35 ± 0.01, the zeta potential of -44.5 ± 1.27 mv, the entrapment efficiency of 96.77 ± 0.18%, the drug loading % of 6.46 ± 0.01 and the release efficiency of 42.25 ± 1.04 during 48 h. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay demonstrated the superiority of the anti-oxidant potential of chrysin loaded bilosomes, as compared to pure chrysin. This was in agreement with histopathological investigations, showing significant improvement in serum hepatic biomarkers of CCl4 intoxicated mice treated with chrysin loaded bilosomes, as compared with free chrysin. These results, thus, showed the potential use of bilosomes to enhance the hepatoprotective activity of chrysin via oral administration.
Collapse
Affiliation(s)
- Atefeh Naseri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hosseini Sharifabadi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Sravani AB, Shenoy K M, Chandrika B, Kumar B H, Kini SG, Pai K SR, Lewis SA. Curcumin-sulfobutyl-ether beta cyclodextrin inclusion complex: preparation, spectral characterization, molecular modeling, and antimicrobial activity. J Biomol Struct Dyn 2023; 42:9977-9992. [PMID: 37695658 DOI: 10.1080/07391102.2023.2254409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Urinary tract infections (UTIs) caused by Gram-negative bacteria E. coli is responsible for 80-90% of uncomplicated cases in women. The increased prevalence of antibiotic resistance has made the management of UTIs more challenging. Plant-derived compounds have long been used to treat various diseases, and constitute an alternative to antibiotic resistance. Curcumin (CUR), a naturally occurring polyphenolic phytoconstituent obtained from Curcuma longa is endowed with diverse medicinal properties. The present study aims to form a complex of CUR with Sulfobutyl ether-β-cyclodextrin (SBEβCD) to overcome the poor solubility and bioavailability of CUR and to evaluate the antimicrobial activity of CUR-SBEβCD. Phase solubility studies and spectral characterization showed the entrapment of CUR in the SBEβCD cavity. In silico docking studies performed to investigate the complexation process of CUR with SBEβCD, revealed that the methoxy group and OH group of CUR interacted with SBEβCD. The cytotoxicity and HET-CAM assays confirmed that CUR-SBEβCD was non-irritant. The prepared complex investigated with the disc diffusion method showed antimicrobial activity with a zone of inhibition (ZOI) of 13 mm against Escherichia coli (E. coli) and 11.5 mm against Staphylococcus aureus (S. aureus) whereas CUR alone did not show any ZOI. It can be concluded that prepared CUR-SBEβCD demonstrated superior antimicrobial activity and therefore can be a promising alternative for the treatment of UTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mangala Shenoy K
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Baby Chandrika
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Chennai, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sreedhara Ranganatha Pai K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
9
|
Alshetaili AS, Ali R, Qamar W, Almohizea S, Anwer MK. Preparation, optimization, and characterization of chrysin-loaded TPGS-b-PCL micelles and assessment of their cytotoxic potential in human liver cancer (Hep G2) cell lines. Int J Biol Macromol 2023; 246:125679. [PMID: 37406911 DOI: 10.1016/j.ijbiomac.2023.125679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In total, nine TPGS-b-PCL copolymers were synthesized employing distinct TPGS analogues (TPGS 2000, 3500, and 5000). In these copolymers, the length of the PCL chain varied according to the TPGS to PCL molecular weight ratio (1:1, 1:2, and 1:3). The formulation optimization was done by optimizing the drug to polymer ratio, encapsulation efficiency, drug loading, micelle diameter, and polydispersity index (PDI). TPGS3500-b-PCL7000 copolymer (TPGS to PCL ratio 1:2) with drug to polymer ratio 1:30 showed the best percentage encapsulation (63.50 ± 0.45 %) and drug loading (2.05 ± 0.07). The optimal micelle (CHR-M) diameter and PDI were determined to be 94.57 ± 13.40 nm and 0.16 ± 0.02, respectively. CHR-M showed slow release when compared with alcoholic solution of chrysin. Approximately 70.70 ± 6.4 % drug was released in 72 h. The CHR-M demonstrated considerably greater absorption in Hep G2 cells, which confirmed the reliability of the micellar carrier. The MTT assay results showed that the IC50 values for CHR-M were much lower after 24 and 48 h when compared to free chrysin. Therefore, CHR-M may be a viable carrier for active chrysin targeting with improved anticancer potential. Also, it could be a better alternative for the currently available treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdullah S Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Salman Almohizea
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Lei X, Zhang G, Yang T, Wu Y, Peng Y, Wang T, Li D, Liu Q, Wang C, Zhang G. Preparation and In Vitro and In Vivo Evaluation of Rectal In Situ Gel of Meloxicam Hydroxypropyl-β-cyclodextrin Inclusion Complex. Molecules 2023; 28:molecules28104099. [PMID: 37241839 DOI: 10.3390/molecules28104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Meloxicam (MLX) is one of the most effective NSAIDs, but its poor water solubility and low bioavailability limit its clinical application. In this study, we designed a thermosensitive in situ gel of the hydroxypropyl-β-cyclodextrin inclusion complex (MLX/HP-β-CD-ISG) for rectal delivery to improve bioavailability. The best method for preparing MLX/HP-β-CD was the saturated aqueous solution method. The optimal inclusion prescription was optimized using an orthogonal test, and the inclusion complex was evaluated via PXRD, SEM, FTIR and DSC. Then, MLX/HP-β-CD-ISG was characterized regarding the gel properties, release in vitro, and pharmacokinetics in vivo. The inclusion rate of the inclusion complex obtained via the optimal preparation process was 90.32 ± 3.81%. The above four detection methods show that MLX is completely embedded in the HP-β-CD cavity. The developed MLX/HP-β-CD-ISG formulation has a suitable gelation temperature of 33.40 ± 0.17 °C, a gelation time of 57.33 ± 5.13 s, pH of 7.12 ± 0.05, good gelling ability and meets the requirements of rectal preparations. More importantly, MLX/HP-β-CD-ISG significantly improved the absorption and bioavailability of MLX in rats, prolonging the rectal residence time without causing rectal irritation. This study suggests that the MLX/HP-β-CD-ISG can have a wide application prospect with superior therapeutic benefits.
