1
|
Menchinskaya ES, Chingizova EA, Pislyagin EA, Yurchenko EA, Klimovich AA, Zelepuga EA, Aminin DL, Avilov SA, Silchenko AS. Mechanisms of Action of Sea Cucumber Triterpene Glycosides Cucumarioside A 0-1 and Djakonovioside A Against Human Triple-Negative Breast Cancer. Mar Drugs 2024; 22:474. [PMID: 39452882 PMCID: PMC11509090 DOI: 10.3390/md22100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer in women worldwide. Triple-negative breast cancer is the most unfavorable for patients, but it is also the most sensitive to chemotherapy. Triterpene glycosides from sea cucumbers possess a high therapeutic potential as anticancer agents. This study aimed to identify the pathways triggered and regulated in MDA-MB-231 cells (triple-negative breast cancer cell line) by the glycosides cucumarioside A0-1 (Cuc A0-1) and djakonovioside A (Dj A), isolated from the sea cucumber Cucumaria djakonovi. Using flow cytometry, fluorescence microscopy, immunoblotting, and ELISA, the effects of micromolar concentrations of the compounds on cell cycle arrest, induction of apoptosis, the level of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and expression of anti- and pro-apoptotic proteins were investigated. The glycosides caused cell cycle arrest, stimulated an increase in ROS production, and decreased Δψm in MDA-MB-231 cells. The depolarization of the mitochondrial membrane caused by cucumarioside A0-1 and djakonovioside A led to an increase in the levels of APAF-1 and cytochrome C. This, in turn, resulted in the activation of caspase-9 and caspase-3 and an increase in the level of their cleaved forms. Glycosides also affected the expression of Bax and Bcl-2 proteins, which are associated with mitochondria-mediated apoptosis in MDA-MB-231 cells. These results indicate that cucumarioside A0-1 and djakonovioside A activate the intrinsic apoptotic pathway in triple-negative breast cancer cells. Additionally, it was found that treatment with Cuc A0-1 resulted in in vivo inhibition of tumor growth and metastasis of murine solid Ehrlich adenocarcinoma.
Collapse
Affiliation(s)
- Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Evgeny A. Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Anna A. Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Elena. A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| | - Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (E.A.C.); (E.A.P.); (E.A.Y.); (A.A.K.); (E.A.Z.); (D.L.A.); (S.A.A.)
| |
Collapse
|
2
|
Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Mol Biotechnol 2024:10.1007/s12033-024-01287-3. [PMID: 39327380 DOI: 10.1007/s12033-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.
Collapse
Affiliation(s)
- Chanam Melody Devi
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Amit Kumar Das
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Apurba Talukdar
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India.
| |
Collapse
|
3
|
Park K, Kwak IS. Modulating responses of indicator genes in cellular homeostasis, immune defense and apoptotic process in the Macrophthalmus japonicus exposed to di(2-ethylhexyl) phthalate as a plastic additive. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104456. [PMID: 38657882 DOI: 10.1016/j.etap.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
4
|
Tripathi G, Dubey P, Ahmad S, Farooqui A, Mishra V. Role of Algal-derived Bioactive Compounds in Human Health. Recent Pat Biotechnol 2024; 18:190-209. [PMID: 37537776 DOI: 10.2174/1872208317666230623141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023]
Abstract
Algae is emerging as a bioresource with high biological potential. Various algal strains have been used in traditional medicines and human diets worldwide. They are a rich source of bioactive compounds like ascorbic acid, riboflavin, pantothenate, biotin, folic acid, nicotinic acid, phycocyanins, gamma-linolenic acid (GLA), adrenic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), etc. Beta-carotene, astaxanthin, and phycobiliproteins are different classes of pigments that are found in algae. They possess antioxidant, anti-inflammatory and anticancer properties. The sulfur-coated polysaccharides in algae have been used as an anticancer, antibacterial, and antiviral agent. Scientists have exploited algal-derived bioactive compounds for developing lead molecules against several diseases. Due to the surge in research on bioactive molecules from algae, industries have started showing interest in patenting for the large-scale production of bioactive compounds having applications in sectors like pharmaceuticals, food, and beverage. In the food industry, algae are used as a thickening, gelling, and stabilizing agent. Due to their gelling and thickening characteristics, the most valuable algae products are macroalgal polysaccharides such as agar, alginates, and carrageenan. The high protein, lipid, and nutrient content in microalgae makes it a superfood for aquaculture. The present review aims at describing various non-energy-based applications of algae in pharmaceuticals, food and beverage, cosmetics, and nutraceuticals. This review attempts to analyze information on algal-derived drugs that have shown better potential and reached clinical trials.