1
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Linking Benzene, in Utero Carcinogenicity and Fetal Hematopoietic Stem Cell Niches: A Mechanistic Review. Int J Mol Sci 2023; 24:ijms24076335. [PMID: 37047305 PMCID: PMC10094243 DOI: 10.3390/ijms24076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous research reported that prolonged benzene exposure during in utero fetal development causes greater fetal abnormalities than in adult-stage exposure. This phenomenon increases the risk for disease development at the fetal stage, particularly carcinogenesis, which is mainly associated with hematological malignancies. Benzene has been reported to potentially act via multiple modes of action that target the hematopoietic stem cell (HSCs) niche, a complex microenvironment in which HSCs and multilineage hematopoietic stem and progenitor cells (HSPCs) reside. Oxidative stress, chromosomal aberration and epigenetic modification are among the known mechanisms mediating benzene-induced genetic and epigenetic modification in fetal stem cells leading to in utero carcinogenesis. Hence, it is crucial to monitor exposure to carcinogenic benzene via environmental, occupational or lifestyle factors among pregnant women. Benzene is a well-known cause of adult leukemia. However, proof of benzene involvement with childhood leukemia remains scarce despite previously reported research linking incidences of hematological disorders and maternal benzene exposure. Furthermore, accumulating evidence has shown that maternal benzene exposure is able to alter the developmental and functional properties of HSPCs, leading to hematological disorders in fetus and children. Since HSPCs are parental blood cells that regulate hematopoiesis during the fetal and adult stages, benzene exposure that targets HSPCs may induce damage to the population and trigger the development of hematological diseases. Therefore, the mechanism of in utero carcinogenicity by benzene in targeting fetal HSPCs is the primary focus of this review.
Collapse
|
2
|
Hoyos-Giraldo LS, Ramos-Angulo JV, Reyes-Carvajal I. [Cancer risk evaluation in individuals occupationally exposed to organic solvents]. Rev Salud Publica (Bogota) 2023; 22:265-279. [PMID: 36753151 DOI: 10.15446/rsap.v22n3.80224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/06/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To evaluate the frequency of micronuclei (MNs) and influence of GSTM1 and GSTT1 gene polymorphisms as biomarkers of cancer risk in car painters (n=152) compared to unexposed individuals (n=152). METHODS Molecular epidemiology study, cross-sectional analysis of gen and environment interaction. The evaluation of MN and genetic polymorphisms was determined by molecular tests in lymphocytes from subjects involved in the study. RESULTS It was determined that the frequency of MNs is 1.6 higher in the exposed group compared to the reference group (1.39 ± 0.92 versus 0.87 ± 0.78, p<0.0001). There was no increase in the frequency of MNs associated with the polymorphisms in GSTM1 and GSTT1. CONCLUSIONS The increase of MNs in car painters serves to alert the increased risk of cancer in this population exposed to organic solvents. These results can be used in Occupational Epidemiological Surveillance Programs, as a prevention strategy and policies to regulate and control the use of solvents at a national level and in other countries with a large informal sector of individuals exposed to these chemicals to reduce the risk of cancer.
Collapse
Affiliation(s)
- Luz S Hoyos-Giraldo
- LH: Bióloga. M. Sc. Salud Ocupacional. Ph. D. Ciencias Biomédicas. Grupo de Investigación en Toxicología Genética y Citogenética. Departamento de Biología. Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia.
| | | | | |
Collapse
|
3
|
Liman R, Ali MM, Istifli ES, Ciğerci İH, Bonciu E. Genotoxic and cytotoxic effects of pethoxamid herbicide on Allium cepa cells and its molecular docking studies to unravel genotoxicity mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63127-63140. [PMID: 35449332 DOI: 10.1007/s11356-022-20166-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Pethoxamid is chloroacetamide herbicide. Pethoxamid is commonly used to kill different weeds in various crops. Pethoxamid can leach in the water and soil and can cause toxic effects to other non-target species. Current study is therefore aimed to perform the investigation of the cytotoxic and genotoxic effects of pethoxamid on Allium cepa cells.The root growth, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage were assessed through root growth inhibition, A. cepa ana-telophase, and alkaline comet assays, respectively. Furthermore, molecular docking was performed to evaluate binding affinity of pethoxamid on DNA and very-long-chain fatty acid (VLCFA) synthases. In root growth inhibition test, onion root length was statistically significantly decreased in a concentration dependent manner. Concentration- and time-dependent decreases in MI were observed, whereas increase in CAs such as disturbed ana-telophase, chromosome laggards, stickiness, anaphase bridges, and DNA damage was caused by the pethoxamid on A. cepa root cells. Molecular docking revealed that pethoxamid binds selectively to GC-rich regions in the minor groove of the DNA structure and showed remarkable binding affinity against all synthases taking part in the sequential biosynthesis of VLCFAs. It was concluded that the pethoxamid-induced genotoxicity and cytotoxicity may be through multiple binding ability of this herbicide with DNA and VLCFA synthases.