Collapse
Affiliation(s)
- Xiaomeng Lei
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Guansheng Zhang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Tao Yang
- College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Wu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ying Peng
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Tiantian Wang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Dongxun Li
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qian Liu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Canjian Wang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Guosong Zhang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
11
|
Salama A, Elgohary R, Kassem AA, Asfour MH. Chrysin-phospholipid complex-based solid dispersion for improved anti-aging and neuroprotective effects in mice. Pharm Dev Technol 2023; 28:109-123. [PMID: 36593750 DOI: 10.1080/10837450.2023.2165102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present study aimed to improve the neuroprotective effect of chrysin (CHR) by combining two formulation techniques, phospholipid (PL) complexation and solid dispersion (SD). CHR-phospholipid complex (CHR-PLC) was prepared through solvent evaporation. The molar ratio CHR/PL (1:3), which exhibited the highest complexation efficiency, was selected for the preparation of CHR-PLC loaded SD (CHR-PLC-SD) with 2-hydroxypropyl β cyclodextrin (2-HPβCD) and polyvinylpyrrolidone 8000. CHR-PLC/2-HPβCD (1:2, w/w) displayed the highest aqueous solubility of CHR (5.86 times more than that of plain CHR). CHR-SD was also prepared using 2-HPβCD for comparison. The in vitro dissolution of CHR-PLC-SD4 revealed an enhancement in the dissolution rate over CHR-PLC (1:3), CHR-SD, and plain CHR by six times. The optimum formulations and plain CHR were evaluated for their neuroprotective effect on brain aging induced by D-galactose in mice. The results demonstrated a behavioral activity elevation, an increase of AMPK, LKB1, and PGC1α brain contents as well as a reduction of AGEs, GFAP, NT-3, TNF-α, and NF-κβ brain contents when compared with those of the D-galactose control group. Thus, the developed formulations stimulated neurogenesis and mitochondrial biogenesis as well as suppressed neuroinflammation and neurodegeneration. The order of activity was as follows: CHR-PLC-SD4 > CHR-PLC (1:3) > CHR-SD > plain CHR.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
12
|
Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, Hasnain MS, Ansari MT. Guest-host Relationship of Cyclodextrin and its Pharmacological Benefits. Curr Pharm Des 2023; 29:2853-2866. [PMID: 37946351 DOI: 10.2174/0113816128266398231027100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
Collapse
Affiliation(s)
- Fatmah Alshati
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Farheen Sami
- Department of Pharmaceutics, Hygia Institute of Pharmaceutical Sciences and Research, Lucknow, India
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdome of Saudi Arabia
| | - Shahnaz Majeed
- Department of Pharmacy, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Sheikh Murtuja
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - M Saquib Hasnain
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| |
Collapse
|
13
|
Formulation of Multicomponent Chrysin-Hydroxy Propyl β Cyclodextrin-Poloxamer Inclusion Complex Using Spray Dry Method: Physicochemical Characterization to Cell Viability Assessment. Pharmaceuticals (Basel) 2022; 15:ph15121525. [PMID: 36558976 PMCID: PMC9788470 DOI: 10.3390/ph15121525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The work aimed to enhance chrysin (CHR) water solubility, dissolution, and in vitro antibacterial as well as cell viability. Chrysin binary, as well as ternary inclusion complex, were prepared using the spray drying method. The influence of an auxiliary component (poloxamer; PLX) was also assessed after being incorporated into the chrysin HP βCD complex (CHR-BC) and formed as a chrysin ternary complex (CHR-TC). The phase solubility investigation was carried out in order to assess the complexation efficiency and stability constant. The samples were assessed for the dissolution test, physicochemical evaluation, antibacterial activity, and cell viability tests were also assessed. The results of the phase solubility investigation showed that the stability constant for the binary system (268 M-1) was lower than the ternary system (720 M-1). The complex stability was validated by the greater stability constant value. The dissolution results showed that pure CHR had a limited release of 32.55 ± 1.7% in 60 min, while prepared CHR-TC and CHR-BC both demonstrated maximum CHR releases of 99.03 ± 2.34% and 71.95 ±2.1%, respectively. The dissolution study's findings revealed that the release of CHR was much improved over that of pure CHR. A study using a scanning electron microscope showed that CHR-TC contains more agglomerated and amorphous components. The higher conversion of crystalline CHR into an amorphous form is responsible for the structural alterations that are observed. After complexation, the distinctive peaks of pure CHR changed due to the complexation with HP βCD and PLX. The antimicrobial and cell viability results revealed improved antimicrobial activity as well as a lower IC50 value than pure CHR against the tested anticancer cell line (MCF7).
Collapse
|
14
|
Poudel I, Annaji M, Wibowo FS, Arnold RD, Fasina O, Via B, Rangari V, Peresin MS, Smith F, Dhanasekaran M, Tiwari AK, Babu RJ. Hispolon Cyclodextrin Complexes and Their Inclusion in Liposomes for Enhanced Delivery in Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms232214487. [PMID: 36430965 PMCID: PMC9695989 DOI: 10.3390/ijms232214487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-β-cyclodextrin (SBEβCD) was characterized, and the Hispolon-SBEβCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity. The inclusion complex in the solid=state was confirmed by a Job’s plot analysis, molecular modeling, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The HSC-SL showed no appreciable deviation in size (<150 nm) and polydispersity index (<0.2) and improved drug encapsulation efficiency (>90%) as compared to control hispolon liposomes. Individually incorporated hispolon and SBEβCD in the liposomes (H-CD-SL) was not significant in loading the drug in the liposomes, compared to HSC-SL, as a substantial amount of free drug was separated during dialysis. The HSC-SL formulation showed a sustained release compared to hispolon liposomes (H-SLs) and Hispolon-SBEβCD liposomes (H-CD-SLs). The anticancer activity on melanoma cell lines (B16BL6) of HSC and HSC-SL was higher than in H-CD-SL and hispolon solution. These findings suggest that HSC inclusion in the HSC-SL liposomes stands out as a potential formulation approach for enhancing drug loading, encapsulation, and chemotherapeutic efficiency of hispolon and similar water insoluble drug molecules.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Fajar Setyo Wibowo
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Brian Via
- Forest Products Development Center, Auburn University, Auburn, AL 36849, USA
| | - Vijaya Rangari
- Department of Material Science Engineering, Tuskegee University, Tuskegee, AL 36088, USA
| | - Maria Soledad Peresin
- Sustainable Bio-Based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, Health Science Campus, The University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
- Correspondence: (A.K.T.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Correspondence: (A.K.T.); (R.J.B.)