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Priyanka Dubey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Park K, Moon BS, Kwak IS. Responses of multifunctional immune complement component 1q (C1q) and apoptosis-related genes in Macrophthalmus japonicus tissues and human cells following exposure to environmental pollutants. Cell Stress Chaperones 2023; 28:959-968. [PMID: 37880562 PMCID: PMC10746657 DOI: 10.1007/s12192-023-01389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Apoptosis is a key defense process for multiple immune system functions, playing a central role in maintaining homeostasis and cell development. The purpose of this study was to evaluate the effects of environmental pollutant exposure on immune-related apoptotic pathways in crab tissues and human cells. To do this, we characterized the multifunctional immune complement component 1q (C1q) gene and analyzed C1q expression in Macrophthalmus japonicus crabs after exposure to di(2-ethylhexyl) phthalate (DEHP) or hexabromocyclododecanes (HBCDs). Moreover, the responses of apoptotic signal-related genes were observed in M. japonicus tissues and human cell lines (HEK293T and HCT116). C1q gene expression was downregulated in the gills and hepatopancreas of M. japonicus after exposure to DEHP or HBCD. Pollutant exposure also increased antioxidant enzyme activities and altered transcription of 15 apoptotic signaling genes in M. japonicus. However, patterns in apoptotic signaling in response to these pollutants differed in human cells. HBCD exposure generated an apoptotic signal (cleaved caspase-3) and inhibited cell growth in both cell lines, whereas DEHP exposure did not produce such a response. These results suggest that exposure to environmental pollutants induced different levels of immune-related apoptosis depending on the cell or tissue type and that this induction of apoptotic signaling may trigger an initiation of carcinogenesis in M. japonicus and in humans as consumers.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea.
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
6
|
Saquib Q, Schwaiger S, Alilou M, Ahmed S, Siddiqui MA, Ahmad J, Faisal M, Abdel-Salam EM, Wahab R, Al-Rehaily AJ, Stuppner H, Al-Khedhairy AA. Marine Natural Compound (Neviotin A) Displays Anticancer Efficacy by Triggering Transcriptomic Alterations and Cell Death in MCF-7 Cells. Molecules 2023; 28:6289. [PMID: 37687120 PMCID: PMC10488820 DOI: 10.3390/molecules28176289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
We investigated the anticancer mechanism of a chloroform extract of marine sponge (Haliclona fascigera) (sample C) in human breast adenocarcinoma (MCF-7) cells. Viability analysis using MTT and neutral red uptake (NRU) assays showed that sample C exposure decreased the proliferation of cells. Flow cytometric data exhibited reactive oxygen species (ROS), nitric oxide (NO), dysfunction of mitochondrial potential, and apoptosis in sample C-treated MCF-7 cells. A qPCR array of sample C-treated MCF-7 cells showed crosstalk between different pathways of apoptosis, especially BIRC5, BCL2L2, and TNFRSF1A genes. Immunofluorescence analysis affirmed the localization of p53, bax, bcl2, MAPKPK2, PARP-1, and caspase-3 proteins in exposed cells. Bioassay-guided fractionation of sample C revealed Neviotin A as the most active compound triggering maximum cell death in MCF-7, indicating its pharmacological potency for the development of a drug for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Mostafa Alilou
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Maqsood A. Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Eslam M. Abdel-Salam
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Abdulaziz A. Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| |
Collapse
|
7
|
Ngo-Mback MNL, Zeuko’o Menkem E, Marco HG. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens 2023; 12:617. [PMID: 37111503 PMCID: PMC10142389 DOI: 10.3390/pathogens12040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.