Collapse
Affiliation(s)
- Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Usak, Turkey
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, 01330, Adana, Turkey
| | - İbrahim Hakkı Ciğerci
- Molecular Biology and Genetics Department, Faculty of Science and Literatures, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Elena Bonciu
- Department of Agricultural and Forestry Technology, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585, Craiova, Romania
| |
Collapse
|
4
|
Khare P, Singh VK, Pathak AK, Bala L. Serum deprivation enhanced monocrotophos mediated cellular damages in human lung carcinoma and skin keratinocyte. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Liman R, Ali MM, Ciğerci İH, İstifli ES, Sarıkurkcu C. Cytotoxic and genotoxic evaluation of copper oxychloride through Allium test and molecular docking studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44998-45008. [PMID: 33860424 DOI: 10.1007/s11356-021-13897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Copper oxychloride gained great importance due to its broad-spectrum antifungal action to combat various fungal diseases of plants. However, excess quantity of cupric fungicides on plants causes enzymatic changes and toxic effects. Thus, the current study was aimed to investigate the cytotoxicity and genotoxicity of copper oxychloride on Allium cepa root cells. The root growth, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage were assessed through root growth inhibition, A. cepa ana-telophase, and alkaline comet assays. Furthermore, molecular docking was performed to evaluate binding affinities of two copper oxychloride polymorphs (atacamite and paratacamite) on DNA. In root growth inhibition test, onion root length was statistically significantly decreased by changing the copper oxychloride concentration from lower (2.64±0.11 cm) to higher (0.92±0.12 cm). Concentration- and time-dependent decrease in MI was observed whereas increase in CAs such as disturbed ana-telophase, chromosome laggards, stickiness, anaphase bridges, and DNA damage were caused by the copper oxychloride on A. cepa root cells. Molecular docking results revealed that the two main polymorphs of copper oxychloride (atacamite and paratacamite) bind selectively to G and C nucleotides on the B-DNA structure. It is concluded that the atacamite- and paratacamite-induced DNA damage may be through minor groove recognition and intercalation. Findings of the current study revealed the cytotoxic and genotoxic effects of copper oxychloride on A. cepa root cells. However, further studies should be carried out at the molecular level to reveal the cyto-genotoxic mechanism of action of copper oxychloride in detail.
Collapse
Affiliation(s)
- Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - İbrahim Hakkı Ciğerci
- Molecular Biology and Genetics Department, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Erman Salih İstifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, TR-01330, Adana, Turkey
| | - Cengiz Sarıkurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Wu H, Long K, Sha Y, Lu D, Xia Y, Mo Y, Yang Q, Zheng W, Yang M, Wei X. Occurrence and toxicity of halobenzoquinones as drinking water disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145277. [PMID: 33515874 DOI: 10.1016/j.scitotenv.2021.145277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Halobenzoquinones (HBQs) are emerging unregulated drinking water disinfection byproducts (DBPs) that are more toxic than regulated DBPs. This study aimed to determine the distribution and formation of HBQs in drinking water from water treatment plants in China, compare their chronic cytotoxicity and their induction of chromosomal damage in Chinese hamster ovary cells, and analyze the correlation of HBQ toxicity with their physicochemical parameters. Two HBQs, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) and 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), were detected in finished water and tap water in China. The concentrations were in the ranges of <2.6-19.70 ng/L for 2,6-DCBQ and <0.38-1.8 ng/L for 2,6-DBBQ. Chemical oxygen demand and residual chlorine were positively correlated with HBQ formation. The HBQ concentration was lower in a drinking water treatment plant using chlorine dioxide. High Ca2+ in tap water decreased the HBQ level. The rank order of HBQ by cytotoxicity was 2-chloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone, and for their genotoxicity, 2,5-dichloro-1,4-benzoquinone > 2,6-dichloro-1,4-benzoquinone > 2,3-diiodo-1,4-benzoquinone > 2,6-diiodo-1,4-benzoquinone > tetrachloro-1,4-benzoquinone > 2,5-dibromo-1,4-benzoquinone > 2,6-dibromo-1,4-benzoquinone > 2,3,6-trichloro-1,4-benzoquinone. The cytotoxicity of six dihalo-HBQs was negatively correlated with the octanol-water partition coefficient (r = -0.971, P < 0.05), molar refractivity (r = -0.956, P < 0.05), energy of the highest occupied molecular orbital (EHOMO) (r = -0.943, P < 0.05), and polar surface area (r = -0.829, P < 0.05). The genotoxicity of these three pairs of dihalo-HBQ isomers followed the same order as their EHOMO values. This study reveals the occurrence and formation of HBQs in drinking water in China and systematically evaluates the chromosomal damage caused by nine HBQs in mammalian cells.