| |
Collapse
|
15
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
16
|
Chaudhari P, Birangal S, Mavlankar N, Pal A, Mallela LS, Roy S, Kodoth AK, Ghate V, Nampoorthiri M, Lewis SA. Oil-free eye drops containing Cyclosporine A/cyclodextrin/PVA supramolecular complex as a treatment modality for dry eye disease. Carbohydr Polym 2022; 297:120007. [DOI: 10.1016/j.carbpol.2022.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
|
17
|
Jangid A, Solanki R, Patel S, Medicherla K, Pooja D, Kulhari H. Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self-Assembled Nanoparticles. ACS OMEGA 2022; 7:15919-15928. [PMID: 35571829 PMCID: PMC9096951 DOI: 10.1021/acsomega.2c01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Chrysin is a natural bioactive compound with potential biological activities. However, unfavorable physicochemical properties of native chrysin make it difficult to achieve good therapeutic efficacies. In this study, poly(ethylene) glycol (PEG4000)-conjugated chrysin nanoparticles were prepared. The PEG4000 was conjugated to chrysin through cis-aconityl and succinoyl linkers to achieve tumor microenvironment-specific drug release from PEGylated nanoparticles. The conjugation of PEG and chrysin via succinoyl (PCNP-1) and cis-aconityl (PCNP-2) linkers was confirmed by the 1H NMR and FTIR analysis. The nanoparticles were characterized by DLS, TEM, XRD, and DSC analysis. Comparatively, PCNP-2 showed a better drug release profile and higher anticancer activity against human breast cancer cells than chrysin or PCNP-1. The apoptosis studies and colony formation inhibition assay revealed that the PCNP-2 induced more apoptosis and more greatly controlled the growth of human breast cancer cells than pure chrysin. Thus, the use of PCNPs may help to overcome the issues of chrysin and could be a better therapeutic approach.
Collapse
Affiliation(s)
- Ashok
Kumar Jangid
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Raghu Solanki
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Sunita Patel
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Kanakaraju Medicherla
- Department
of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India
| | - Deep Pooja
- School
of Pharmacy, National Forensic Sciences
University, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Hitesh Kulhari
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
- Department
of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
18
|
Zhang Y, Zhao Z, Wang K, Lyu K, Yao C, Li L, Shen X, Liu T, Guo X, Li H, Wang W, Lai TT. Molecular docking assisted exploration on solubilization of poorly soluble drug remdesivir in sulfobutyl ether-tycyclodextrin. AAPS OPEN 2022; 8:9. [PMID: 35498163 PMCID: PMC9035334 DOI: 10.1186/s41120-022-00054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To study structure-specific solubilization effect of Sulfobutyl ether-β-cyclodextrin (SBE-β-CD) on Remdesivir (RDV) and to understand the experimental clathration with the aid of quantum mechanics (QM), molecular docking and molecular dynamics (MD) calculations. Methods The experiment was carried out by phase solubility method at various pH and temperatures, while the concentration of Remdesivir in the solution was determined by HPLC. The complexation mechanism and the pH dependence of drug loading were investigated following a novel procedure combining QM, MD and molecular docking, based on accurate pKa predictions. Results The phase solubility and solubilization effect of RDV in SBE-β-CD were explored kinetically and thermodynamically for each assessed condition. An optimal drug / SBE-β-CD feeding molar ratio was determined stoichiometrically for RDV solubility in pH1.7 solution. The supersaturated solubility was examined over time after pH of the solution was adjusted from 1.7 to 3.5. A possible hypothesis was raised to elucidate the experimentally observed stabilization of supersaturation based on the proposed RDV Cation A /SBE-β-CD pocket conformations. Conclusion The computational explorations conformed to the experimentally determined phase solubilization and well elucidated the mechanism of macroscopic clathration between RDV and SBE-β-CD from the perspective of microscopic molecular calculations. Graphical Abstract ![]()
Collapse
|
19
|
Huang Y, Yu H, Lu S, Zou L, Tang Z, Zeng T, Tang J. Effect and mechanism of ferulic acid inclusion complexes on tyramine production by Enterobacter hormaechei MW386398 in smoked horsemeat sausages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
|
22
|
Hekimoğlu H, Toprak SF, Sözer S. JAK2 V617F Positive Endothelial Cells Induce Apoptosis and Release JAK2 V617F Positive Microparticles. Turk J Haematol 2022; 39:13-21. [PMID: 34981912 PMCID: PMC8886274 DOI: 10.4274/tjh.galenos.2021.2021.0607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) have a high propensity for thrombosis, which has been attributed to increased blood counts, endothelial cell (EC) dysfunction, and inflammation. The presence of the JAK2V617F mutation in the ECs of MPN patients has been confirmed, but the consequences of EC involvement by JAK2V617F in the pathogenesis of thrombosis are unclear. Endothelial microparticles (EMPs) released from ECs play an important role in endothelial dysfunction and also in the intercellular exchange of biological signals and information. Several studies have revealed that patients with JAK2V617F and a thrombosis history have increased numbers of MPs in their circulation. Materials and Methods: The current study utilized a lentiviral transduction model of JAK2 wild type (JAK2wt) or JAK2V617F encoding green fluorescent protein (GFP) into human umbilical vein ECs to determine the effect of JAK2V617F on ECs. EC infected with JAK2V617F, JAK2WT, and only-GFP were tested after two days of culture. Results: The proteins of ECs that potentially play a role in the development of thrombosis, including endothelial protein C receptor, thrombomodulin, and tissue factor, were detected by flow cytometry analysis with no statistical significance. Increased annexin-V uptake of JAK2V617F and JAK2wt ECs compared to GFP-alone ECs was detected. The EMP production in the supernatants of the EC culture was investigated. Genotyping of the EMPs revealed the presence of genomic DNA and RNA fragments in EMP cargos. JAK2V617F-positive DNA was detected in EMPs released from JAK2V617F-infected ECs and EMPs were shown to carry the genotype of the cell of origin. Conclusion: JAK2V617F-positive EMPs were shown for the first time in the literature. This novel research provides the first evidence that EMPs might regulate neighboring and distant cells via their cargo materials. Thus, the direct effect of JAK2V617F on ECs and their functions suggests that different mechanisms might play a role in the pathogenesis of thrombosis in MPNs.