Collapse
Affiliation(s)
| | | | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
8
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
9
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14071378. [PMID: 35890274 PMCID: PMC9320687 DOI: 10.3390/pharmaceutics14071378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Collapse
|
11
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
12
|
Izadpanah Qeshmi F, Homaei A, Khajeh K, Kamrani E, Fernandes P. Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:599-613. [PMID: 35507234 DOI: 10.1007/s10126-022-10129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined. The recombinant enzyme HR03Asnase showed the highest similarity to type I L-asparaginase from Pseudomonas aeruginosa. The three-dimensional (3D) modeling results indicate that HR03Asnase exists as a homotetramer. Its molecular weight was 35 kDa, and the maximum activity of the purified enzyme was observed at pH8 and at 40 °C. The km and Vmax of the enzyme obtained with L-asparagine as substrate were 10.904 mM and 3.44 × 10-2 mM/min, respectively. The maximum activity of HR03Asnase was reduced by 50% at 90 °C after 10-min incubation; however, the enzyme maintained more than 20% of its activity after 30-min incubation. This enzyme also maintained almost 50% of its activity at pH 12 after 40-min incubation. The evaluation of pH and temperature stability of HR03Asnase showed that the enzyme has a wide range of activity, which is a suitable characteristic for its application in different industries. Overall, the results of the present study indicate that marine sources are promising biological reservoirs for enzymes to be used for biotechnological purposes, and marine thermostable HR03Asnase is likely a potential candidate for its future usage in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Fatemeh Izadpanah Qeshmi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Pedro Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- DREAMS and Faculty of Engineering, Universidade Lusófona de Humanidades E Tecnologias, Av. Campo Grande 376, 1749-024, Lisbon, Portugal
| |
Collapse
|
13
|
Overview of Host Defense Peptides with Promising Anti-Breast Cancer Activity. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Breast cancer is the leading cause of death among women worldwide. The main limitations of conventional anti-cancer therapy, including breast cancer treatment, are side effects and the development of resistance to chemotherapeutics. Host defense peptides (HDPs) are bioactive compounds of innate immunity isolated from almost all living organisms, which exhibit wide range of biological activities. This review focuses on the anti-cancer effects of HDPs and their therapeutic potential against breast cancer. Numerous HDPs from different sources, including mammalian and amphibian origin, and their chemically modified analogues, exert the spectrum of anti-cancer activities. These effects include direct disruption of cancer cell membrane, induction of apoptosis, inhibition of angiogenesis and cancer cell proliferation, but also the modulation of anti-cancer immune response. Selected examples of HDPs of different origin and their anti-breast cancer capacities have been reviewed. Conclusively, due to their anti-cancer effects accompanied by substantial selectivity for cancer cells and low toxicity for normal cells, HDPs have been widely recognized as possible therapeutic agents.
Collapse
|
14
|
Hallaj-Nezhadi S, Hamdipour R, Shahrvirani M, Zare Tin R, Chapeland-Leclerc F, Ruprich-Robert G, Esnaashari S, Elyasi Far B, Dilmaghani A. Antimicrobial activity of Bacillus sp. isolated strains of wild honey. BMC Complement Med Ther 2022; 22:78. [PMID: 35305633 PMCID: PMC8933914 DOI: 10.1186/s12906-022-03551-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multi-drug resistant bacteria hazards to the health of humans could be an agent in the destruction of human generation. Natural products of Bacillus species are the main source to access progressive antibiotics that can be a good candidate for the discovery of novel antibiotics. Wild honey as a valuable food has been used in medicine with antimicrobial effects. OBJECTIVE Bacillus strains isolated from wild honey were evaluated for the potential antimicrobial activity against human and plant bacterial and fungal pathogens. METHODS Three bacterial isolates were identified as strain Khuz-1 (98.27% similarity with Bacillus safensis subsp. Safensis strain FO-36bT), strain Khuz-2 (99.18% similarity with Bacillus rugosus strain SPB7T), and strain Khuz-3 (99.78% similarity with Bacillus velezensis strain CR-502 T) by 16S rRNA gene sequences. The strains were characterized by their ability to inhibit the growth of human and phytopathogenic fungi. RESULTS The results indicated that B. rugosus strain Khuz-2 inhibited the growth of phytopathogenic and human fungal more effective than other ones. It seems that the strain Khuz-2 has a suitable antimicrobial and antifungal potential as a good candidate for further pharmaceutical research. CONCLUSION Based on the results of GC-MS, Pyrrolo [1,2-a] pyrazine-1,4-dion, hexahydro-3-(2-methylpropyle) (PPDHM) was the major compound for all strains which have a various pharmacological effect. Isolation and identification of beneficial bacteria from natural sources can play an important role in future pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Somayeh Hallaj-Nezhadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Drug &Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Hamdipour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Shahrvirani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Zare Tin
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Florence Chapeland-Leclerc
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Gwenael Ruprich-Robert
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Solmaz Esnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Elyasi Far
- Department of Physiology and Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Mukarram Shah SM, Khan H. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cell Signal 2021; 87:110142. [PMID: 34487816 DOI: 10.1016/j.cellsig.2021.110142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in humans. It is characterized by excessive cell growth and accelerated intrusion of normal brain tissue along with a poor prognosis. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, is largely ineffective, with high mortality and recurrence rates. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The physiological effects of marine peptides in glioblastoma are mediated by a range of pathways, including apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability; autophagy and metabolic enzymes downregulation. Herein, we address the efficacy of marine peptides as putative safe therapeutic agents for glioblastoma coupled with detail molecular mechanisms.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Waqas Alam
- Department of Pharmacy, University of Swabi, Pakistan
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan.