Collapse
Affiliation(s)
- Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, PR China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
7
|
Gholampour M, Seradj H, Pirhadi S, Khoshneviszadeh M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg Med Chem 2020; 28:115718. [PMID: 33065435 DOI: 10.1016/j.bmc.2020.115718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
In the present work, a novel series of 2-amino-1,4-naphthoquinones bearing oxyphenyl moiety (5a-5m) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against three different cancer cell lines (MCF-7, HL-60 and U937) and normal human cell line (HEK-293) by MTT assay. Compounds 5b (4-nitro-benzyl-) and 5k (4-bromo-benzyl-) were identified to possess the highest cytotoxic activity against MCF-7 cancerous cells (IC50 values of 27.76 and 27.86 μM, respectively). At the same time, none of the compounds exert significant toxicity against HEK-293 normal human kidney cells. Cell cycle analysis showed that the selected derivatives increased the population of MCF-7 cells in the S phase at 25 and 50 μM concentrations. Annexin V-FITC/PI staining assay also confirmed that compounds 5b and 5k induced apoptosis in the cell death pathway. Molecular docking and molecular dynamics studies were also performed to evaluate the probable interactions between the hybrids and human ATP binding domain of topo IIα protein. Our findings may provide new insight for further development of novel naphthoquinone-containing compounds.
Collapse
Affiliation(s)
- Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Pharmacognosy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Verma K, Mahalapbutr P, Auepattanapong A, Khaikate O, Kuhakarn C, Takahashi K, Rungrotmongkol T. Molecular dynamics simulations of sulfone derivatives in complex with DNA topoisomerase IIα ATPase domain. J Biomol Struct Dyn 2020; 40:1692-1701. [PMID: 33089727 DOI: 10.1080/07391102.2020.1831961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human topoisomerase II alpha (TopoIIα) is a crucial enzyme involved in maintaining genomic integrity during the process of DNA replication and mitotic division. It is a vital therapeutic target for designing novel anticancer agents in targeted cancer therapy. Sulfones, members of organosulfur compounds, have been reported to possess various biological activities such as antimicrobial, anti-inflammatory, anti-HIV, anticancer, and antimalarial properties. In the present study, a series of sulfones was selected to evaluate their inhibitory activity against TopoIIα using computational approaches. Molecular docking results revealed that several sulfone analogs bind efficiently to the ATPase domain of TopoIIα. Among them, sulfones 18a, 60a, *4 b, *8 b, *3c, and 8c exhibit higher binding affinity than the known TopoII inhibitor, salvicine. Molecular dynamics simulations and free energy calculations based on MM/PB(GB)SA method demonstrated that sulfone *8 b strongly interacts with amino acid residues in the ATP-binding pocket (E87, N91, D94, I125, I141, F142, S149, G161, and A167), driven mainly by an electrostatic attraction and a strong H-bond formation at G161 residue. Altogether, the obtained results predicted that sulfones could have a high potential to be a lead molecule for targeting TopoIIα.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Verma
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Atima Auepattanapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kaito Takahashi
- Institute of Atomic and Sciences, Academia Sinica, Taipei, Taiwan
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Li P, Wu Y, Zhang Z, Lin D, Wang D, Huang X, Zhang Y. Proteomics analysis identified serum biomarkers for occupational benzene exposure and chronic benzene poisoning. Medicine (Baltimore) 2019; 98:e16117. [PMID: 31232959 PMCID: PMC6636960 DOI: 10.1097/md.0000000000016117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The study aimed to find novel effect biomarkers for occupational benzene exposure and chronic benzene poisoning (CBP), which might also provide clues to the mechanism of benzene toxicity.We performed a comparative serological proteome analysis between healthy control workers with no benzene exposure, workers with short-term benzene exposure, workers with long-term benzene exposure, and CBP patients using 2D-DIGE and MALDI-TOF-MS. Two of the differentially expressed proteins were then selected to be validated by immune turbidimetric analysis.A total of 10 proteins were found to be significantly altered between different groups. The identified deferentially expressed proteins were classified according to their molecular functions, biological processes, and protein classes. The alteration of 2 important serum proteins among them, apolipoprotein A-I and transthyretin, were further confirmed.Our findings suggest that the identified differential proteins could be used as biomarkers for occupational benzene exposure and CBP, and they may also help elucidate the mechanisms of benzene toxicity.