Collapse
Affiliation(s)
- Hilal Hekimoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, İstanbul University, İstanbul, Turkey.,İstanbul University, Institute of Health Sciences, İstanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, İstanbul University, İstanbul, Turkey.,İstanbul University, Institute of Health Sciences, İstanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
23
|
Suvarna P, Chaudhari P, Birangal S, Mallela LS, Roy S, Koteshwara A, Aranjani JM, Lewis SA. Voriconazole-Cyclodextrin Supramolecular Ternary Complex-Loaded Ocular Films for Management of Fungal Keratitis. Mol Pharm 2022; 19:258-273. [PMID: 34928610 DOI: 10.1021/acs.molpharmaceut.1c00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal keratitis is one of the leading causes of ophthalmic mycosis affecting the vision due to corneal scarring. Voriconazole (VRC) is the most preferred azole antifungal agent for treating ocular mycotic infections. Ocular drug delivery is challenging due to the shorter corneal residence time of the formulation requiring frequent administration, leading to poor patient compliance. The present study aimed at improving the solubility, transcorneal permeation, and efficacy of voriconazole via the formation of cyclodextrin-based ternary complexes and incorporation of the complex into mucoadhesive films. A phase solubility study suggested a ∼14-fold improvement in VRC solubility, whereas physicochemical characterization confirmed the inclusion of VRC in the cyclodextrin inner cavity. In silico docking studies were performed to predict the docking conformation and stability of the inclusion complex. Complex-loaded films showed sustained release of voriconazole from the films and improved transcorneal permeation by ∼4-fold with an improved flux of 8.36 μg/(cm2 h) for ternary complex-loaded films compared to 1.86 μg/(cm2 h) for the pure VRC film. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and hen's egg-chorioallantoic membrane test (HET-CAM) assays confirmed that the complexes and ocular films were nonirritant and safe for ocular administration. The antifungal study performed using Aspergillus fumigatus and Fusarium oxysporum suggested improved antifungal activity compared to the pure drug film. In conclusion, the supramolecular cyclodextrin ternary complex proved to be a promising strategy for enhancing the solubility and permeability and augmenting the antifungal activity of voriconazole in the management of fungal keratitis.
Collapse
Affiliation(s)
- Pooja Suvarna
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shaila Angela Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
24
|
Borase HP, Borkar MR, Chaturvedi KK, Kar Mahapatra D, Chalikwar SS, Dangre PV. Design and evaluation of natural deep eutectic solvents system for chrysin to elicit its solubility, stability, and bioactivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
26
|
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Kumar R, Sinha V, Dahiya L, Sarwal A. Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression. Int J Pharm 2021; 594:120129. [DOI: 10.1016/j.ijpharm.2020.120129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023]
|
28
|
Preparation, characterization and pharmacokinetic studies of sulfobutyl ether-β-cyclodextrin-toltrazuril inclusion complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Enhanced solubility, stability, permeation and anti-cancer efficacy of Celastrol-β-cyclodextrin inclusion complex. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Soe HMH, Chamni S, Mahalapbutr P, Kongtaworn N, Rungrotmongkol T, Jansook P. The investigation of binary and ternary sulfobutylether-β-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state. Carbohydr Res 2020; 498:108190. [PMID: 33160203 DOI: 10.1016/j.carres.2020.108190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/24/2022]
Abstract
Asiaticoside (AS) is poorly water-soluble compound that can lead to low the bioavailability. The aims of this study were to determine the cyclodextrin (CD) solubilization of AS and characterize binary AS/CD and ternary AS/CD/polymer complexes in solution- and solid-state. Thermal stability of AS through heating process was determined and found that It could withstand by heating through sonication method. Phase-solubility profiles showed that β-cyclodextrin (βCD) exhibited the greatest solubilizing effect but sulfobutylether-βCD (SBEβCD) was selected for further investigations due to its relatively high complexation efficiency (CE) value. The effect of polymers that were poloxamer 407 (P407) and chitosan (CS) on CD solubilization were investigated. It was found that the increment of CE was resulted from the formation of ternary complexes or complex aggregates with confirmed by dynamic light scattering and transmission electron microscopy. Proton nuclear magnetic resonance (1H NMR) data indicated that the cyclohexane moiety of AS was totally inserted into the hydrophobic inner cavity of SBEβCD in the presence or absence of polymer. The molecular modeling study displayed the binding orientation of such complex which correlated to 1H NMR result. The solid state characterized by Fourier transform infra-red, differential scanning calorimetry and powder X-ray diffraction demonstrated the formation of binary AS/SBEβCD and ternary AS/SBEβCD/polymer inclusion complexes. The enhancement of AS dissolution was achieved in both binary and ternary complexes. The permeation study showed that ternary AS/SBEβCD/CS nanoparticles exhibited a promising controlled drug release nanocarrier.