| |
Collapse
|
16
|
Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021; 142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most prevalent invasive form of cancer in females and posing a great challenge for overcoming disease burden. The growth in global cancer deaths mandates the discovery of new efficacious natural anti-tumor treatments. In this regard, aquatic species offer a rich supply of possible drugs. Studies have shown that several marine peptides damage cancer cells by a broad range of pathways, including apoptosis, microtubule balance disturbances, and suppression of angiogenesis. Traditional chemotherapeutic agents are characterized by a plethora of side effects, including immune response suppression. The discovery of novel putative anti-cancer peptides with lesser toxicity is therefore necessary and timely, especially those able to thwart multi drug resistance (MDR). This review addresses marine anti-cancer peptides for the treatment of breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
17
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Anticancer effects of an extract from a local planarian species on human acute myeloid leukemia HL-60 cells in vitro. Biomed Pharmacother 2020; 130:110549. [DOI: 10.1016/j.biopha.2020.110549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
|
19
|
Suleiman S, Di Fiore R, Cassar A, Formosa MM, Schembri-Wismayer P, Calleja-Agius J. Axolotl Ambystoma mexicanum extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. Tumour Biol 2020; 42:1010428320954735. [PMID: 32873193 DOI: 10.1177/1010428320954735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia is the most common form of acute leukemia in adults, constituting about 80% of cases. Although remarkable progress has been made in the therapeutic scenario for patients with acute myeloid leukemia, research and development of new and effective anticancer agents to improve patient outcome and minimize toxicity is needed. In this study, the antitumor activity of axolotl (AXO) Ambystoma mexicanum crude extract was assessed in vitro on the human acute myeloid leukemia HL-60 cell line. The anticancer activity was evaluated in terms of ability to influence proliferative activity, cell viability, cell cycle arrest, and differentiation. Moreover, gene expression analysis was performed to evaluate the genes involved in the regulation of these processes. The AXO crude extract exhibited antiproliferative but not cytotoxic activities on HL-60 cells, with cell cycle arrest in the G0/G1 phase. Furthermore, the AXO-treated HL-60 cells showed an increase in both the percentage of nitroblue tetrazolium positive cells and the expression of CD11b, whereas the proportion of CD14-positive cells did not change, suggesting that extract is able to induce differentiation toward the granulocytic lineage. Finally, the treatment with AXO extract caused upregulation of CEBPA, CEBPB, CEBPE, SPI1, CDKN1A, and CDKN2C, and downregulation of c-MYC. Our data clearly show the potential anticancer activity of Ambystoma mexicanum on HL-60 cells and suggest that it could help develop promising therapeutic agents for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Analisse Cassar
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Melissa Marie Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | | | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
20
|
Patra S, Praharaj PP, Panigrahi DP, Panda B, Bhol CS, Mahapatra KK, Mishra SR, Behera BP, Jena M, Sethi G, Patil S, Patra SK, Bhutia SK. Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Mol Biol Rep 2020; 47:7209-7228. [PMID: 32797349 DOI: 10.1007/s11033-020-05709-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022]
Abstract
Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Biswajit Panda
- College of Basic Science & Humanities OUAT, Bhubaneswar, 751003, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Mrutyunjay Jena
- PG Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India. .,Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
21
|
Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10:200004. [PMID: 32692959 PMCID: PMC7574553 DOI: 10.1098/rsob.200004] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anti-cancer peptides (ACPs) are a series of short peptides composed of 10-60 amino acids that can inhibit tumour cell proliferation or migration, or suppress the formation of tumour blood vessels, and are less likely to cause drug resistance. The aforementioned merits make ACPs the most promising anti-cancer candidate. However, ACPs may be degraded by proteases, or result in cytotoxicity in many cases. To overcome these drawbacks, a plethora of research has focused on reconstruction or modification of ACPs to improve their anti-cancer activity, while reducing their cytotoxicity. The modification of ACPs mainly includes main chain reconstruction and side chain modification. After summarizing the classification and mechanism of action of ACPs, this paper focuses on recent development and progress about their reconstruction and modification. The information collected here may provide some ideas for further research on ACPs, in particular their modification.