Collapse
Affiliation(s)
- Peimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Yuanru Wu
- The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Zhimin Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Xianqing Huang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| |
Collapse
|
10
|
Abstract
Anthropogenic activities, indiscriminate and rapid industrialization as well as pursuance of a better life has led to an increase in the concentration of chemicals, like pesticides, automobile exhausts, and new chemical entities, in the environment, which have an adverse effect on all living organisms including humans. Sensitive and robust test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cell from both in vitro and in vivo sources as well as in humans. The advantages of the in vivo Comet assay are its ability to detect DNA damage in any tissues, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the Comet assay have resulted in establishment of guidelines, and the OECD has adopted a guideline for the in vivo Comet assay as a test for assessing DNA damage in animals. The in vitro Comet assay conducted in cultured cells can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high throughput screening method for new chemical entities, as well as in environmental samples. This chapter details the in vitro Comet assay using the 96-well plate and in vivo Comet assay in multiple organs of the mouse.
Collapse
Affiliation(s)
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Alok Dhawan
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
11
|
Jiménez-Garza O, Guo L, Byun HM, Carrieri M, Bartolucci GB, Barrón-Vivanco BS, Baccarelli AA. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol Appl Pharmacol 2017; 339:65-72. [PMID: 29217486 DOI: 10.1016/j.taap.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Occupational exposure to volatile organic compounds (VOCs) may cause hematopoietic malignancy, either by single exposure to benzene or possibly due to a concomitant exposure to several VOCs. Since oxidative stress, inflammation and DNA repair pathways are closely involved in cancer development, the effect of VOC exposure on expression of proteins involved in these pathways has been studied, but epigenetic changes have not been well described. Here, DNA methylation status following occupational exposure to a VOC mixture was assessed by bisulfite sequencing of the promoter regions of seven genes involved in the mentioned pathways. Peripheral blood samples and individual-level VOC exposure data were obtained from healthy leather shoe factory workers (LS, n=40) and gas station attendants (GS, n=36), as well as a reference group of university employees (C, n=66). Exposure levels for acetone, ethylbenzene, methyl ethyl ketone, n-hexane, toluene and xylene were higher in LS (p<0.001); benzene and methyl acetate levels were higher in GS (p<0.001). TOP2A, SOD1, and TNF-α promoter methylation status was increased in LS (p<0.05). In LS, we also found significant correlations between GSTP1 promoter methylation and both iNOS (r=0.37, p=0.008) and COX-2 (r=-0.38, p=0.007) methylation. In exposed groups, ethylbenzene exposure levels showed a significant correlation with TOP2A methylation (β=0.33). Our results show early, toxic effects at the epigenetic level caused by occupational exposure to high levels of a VOC mixture. These subcellular modifications may represent the initial mechanism of toxicity leading to hematopoietic malignancy, possibly due to a synergistic, hematotoxic effect of VOC mixtures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Division, University of Guanajuato, León, Campus. Blvd. Puente del Mienio 1001, Fracción del Predio San Carlos, C.P. 37670 León Guanajuato, Mexico.