Collapse
Affiliation(s)
- Hay ManSaung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napat Kongtaworn
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Arora U, Thakkar V, Baldaniya L, Gohel MC. Fabrication and evaluation of fast disintegrating pellets of cilostazol. Drug Dev Ind Pharm 2020; 46:1927-1946. [PMID: 33026265 DOI: 10.1080/03639045.2020.1826509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to formulate and develop fast disintegrating pellets of poorly soluble model drug (cilostazol) by reducing the proportion of micro-crystalline cellulose with pre-gelatinized starch (PGS), lactose and chitosan. The bioavailability enhancement of a model drug was achieved by preparing inclusion complex with Captisol® (Sulfobutyl Ether β cyclodextrin - SBE-β-CD). Extrusion-spheronization technique was used to formulate pellets. Placket-Burman design was used for the initial screening of most significant factors such as screen size (mm), ratio of micro crystalline cellulose: PGS + lactose + chitosan and % of HPMC which affects pellet properties. The inclusion complex of drug and Captisol® (SBE-β-CD) was prepared by Solvent Evaporation method and were incorporated into pellets in a predefined proportion. Formulation was optimized by using 32 full factorial design, the optimized batch was selected on the basis of dependent variables such as % yield, pellet size, disintegration time and % Cumulative drug release (%CDR), the obtained results were 87.15%, 0.75 mm, 13 min and 91.024% respectively. Differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR) study revealed no significant interaction between drug and polymer. Scanning electron microscopy (SEM) confirmed uniform and spherical shaped pellets having pores on the surface which facilitates wicking action and fast disintegrating property of pellets. A design space was constructed to meet the desirable target and optimized batch. The scope of study can further extended to hydrophobic molecules which may useful due to rapid disintegration and enhanced dissolution rate.
Collapse
Affiliation(s)
- Udit Arora
- Pharmaceutics Department, Anand Pharmacy College, Gujarat, India
| | - Vaishali Thakkar
- Pharmaceutics Department, Anand Pharmacy College, Gujarat, India
| | - Lalji Baldaniya
- Pharmaceutics Department, Anand Pharmacy College, Gujarat, India
| | - Mukesh C Gohel
- Pharmaceutics Department, Anand Pharmacy College, Gujarat, India
| |
Collapse
|
32
|
Al-Heibshy FNS, Başaran E, Öztürk N, Demirel M. Preparation and in vitro characterization of rosuvastatin calcium incorporated methyl beta cyclodextrin and Captisol ® inclusion complexes. Drug Dev Ind Pharm 2020; 46:1495-1506. [PMID: 32804005 DOI: 10.1080/03639045.2020.1810264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite being the most effective hypolipidemic agent, poor physicochemical properties of Rosuvastatin calcium (RCa) remain challenging obstacles in the development of pharmaceutical dosage forms. Inclusion complexes (ICs) of RCa with cyclodextrin (CD) derivatives; methyl-beta-cyclodextrin (M-β-CD) and sulfobutylether-beta-cyclodextrin (SBE-β-CD; Captisol®) were formulated by kneading and freeze-drying (lyophilization) methods. Pysicochemical properties of ICs were evaluated by SEM, DSC, XRD, FT-IR, 1H-NMR analyses. Entrapment efficiency (EE), water solubility, in vitro release analyses were also performed. Safety and efficacy of the ICs were analyzed by cytotoxicity and permeation studies on Caco-2 cell lines. Both CDs indicated AL type phase solubility diagrams showing that [1:1] molar ratio. Apparent stability constants (K1:1) were found to be 60.93 M-1 for M-β-CD and 158.07 M-1 for Captisol®. High EE in the range of 93.50-105.40% was achieved. Molar solubility of RCa was increased 3.7- and 4.1-fold with M-β-CD and Captisol® ICs, respectively. In vitro release analyses have indicated the equivalence of dissolution profiles for M-β-CD and Captisol® based ICs to that of pure RCa (f2 > 50). Cytotoxicity studies on Caco-2 cell lines have revealed the safety of ICs for oral use. Permeability studies demonstrated that selected lyophilized F6 formulation has shown the best permeation rate with Papp value of 3.08 × 10-7 cm·s-1. Considering greater water solubility, lower toxicity, high efficiency of complexation as well as, RCa-like permeability and in vitro release behavior at pH 6.8; Captisol® based lyophilized F6 formulation was selected as the best IC to be used in oral dosage forms of RCa.
Collapse
Affiliation(s)
- Fawaz N S Al-Heibshy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Aden University, Aden, Yemen
| | - Ebru Başaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Müzeyyen Demirel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
33
|
Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. MATERIALS 2020; 13:ma13163618. [PMID: 32824341 PMCID: PMC7475839 DOI: 10.3390/ma13163618] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Chrysin is a bioflavonoid that can be found in natural products such as honey and propolis, and it possesses several biological effects such as antioxidant, anti-inflammatory, and anti-cancer activity. However, it is poorly soluble in water, and its bioavailability is limited. The aim of this research is to investigate the chrysin solubilization capacity of different β-cylcodextrin derivatives and compare their biological activities. Chrysin was complexed with β-cyclodextrin (βCD), hydroxypropyl-β-, (HPBCD) sulfobutylether-β-, (SBECD), and randomly-methylated-β-cyclodextrin (RAMEB) by the lyophilization method in 1:1 and 1:2 molar ratios. The solubilities of the chrysin–cyclodextrin complexes were tested, and the solubilization abilities of cyclodextrins were studied by phase solubility experiments. The cytotoxicity of the complexes was measured by the MTT method, and the permeability enhancement was tested on Caco-2 monolayers. The solubility study showed that the complexes formed with RAMEB had the highest solubility in water. The phase solubility experiments confirmed the strongest interaction between RAMEB and chrysin. In the viability test, none of the complexes showed cytotoxicity up to 100 µM concentration. The permeability study revealed that both at 1:1 and 1:2 ratios, the RAMEB complexes were the most effective to enhance chrysin permeability through the Caco-2 monolayers. In conclusion, cyclodextrins, especially RAMEB, are suitable for improving chrysin solubility and absorption.