Collapse
Affiliation(s)
- Mingfeng Xie
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Dijia Liu
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Yufeng Yang
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China.,Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| |
Collapse
|
22
|
Mauro M, Lazzara V, Punginelli D, Arizza V, Vazzana M. Antitumoral compounds from vertebrate sister group: A review of Mediterranean ascidians. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103669. [PMID: 32192994 DOI: 10.1016/j.dci.2020.103669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Among the diseases that afflict the human population, cancer is one for which many drug treatments are not yet known or effective. Moreover, the pharmacological treatments used often create serious side effects in sick patients and for this reason, it is essential to find effective and less harmful treatments. To date, marine biodiversity is a real source of metabolites with antitumoral activity and among invertebrates' ascidians have been the main source to obtain them. Mediterranean area is the richest in biodiversity and contains several ascidian species used in drugs development during the years. However, many more Mediterranean ascidian species have not been studied and could be a source of useful bioactive compounds. This review aims to summarize the scientific studies that analyzed the antitumor compounds obtained from different Mediterranean ascidians species, encouraging them to search further compounds in other new species to improve pharmacological treatments and human population life.
Collapse
Affiliation(s)
- Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy.
| | - Valentina Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 18-90123 Palermo, Italy
| |
Collapse
|
23
|
Chen L, Liu C, Liu X, Wang GY. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of culturable bacteria associated with the ascidian Botryllus schlosseri. J Appl Microbiol 2020; 129:892-905. [PMID: 32311814 DOI: 10.1111/jam.14667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 11/26/2022]
Abstract
AIMS Isolating culturable bacteria associated with ascidian (Botryllus schlosseri) and investigating their bioactivities to discover new marine microbial resources with potential to produce novel bioactive natural products. METHODS AND RESULTS A total of 357 bacteria were isolated from the ascidian B. schlosseri from the coast of Weihai in the north Yellow Sea, China. Of these, 203 isolates were identified by 16S rRNA gene sequencing and they belonged to 52 genera from 30 families in five phyla. The antimicrobial activities and cytotoxic activities of all isolates were determined. Of the 357 isolates, 135 isolates demonstrated antimicrobial activities, and the crude extracts of five isolates showed strong cytotoxicity against human hepatocellular carcinoma Bel 7402 or human cervical carcinoma HeLa cells. CONCLUSIONS Our study revealed the diversity of bacteria associated with the ascidian B. schlosseri and reported a broad spectrum of antimicrobial and cytotoxic activities displayed by these isolates. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that the culturable bacteria associated with the ascidian B. schlosseri may be a potential source for novel bioactive compounds.