| | - Liqiong Guo
- Department of Occupational & Environmental Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Mariella Carrieri
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Giovanni Battista Bartolucci
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Briscia Socorro Barrón-Vivanco
- The Laboratory of Environmental Toxicology and Pollution, Autonomous University of Nayarit, Av de la Cultura Amado Nervo S/N, CP 36000 Tepic, Nayarit, Mexico
| | - Andrea A Baccarelli
- The Laboratory of Human Environmental Epigenetics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Mahalapbutr P, Chusuth P, Kungwan N, Chavasiri W, Wolschann P, Rungrotmongkol T. Molecular recognition of naphthoquinone-containing compounds against human DNA topoisomerase IIα ATPase domain: A molecular modeling study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Integration of the TGx-28.65 genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells. Mutat Res 2017; 806:51-62. [PMID: 29017062 DOI: 10.1016/j.mrfmmm.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Abstract
In vitro gene expression signatures to predict toxicological responses can provide mechanistic context for regulatory testing. We previously developed the TGx-28.65 genomic biomarker from a database of gene expression profiles derived from human TK6 cells exposed to 28 well-known compounds. The biomarker comprises 65 genes that can classify chemicals as DNA damaging or non-DNA damaging. In this study, we applied the TGx-28.65 genomic biomarker in parallel with the in vitro micronucleus (MN) assay to determine if two chemicals of regulatory interest at Health Canada, disperse orange (DO: the orange azo dye 3-[[4-[(4-Nitrophenyl)azo]phenyl] benzylamino]propanenitrile) and 1,2,4-benzenetriol (BT: a metabolite of benzene) are genotoxic or non-genotoxic. Both chemicals caused dose-dependent declines in relative survival and increases in apoptosis. A strong significant increase in MN induction was observed for all concentrations of BT; the top two concentrations of DO also caused a statistically significant increase in MN, but these increases were <2-fold above controls. TGx-28.65 analysis classified BT as genotoxic at all three concentrations and DO as genotoxic at the mid and high concentrations. Thus, although DO only caused a small increase in MN, this response was sufficient to induce a cellular DNA damage response. Benchmark dose modeling confirmed that BT is much more potent than DO. The results strongly suggest that follow-up work is required to assess whether DO and BT are also genotoxic in vivo. This is particularly important for DO, which may require metabolic activation by bacterial gut flora to fully induce its genotoxic potential. Our previously published data and this proof of concept study suggest that the TGx-28.65 genomic biomarker has the potential to add significant value to existing approaches used to assess genotoxicity.
Collapse
|
14
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
15
|
Mittal S, Sharma PK, Tiwari R, Rayavarapu RG, Shankar J, Chauhan LKS, Pandey AK. Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment. Part Fibre Toxicol 2017; 14:15. [PMID: 28454554 PMCID: PMC5408471 DOI: 10.1186/s12989-017-0194-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background Graphite carbon nanofibers (GCNF) have emerged as a potential alternative of carbon nanotubes (CNT) for various biomedical applications due to their superior physico-chemical properties. Therefore in-depth understanding of the GCNF induced toxic effects and underlying mechanisms in biological systems is of great interest. Currently, autophagy activation by nanomaterials is recognized as an emerging toxicity mechanism. However, the association of GCNF induced toxicity with this form of cell death is largely unknown. In this study, we have assessed the possible mechanism; especially the role of autophagy, underlying the GCNF induced toxicity. Methods Human lung adenocarcinoma (A549) cells were exposed to a range of GCNF concentrations and various cellular parameters were analyzed (up to 48 h). Transmission electron microscopy, immunofluorescent staining, western blot and quantitative real time PCR were performed to detect apoptosis, autophagy induction, lysosomal destabilization and cytoskeleton disruption in GCNF exposed cells. DCFDA assay was used to evaluate the reactive oxygen species (ROS) production. Experiments with N-acetyl-L-cysteine (NAC), 3-methyladenine (3-MA) and LC3 siRNA was carried out to confirm the involvement of oxidative stress and autophagy in GCNF induced cell death. Comet assay and micronucleus (MN) assay was performed to assess the genotoxicity potential. Results In the present study, GCNF was found to induce nanotoxicity in human lung cells through autophagosomes accumulation followed by apoptosis via intracellular ROS generation. Mechanistically, impaired lysosomal function and cytoskeleton disruption mediated autophagic flux blockade was found to be the major cause of accumulation rather than autophagy induction which further activates apoptosis. The whole process was in line with the increased ROS level and their pharmacological inhibition leads to mitigation of GCNF induced cell death. Moreover the inhibition of autophagy attenuates apoptosis indicating the role of autophagy as cell death process. GCNF was also found to induce genomic instability. Conclusion Our present study demonstrates that GCNF perturbs various interrelated signaling pathway and unveils the potential nanotoxicity mechanism of GCNF through targeting ROS-autophagy-apoptosis axis. The current study is significant to evaluate the safety and risk assessment of fibrous carbon nanomaterials prior to their potential use and suggests caution on their utilization for biomedical research. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Mittal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Raja Gopal Rayavarapu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Lalit Kumar Singh Chauhan