Collapse
|
34
|
Das S, Mohanty S, Maharana J, Jena SR, Nayak J, Subuddhi U. Microwave-assisted β-cyclodextrin/chrysin inclusion complexation: An economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Kumar R, Sinha VR, Dahiya L, Singh G, Sarwal A. Impact of cyclodextrin derivatives on systemic release of duloxetine HCl via buccal route. Drug Dev Ind Pharm 2020; 46:931-945. [PMID: 32420753 DOI: 10.1080/03639045.2020.1764019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of this work was to develop buccoadhesive tablets for the systemic delivery of duloxetine HCl (DXT) using more soluble derivatives of β-cyclodextrin, i.e. hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD) and to investigate enhanced cellular uptake of inclusion complexed drug.Materials and methods: Freeze dried and spray dried complexes of both cyclodextrin derivatives with DXT (1:1 molar) were prepared and characterized with DSC, FTIR, and PXRD techniques. C971 and PC, on the basis of swelling behavior, erosion and in vitro residence time, were selected for further study at different levels (-1, 0, +1) to optimize the formulation in terms of enhanced drug release and ex vivo permeation.Results: SBEβCD based complexes show more aqueous solubility of DXT (0.782 and 0.958 mM) and more complexation efficiency compared to HPβCD at 25 °C and 37 °C, respectively. Apparent stability constant was reported to be higher (1109.94 and 1693.25 M-1) for DXT-SBEβCD at 25 °C and 37 °C, respectively, than the corresponding values for DXT-HPβCD systems. Enhanced cellular uptake using fibroblast cells was revealed for complexed drug compared to free drug .Conclusion: Both cyclodextrin derivatives are able to enhance drug release and permeation in vitro and ex vivo.
Collapse
Affiliation(s)
- Rajiv Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Lalita Dahiya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
36
|
Hui BY, Zain NNM, Mohamad S, Prabu S, Osman H, Raoov M. A comprehensive molecular insight into host-guest interaction of Phenanthrene with native and ionic liquid modified β-cyclodextrins: Preparation and characterization in aqueous medium and solid state. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Zhong Y, Li W, Ran L, Hou R, Han P, Lu S, Wang Q, Zhao W, Zhu Y, Dong J. Inclusion complexes of tea polyphenols with HP-β-cyclodextrin:Preparation, characterization, molecular docking, and antioxidant activity. J Food Sci 2020; 85:1105-1113. [PMID: 32175596 DOI: 10.1111/1750-3841.15083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to prepare and characterize inclusion complexes between tea polyphenol (TP) and hydroxypropyl-β-cyclodextrin (HP-β-CD), and to evaluate their antioxidant properties. Freeze-drying was used to prepare the inclusion complex of TP/HP-β-CD at different component ratios (1:0.5, 1:1, and 1:2). The supermolecular structure of the TP/HP-β-CD complex was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Molecular docking was used to simulate the positions and interactions of the binding sites of TP/HP-β-CD inclusion complexes and target protein receptors. In addition, the effects of TP/HP-β-CD inclusion complexes on myofibrillar protein (MP) from lamb tripe were observed under oxidative conditions. Results showed that TP was encapsulated in the cavity of HP-β-CD to form an optimal complex with 1:2 molar ratio of stoichiometry, while the FTIR, TGA, and SEM studies also support the inclusion process. Molecular modeling results were systematically analyzed to determine the stability of inclusion complexes and protein. Furthermore, the addition of an appropriate concentration (5 to 105 µmol/g) of TP/HP-β-CD inclusion complex decreased the carbonyl content, hydrophobicity, and protein aggregation of MP from lamb tripe, whereas it increased the sulfhydryl content. This improved antioxidant activity and bioavailability of the inclusion complexes will be beneficial for its potential applications in food. PRACTICAL APPLICATION: Tea polyphenol was an antioxidant with potential for the field of food. In this study, the unstable properties of tea polyphenols were evaluated and were improved by inclusion of HP-β-cyclodextrin. The binding mode of the inclusion complex with protein was revealed via the molecular docking method, and the application of inclusion complex to control protein oxidation was studied. Results showed that the inclusion complex could effectively inhibit protein oxidation, which can provide a reference for the application of polyphenols in meat products and the improvement of protein properties.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Wenhui Li
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Lidan Ran
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Ran Hou
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Ping Han
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Shiling Lu
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Qingling Wang
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| | - Wei Zhao
- Author Zhao is with the School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi Zhu
- Author Zhao is with the School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Juan Dong
- Authors Zhong, Li, Ran, Hou, Han, Lu, Wang, Zhu, and Dong are with the School of Food Quality and Safety, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
38
|
Wu X, Kasselouri A, Vergnaud-Gauduchon J, Rosilio V. Assessment of various formulation approaches for the application of beta-lapachone in prostate cancer therapy. Int J Pharm 2020; 579:119168. [PMID: 32087264 DOI: 10.1016/j.ijpharm.2020.119168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
Beta-lapachone (β-Lap) is an anticancer drug activated by the NAD(P)H:quinone oxidoreductase (NQO1), an enzyme over-expressed in a large variety of tumors. B-Lap is poorly soluble in water and in most biocompatible solvents. Micellar systems, liposomes and cyclodextrins (CDs) have been proposed for its solubilization. In this work, we analyzed the properties and in vitro efficacy of β-Lap loaded in polymer nanoparticles, liposome bilayers, complexed with sulfobutyl-ether (SBE)- and hydroxypropyl (HP)-β cyclodextrins, or double loaded in phospholipid vesicles. Nanoparticles led to the lowest drug loading. Encapsulation of [β-Lap:CD] complexes in vesicles made it possible to slightly increase the encapsulation rate of the drug in liposomes, however at the cost of poor encapsulation efficiency. Cytotoxicity tests generally showed a higher sensitivity of NIH 3T3 and PNT2 cells to the treatment compared to PC-3 cells, but also a slight resistance at high β-Lap concentrations. None of the studied β-Lap delivery systems showed significant enhanced cytotoxicity against PC-3 cells compared to the free drug. Cyclodextrins and double loaded vesicles, however, appeared more efficient drug delivery systems than liposomes and nanoparticles, combining both good solubilizing and cytotoxic properties. Ligand-functionalized double loaded liposomes might allow overcoming the lack of selectivity of the drug.