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Kumar Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. .,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
16
|
Xu L, Liu J, Chen Y, Yun L, Chen S, Zhou K, Lai B, Song L, Yang H, Liang H, Tang H. Inhibition of autophagy enhances Hydroquinone-induced TK6 cell death. Toxicol In Vitro 2017; 41:123-132. [PMID: 28263894 DOI: 10.1016/j.tiv.2017.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Hydroquinone (HQ), one of the metabolic products of benzene, is a carcinogen. It can induce apoptosis in lymphoma cells. However, whether HQ can induce autophagy and what roles autophagy plays in TK6 cells exposured to HQ remains unclear. In this study, we found that HQ could induce autophagy through techniques of qRT-PCR, Western blot, immunofluorescent assay of LC3 and transmission electron microscope. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) significantly enhanced HQ-induced cell apoptosis, suggesting that autophagy may be a survival mechanism. Our study also showed that HQ activated PARP-1. Moreover, knockdown of PARP-1 strongly exhibited decreased autophagy related genes expression. In contrast, the absence of SIRT1 increased that. Altogether, our data provided evidence that HQ induced autophagy in TK6 cells and autophagy protected TK6 from HQ attack-induced injury in vitro, and the autophagy was partially mediated via activation of the PARP-1-SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Longmei Xu
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Jiaxian Liu
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Yuting Chen
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Lin Yun
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Shaoyun Chen
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Kairu Zhou
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Bei Lai
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Li Song
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Hui Yang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Hairong Liang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, PR-523808 Dongguan, Guangdong, China; Dongguan Key Laboratory of Environmental Medicine, PR-523808 Dongguan, Guangdong, China.
| |
Collapse
|
17
|
Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci Rep 2016; 6:39548. [PMID: 28000740 PMCID: PMC5175188 DOI: 10.1038/srep39548] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications.
Collapse
|
18
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Bianchi J, Cabral-de-Mello DC, Marin-Morales MA. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:174-183. [PMID: 26074310 DOI: 10.1016/j.ecoenv.2015.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in HepG2 cells. The results obtained by the Ames test did not point out significant results.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil.
| |
Collapse
|
20
|
Bucky Tubes Induce Oxidative Stress Mediated Cell Death in Human Lung Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:560768. [PMID: 26090421 PMCID: PMC4450222 DOI: 10.1155/2015/560768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 01/22/2023]
Abstract
Unique physicochemical properties of carbon nanomaterials (CNMs) have opened a new era for therapeutics and diagnosis (known as theranostics) of various diseases. This exponential increase in application makes them important for toxicology studies. The present study was aimed at exploring the toxic potential of one of the CNMs, that is, bucky tubes (BTs), in human lung adenocarcinoma (A549) cell line. BTs were characterised by electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform spectroscopy (FTIR), and X-ray diffraction (XRD). Flow cytometric study showed a concentration and time dependent increase in intracellular internalization as well as reduction in cell viability upon exposure to BTs. However, a significant increase in intracellular reactive oxygen species (ROS) production was observed as evident by increased fluorescence intensity of 2′,7′-dichlorofluorescein (DCF). BTs induced oxidative stress in cells as evident by depletion in glutathione with concomitant increase in lipid peroxidation with increasing concentrations. A significant increase in micronucleus formation and apoptotic cell population and loss of mitochondrial membrane potential (MMP) as compared to control were observed. Moreover, in the present study, BTs were found to be mild toxic and it is encouraging to conclude that BTs having outer diameter in the range of 7–12 nm and length 0.5–10 μm can be used for theranostics.
Collapse
|
21
|
Li J, Wang W, Moe B, Wang H, Li XF. Chemical and Toxicological Characterization of Halobenzoquinones, an Emerging Class of Disinfection Byproducts. Chem Res Toxicol 2015; 28:306-18. [DOI: 10.1021/tx500494r] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jinhua Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada, T6G 2G3
| | - Wei Wang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada, T6G 2G3
| | - Birget Moe
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada, T6G 2G3
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada, T6G 2G3
| |
Collapse
|
22
|
Evaluation of N-acetyl-cysteine against tetrachlorobenzoquinone-induced genotoxicity and oxidative stress in HepG2 cells. Food Chem Toxicol 2014; 64:291-7. [DOI: 10.1016/j.fct.2013.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 11/21/2022]
|
23
|
Gurbani D, Bharti SK, Kumar A, Pandey AK, Ana GR, Verma A, Khan AH, Patel DK, Mudiam M, Jain SK, Roy R, Dhawan A. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health 2013; 216:553-65. [DOI: 10.1016/j.ijheh.2013.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
24
|
Bajpayee M, Kumar A, Dhawan A. The comet assay: assessment of in vitro and in vivo DNA damage. Methods Mol Biol 2013; 1044:325-345. [PMID: 23896885 DOI: 10.1007/978-1-62703-529-3_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.