Collapse
Affiliation(s)
- Xiao Wu
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - Athena Kasselouri
- Université Paris-Saclay, Lip(Sys)(2), Chimie Analytique Pharmaceutique, 92296 Châtenay-Malabry, France
| | | | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
39
|
Li W, Ran L, Liu F, Hou R, Zhao W, Li Y, Wang C, Dong J. Preparation and Characterisation of Polyphenol-HP-β-Cyclodextrin Inclusion Complex that Protects Lamb Tripe Protein against Oxidation. Molecules 2019; 24:E4487. [PMID: 31817887 PMCID: PMC6943433 DOI: 10.3390/molecules24244487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Grape seed extract (GSE) displays strong antioxidant activity, but its instability creates barriers to its applications. Herein, three HP-β-CD/GSE inclusion complexes with host-guest ratios of 1:0.5, 1:1, and 1:2 were successfully prepared by co-precipitation method to improve stability. Successful embedding of GSE in the HP-β-CD cavity was confirmed by fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses. The Autodock Tools 1.5.6 was used to simulate the three-dimensional supramolecular structure of the inclusion complex of 2-hydroxypropyl-β-cyclodextrin and grape seed extract (HP-β-CD/GSE) by molecular docking. The MALDI-TOF-MS technology and chemical database Pubchem, and structural database PDB were combined to reconstitute the three-dimensional structure of target protein. The binding mode of the HP-β-CD/GSE inclusion complex to target protein was studied at the molecular level, and the antioxidant ability of the resulting HP-β-CD/GSE inclusion complexes was investigated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The effects of HP-β-CD/GSE on myofibrillar protein from lamb tripe were also investigated under oxidative conditions. The positions and interactions of the binding sites of HP-β-CD/GSE inclusion complexes and target protein receptors were simulated by molecular docking. The results showed that HP-β-CD/GSE inclusion complexes were successfully prepared, optimally at a molar ratio of 1:2. At low (5 μmol/g) to medium (105 μmol/g) concentrations, HP-β-CD/GSE inclusion complexes decreased the carbonyl content, hydrophobicity, and protein aggregation of myofibrillar protein from lamb tripe, and increased the sulphydryl content. Furthermore, high concentration (155 μmol/g) of HP-β-CD/GSE inclusion complexes promoted protein oxidation.
Collapse
Affiliation(s)
- Wenhui Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Lidan Ran
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Fei Liu
- College of Life and Geography science Kashgar University, Kashi 844006, Xinjiang, China;
| | - Ran Hou
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Wei Zhao
- College of Food, Jiangnan University, Wuxi 214122, China;
| | - Yingbiao Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Chunyan Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| |
Collapse
|
40
|
Song S, Gao K, Niu R, Wang J, Zhang J, Gao C, Yang B, Liao X. Inclusion complexes between chrysin and amino-appended β-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110161. [PMID: 31753384 DOI: 10.1016/j.msec.2019.110161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Solid inclusion complexes between chrysin and four amino-appended β-cyclodextrins (ACDs) were prepared by suspension method and characterized in solid and solution states by kinds of analytical methods. The scanning electron microscopy (SEM) showed distinct micro-morphologies of them. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis revealed their unique thermal properties, such as decomposition temperatures and endothermic points. Powder X-ray diffractometry (XRD) analysis disclosed their unique crystal patterns. Their nuclear magnetic resonance (NMR) analyses provided the variations of chemical shifts before and after the formation of inclusion complexes. Their binding stability constants (Ks) were 574, 842, 704, and 474 L·mol-1, respectively, as determined by spectral titration. A 1:1 inclusion mode with self-assembly of their amino side chains inside the ACD cavity was proposed based on Job plot and 2D-ROESY experiments. Water solubility of chrysin was promoted up to 4411.98 μg·mL-1 after formation of inclusion complexes with ACDs, better than that of β-CD and its derivatives, i.e., HP- and SBE-β-CD. In vitro antioxidant activity of chrysin was also improved after inclusion complexation by the DPPH scavenging assay. Furthermore, in vitro cytotoxicity of solid inclusion complexes towards three human cancer cell lines, A549, HT-29 and HCT116 were enhanced significantly.
Collapse
Affiliation(s)
- Shuang Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Kai Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Raomei Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Jiangsu Xinchen Pharmaceutical Co., LTD, 222047 Lianyungang, China
| | - Jin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, 224007 Yancheng, China
| | - Jihong Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China; Research Centre for Pharmaceutical Care and Quality Management, First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China.
| |
Collapse
|
41
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Ren L, Wang J, Chen G. Preparation, optimization of the inclusion complex of glaucocalyxin A with sulfobutylether-β-cyclodextrin and antitumor study. Drug Deliv 2019; 26:309-317. [PMID: 30896265 PMCID: PMC6442205 DOI: 10.1080/10717544.2019.1568623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glaucocalyxin A (GLA), is a diterpenoid extracted from Hara and has been studied for decades for its diverse bioactivities. However, GLA presents poor solubility in water and low bioavailability through oral administration which has hindered its application in the clinic. So in this study, we prepared the inclusion complex of GLA in SBE-β-CD by ultrasound method and evaluated its antitumor effect and cytotoxic effect on cancer cells. The production of GLA-SBE-β-CD inclusion complex was optimized using Box-Behnken design. The inhibitory effects of GLA and GLA-SBE-β-CD were investigated on the Hela, A549, HepG2, and SiHa cells in vitro by MTT staining assay. Pharmacokinetic studies were conducted on Sprague-Dawley mice via caudal injection to study the distribution, metabolism, and elimination of GLA-SBE-β-CD in vivo. Tumor-bearing nude mice were taken as the model and adopted to evaluate the inhibitory rate of GLA and GLA-SBE-β-CD on the transplanted tumor. A series of physical characterization results confirmed the fact that GLA-SBE-β-CD inclusion complex was successfully prepared. A production of 87.28% was achieved based on the Box-Behnken design. In the cancer cell inhibition studies, GLA and GLA-SBE-β-CD exhibited apparent concentration-dependent inhibitory actions on four kinds of tumor cells and better inhibition was achieved in GLA-SBE-β-CD group. The pharmacokinetic results showed that the duration of GLA in blood was prolonged and enhanced bioavailability was achieved. GLA and GLA-SBE-β-CD both showed an effective inhibition on the transplanted tumor growth, while the anti-tumor effect of GLA-SBE-β-CD (inhibitory rate of 45.80%) was significantly stronger than that of GLA (30.76%) based on the change of tumor weight and tumor volume.
Collapse
Affiliation(s)
- Lili Ren
- a School of Pharmacy , Nanjing Tech University , Nanjing , China.,b Department of Microbiology and Immunology , Stanford University , Palo Alto , CA , USA
| | - Jingjing Wang
- a School of Pharmacy , Nanjing Tech University , Nanjing , China
| | - Guoguang Chen
- a School of Pharmacy , Nanjing Tech University , Nanjing , China
| |
Collapse
|
43
|
Zhao J, Zhao G, Liu Y. Antibacterial activity of a hexahydro‐β‐acids/methyl‐β‐cyclodextrin inclusion complex against bacteria related to foodborne illness. J Food Saf 2019. [DOI: 10.1111/jfs.12678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiuyang Zhao
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous RegionCollege of Chemistry and Chemical Engineering, Xinjiang University Urumqi China
| | - Guanyu Zhao
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous RegionCollege of Chemistry and Chemical Engineering, Xinjiang University Urumqi China
| | - Yumei Liu
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous RegionCollege of Chemistry and Chemical Engineering, Xinjiang University Urumqi China
| |
Collapse
|
44
|
Khurana R, Kakatkar AS, Chatterjee S, Barooah N, Kunwar A, Bhasikuttan AC, Mohanty J. Supramolecular Nanorods of (N-Methylpyridyl) Porphyrin With Captisol: Effective Photosensitizer for Anti-bacterial and Anti-tumor Activities. Front Chem 2019; 7:452. [PMID: 31294017 PMCID: PMC6598724 DOI: 10.3389/fchem.2019.00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Porphyrins, especially the 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin (TMPyP), are well-accepted as photosensitizers due to strong absorption from visible to near-infrared region, good singlet oxygen quantum yields as well as chemical versatility, all of which can be further modulated through planned supramolecular strategies. In this study, we report the construction of supramolecular nanorods of TMPyP dye/drug with captisol [sulfobutylether-β-cyclodextrin (SBE7βCD)] macrocycle through host-guest interaction. The availability of four cationic N-methylpyridyl groups favors multiple binding interaction with the captisol host, building an extended supramolecular assembly of captisol and TMPyP. In addition to the spectroscopic characterizations for the assembly formation, the same has been pictured in SEM and FM images as nanorods of ~10 μm in length or more. Complexation of TMPyP has brought out beneficial features over the uncomplexed TMPyP dye; enhanced singlet oxygen yield, improved photostability, and better photosensitizing effect, all supportive of efficient photodynamic therapy activity. The Captisol:TMPyP complex displayed enhanced antibacterial activity toward E. coli under white light irradiation as compared to TMPyP alone. Cell viability studies performed in lung carcinoma A549 cells with light irradiation documented increased cytotoxicity of the complex toward the cancer cells whereas reduced dark toxicity is observed toward normal CHO cells. All these synergistic effects of supramolecular nanorods of Captisol-TMPyP complex make the system an effective photosensitizer and a superior antibacterial and antitumor agent.
Collapse
Affiliation(s)
- Raman Khurana
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Aarti S Kakatkar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
45
|
Liu M, Guo Q, Shi Y, Cai C, Pei W, Yan H, Jia H, Han J. Studies on pH and temperature dependence of inclusion complexes of bisdemethoxycurcumin with β-cyclodextrin derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Baidya D, Kushwaha J, Mahadik K, Patil S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev Ind Pharm 2019; 45:852-860. [DOI: 10.1080/03639045.2019.1576726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Debjani Baidya
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Jeetendra Kushwaha
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sharvil Patil
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
47
|
Kumar R, Sarwal A, Dahiya L, Gupta D, Sinha VR. Experimental investigations, cytotoxicity and cellular uptake outcomes of physically modified duloxetine HCl inclusion complexes. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02686-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B. Cyclodextrin-based delivery systems for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:872-886. [PMID: 30606602 DOI: 10.1016/j.msec.2018.11.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Cyclodextrins, one of safe excipients, are able to form host-guest complexes with fitted molecules given the unique nature imparted by their structure in result of a number of pharmaceutical applications. On the other hand, targeted or responsive materials are appealing therapeutic platforms for the development of next-generation precision medications. Meanwhile, cyclodextrin-based polymers or assemblies can condense DNA and RNA in result to be used as genetic therapeutic agents. Armed with a better understanding of various pharmaceutical mechanisms, especially for cancer treatment, researchers have made lots of works about cyclodextrin-based drug delivery systems in materials chemistry and pharmaceutical science. This Review highlights recent advances in cyclodextrin-based delivery systems for cancer treatment capable of targeting or responding to the physiological environment. Key design principles, challenges and future directions, including clinical translation, of cyclodextrin-based delivery systems are also discussed.
Collapse
Affiliation(s)
- Dongjing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Pin Lv
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Cheng Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yulin Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
49
|
Physicochemical characteristics of the complexes of simvastatin and atorvastatin calcium with hydroxypropyl- β -cyclodextrin produced by mechanochemical activation. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
A modeling study by response surface methodology (RSM) on Th(IV) adsorption optimization using a sulfated β-cyclodextrin inclusion complex. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3286-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|