Collapse
Affiliation(s)
- Mahima Bajpayee
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, Gujarat, India
| | | | | |
Collapse
|
25
|
McHale CM, Zhang L, Smith MT. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 2012; 33:240-52. [PMID: 22166497 PMCID: PMC3271273 DOI: 10.1093/carcin/bgr297] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/21/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment.
Collapse
Affiliation(s)
| | | | - Martyn T. Smith
- Division of Environmental Health Sciences, Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| |
Collapse
|
26
|
Peng D, Jiaxing W, Chunhui H, Weiyi P, Xiaomin W. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes. Hum Exp Toxicol 2012; 31:322-35. [DOI: 10.1177/0960327111433900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2′,7′-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes.
Collapse
Affiliation(s)
- D Peng
- Department of Public Health, School of Basic Medical, Hubei University of Medicine, Shiyan, Hubei, PR China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Jiaxing
- School of Chemical Project, Beijing University of Chemical Technology, Beijing, PR China
| | - H Chunhui
- Department of Clinical Laboratories, the Affiliated Taihe Hospital, Hubei University of Medicine, Hubei Shiyan, PR China
| | - P Weiyi
- Department of Health Statistics and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Xiaomin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
27
|
Gurbani D, Kukshal V, Laubenthal J, Kumar A, Pandey A, Tripathi S, Arora A, Jain SK, Ramachandran R, Anderson D, Dhawan A. Mechanism of inhibition of the ATPase domain of human topoisomerase IIα by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone. Toxicol Sci 2012; 126:372-90. [PMID: 22218491 DOI: 10.1093/toxsci/kfr345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The inhibition of human topoisomerase IIα (Hu-TopoIIα), a major enzyme involved in maintaining DNA topology, repair, and chromosome condensation/decondensation results in loss of genomic integrity. In the present study, the inhibition of ATPase domain of Hu-TopoIIα as a possible mechanism of genotoxicity of 1,4-benzoquinone (BQ), hydroquinone (HQ), naphthoquinone (1,2-NQ and 1,4-NQ), and 9,10-phenanthroquinone (9,10-PQ) was investigated. In silico modeling predicted that 1,4-BQ, 1,2-NQ, 1,4-NQ, and 9,10-PQ could interact with Ser-148, Ser-149, Asn-150, and Asn-91 residues of the ATPase domain of Hu-TopoIIα. Biochemical inhibition assays with the purified ATPase domain of Hu-TopoIIα revealed that 1,4-BQ is the most potent inhibitor followed by 1,4-NQ > 1,2-NQ > 9,10-PQ > HQ. Ligand-binding studies using isothermal titration calorimetry revealed that 1,4-BQ, HQ, 1,4-NQ, 1,2-NQ, and 9,10-PQ enter into four sequentially binding site models inside the domain. 1,4-BQ exhibited the strongest binding, followed by 1,4-NQ > 1,2-NQ > 9,10-PQ > HQ, as revealed by their average K(d) values. The cellular fate of such inhibition was further evidenced by an increase in the number of Hu-TopoIIα-DNA cleavage complexes in the human lung epithelial cells (BEAS-2B) using trapped in agarose DNA immunostaining (TARDIS) assay, which utilizes antibody specific for Hu-TopoIIα. Furthermore, the increase in γ-H2A.X levels quantitated by flow cytometry and visualized by immunofluorescence microscopy illustrated that accumulation of DNA double-strand breaks inside the cells can be attributed to the inhibition of Hu-TopoIIα. These findings collectively suggest that 1,4-BQ, 1,2-NQ, 1,4-NQ, and 9,10-PQ inhibit the ATPase domain and potentially result in Hu-TopoIIα-mediated clastogenic and leukemogenic events.
Collapse
Affiliation(s)
- Deepak Gurbani
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Crespo R, Villaverde ML, Girotti JR, Güerci A, Juárez MP, de Bravo MG. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:204-209. [PMID: 21549820 DOI: 10.1016/j.jep.2011.04.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulomoides dermestoides (Fairmaire, 1893) is a cosmopolitan tenebrionid beetle reared by Argentine people who consume them alive as an alternative medicine in the treatment of different illnesses such as asthma, Parkinson's, diabetes, arthritis, HIV and specially cancer. AIM OF THE STUDY To evaluate the cytotoxicity and DNA damage of the major volatile components released by Ulomoides dermestoides on human lung carcinoma epithelial cell line A549. MATERIALS AND METHODS The defence compounds of Ulomoides dermestoides were extracted with dichloromethane and analyzed and quantified by capillary gas chromatography. The toxicity effects of the beetle's extract against A549 cell line were evaluated. Cytotoxicity was evaluated by MTT test and Trypan blue assay and genotoxicity was evaluated by the comet assay. The synthetic compounds, individually or combined, were also tested in A549 cells and normal mononuclear human cells. RESULTS The defence compounds of Ulomoides dermestoides extracted with dichloromethane (methyl-1,4-benzoquinones, ethyl-1,4-benzoquinones and 1-pentadecene as major components) showed cytotoxic activity on A549 cells demonstrated by MTT test and Trypan blue assay, with IC(50) values of 0.26equivalent/ml and 0.34equivalent/ml, respectively (1equivalent=amount of components extracted per beetle). The inhibition of A549 cell proliferation with the synthetic blend (1,4-benzoquinone and 1-pentadecene) or 1,4-benzoquinone alone was similar to that obtained with the insect extract. 1-Pentadecene showed no inhibitory effect. Low doses of insect extract or synthetic blend (0.15equivalent/ml) inhibited mononuclear cell proliferation by 72.2±2.7% and induced significant DNA damage both in tumor and mononuclear cells. CONCLUSION Results of this study demonstrated that defence compounds of Ulomoides dermestoides reduced cell viability and induced DNA damage. We also concluded that the insect benzoquinones are primarily responsible for inducing cytotoxicity and genotoxicity in culture cells.
Collapse
Affiliation(s)
- Rosana Crespo
- INIBIOLP (CONICET, CCT La Plata - UNLP), Facultad de Cs. Médicas, Calles 60 y 120, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
29
|
Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin. Toxicol Appl Pharmacol 2011; 253:14-30. [DOI: 10.1016/j.taap.2011.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 02/11/2011] [Accepted: 03/07/2011] [Indexed: 12/18/2022]
|
30
|
Badham HJ, Winn LM. In utero and in vitro effects of benzene and its metabolites on erythroid differentiation and the role of reactive oxygen species. Toxicol Appl Pharmacol 2010; 244:273-9. [DOI: 10.1016/j.taap.2010.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/07/2009] [Accepted: 01/08/2010] [Indexed: 01/08/2023]
|
31
|
Badham HJ, LeBrun DP, Rutter A, Winn LM. Transplacental benzene exposure increases tumor incidence in mouse offspring: possible role of fetal benzene metabolism. Carcinogenesis 2010; 31:1142-8. [PMID: 20400480 DOI: 10.1093/carcin/bgq074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Childhood cancer is the leading cause of disease-related death in children aged 1-14 years in Canada and the USA and it has been hypothesized that transplacental exposure to environmental carcinogens such as benzene may contribute to the etiology of these cancers. Our objectives were to determine if transplacental benzene exposure increased tumor incidence in mouse offspring and assess fetal benzene metabolism capability. Pregnant CD-1 and C57Bl/6N mice were given intraperitoneal injections of corn oil, 200 mg/kg, or 400 mg/kg benzene on gestational days 8, 10, 12 and 14. A significant increase in tumor incidence was observed in CD-1, but not C57BL/6N, 1-year-old offspring exposed transplacentally to 200 mg/kg benzene. Hepatic and hematopoietic tumors were predominantly observed in male and female CD-1 offspring, respectively. Female CD-1 offspring exposed transplacentally to 200 mg/kg benzene had significantly suppressed bone marrow CD11b(+) cells 1 year after birth, correlating with reduced colony-forming unit granulocyte/macrophage numbers in 2-day-old pups. CD-1 and C57Bl/6N maternal blood benzene levels and fetal liver benzene, t, t-muconic acid, hydroquinone and catechol levels were analyzed by gas chromatography/mass spectrometry. Significant strain-, gender- and dose-related differences were observed. Male CD-1 fetuses had high hydroquinone levels, whereas females had high catechol levels after maternal exposure to 200 mg/kg benzene. This is the first demonstration that transplacental benzene exposure can induce hepatic and hematopoietic tumors in mice, which may be dependent on fetal benzene metabolism capability.
Collapse
Affiliation(s)
- Helen J Badham
- Department of Pharmacology and Toxicology, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|