Collapse
Affiliation(s)
- L Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - C Liu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - X Liu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - G-Y Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
24
|
Yang Q, Liu W, Sun D, Wang C, Li Y, Bi X, Gu P, Feng H, Wu F, Hou L, Hou C, Li Y. Yinning Tablet, a hospitalized preparation of Chinese herbal formula for hyperthyroidism, ameliorates thyroid hormone-induced liver injury in rats: Regulation of mitochondria-mediated apoptotic signals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112602. [PMID: 32004632 DOI: 10.1016/j.jep.2020.112602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/01/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperthyroidism is closely associated with liver injury. The preliminary clinical observation suggests that Yinning Tablet, a hospitalized preparation of traditional Chinese formula for hyperthyroidism, improves not only hyperthyroidism, but also hyperthyroidism-associated liver injury. AIM To evaluate the effect and underlying mechanisms of Yinning Tablet on thyroid hormone-induced liver injury. MATERIALS AND METHODS Female rats were orally administered L-thyroxine (1 mg/kg) once daily for 60 days, and co-treated with the carefully identified Yinning Tablet extract (0.6-2.4 g/kg) during the last 30 days. Blood and liver variables were determined enzymatically, histologically, by ELISA, radioimmunoassay, Real-Time PCR or Western blot, respectively. RESULTS Co-treatment with the extract attenuated L-thyroxine-induced increases in serum alanine transaminase and aspartate transaminase activities, the ratio of liver weight to body weight, cytoplasmic vacuolization in hepatocytes, infiltrated inflammatory cells and confused structures in liver tissue, accompanied by attenuation of increased serum triiodo-l-thyronine concentration and hepatic deiodinase type I overexpression in rats. Importantly, Yinning Tablet suppressed L-thyroxine-triggered hepatic Bax, cleaved caspases-3, -8 and -9 protein overexpression, and Bcl-2 protein downregulation. Furthermore, the increases in cytochrome c protein expression, Ca2+-ATPase activity and malondialdehyde content, and decreases in activities of Na+/K+-ATPase, catalase, superoxide dismutase and glutathione peroxidase, and total antioxidant capacity in liver tissue were attenuated. CONCLUSION The present results suggest that Yinning Tablet ameliorates thyroid hormone-induced liver injury in rats by regulating mitochondria-mediated apoptotic signals. Our findings go insight into the pharmacological basis of the hospitalized preparation for treatment of hyperthyroidism-associated liver injury.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongmei Sun
- Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, 528244, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yangxue Li
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Xiaoli Bi
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, 510095, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuqi Hou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia
| |
Collapse
|
25
|
Ramos AA, Castro-Carvalho B, Prata-Sena M, Malhão F, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Can marine-derived fungus Neosartorya siamensis KUFA 0017 extract and its secondary metabolites enhance antitumor activity of doxorubicin? An in vitro survey unveils interactions against lung cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:507-517. [PMID: 31804023 DOI: 10.1002/tox.22886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Doxorubicin (Dox) is one of the most successful anticancer drugs in use. However, chemoresistance is one of the main limitations that patients face. Therefore, development of new strategies to improve the efficacy of Dox is needed. Marine-derived fungi are especially promising sources of new anticancer compounds. In this work, antitumor activity of crude ethyl extract of the cultures of the marine-derived fungus Neosartorya siamensis KUFA 0017 (NS), combined with Dox, was evaluated in six cancer cell lines. To evaluate possible mechanisms involved in the eventual improvement of Dox's cytotoxicity by NS extract, effects on DNA damage, cell death, ultrastructural modifications, and intracellular accumulation of Dox were assessed. The NS extract demonstrated a significant enhancement of Dox's cytotoxic activity in A549 cells, inducing DNA damage, cell death, and intracellular accumulation of Dox. Additionally, the cytotoxic effect of eight compounds, isolated from this extract, that is, 2,4-dihydroxy-3-methylacetophenone-(C1), nortryptoquivaline-(C2), chevalone C-(C3), tryptoquivaline H-(C4), fiscalin A-(C5), epi-fiscalin-C (C6), epi-neofiscalin A-(C7), and epi-fiscalin A-(C8), alone and combined with Dox was also evaluated in lung cancer cells. The cytotoxic effect of Dox was potentiated by all the isolated compounds (except C1) in A549 cells. Therefore, we concluded that NS extract potentiated cytotoxicity by inhibiting cell proliferation, increasing intracellular accumulation of Dox, and inducing cell death (possibly by an autophagic process). The isolated compounds also enhanced the activity of Dox, supporting the potential of this sort of combination. These data call for further studies to characterize drug interactions and underlying mechanisms.
Collapse
Affiliation(s)
- Alice A Ramos
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Bruno Castro-Carvalho
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Prata-Sena
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Fernanda Malhão
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Suradet Buttachon
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Anake Kijjoa
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Eduardo Rocha
- CIIMAR/CIMAR-Interdisciplinary Center for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Tarhriz V, Eyvazi S, Shakeri E, Hejazi MS, Dilmaghani A. Antibacterial and Antifungal Activity of Novel Freshwater Bacterium Tabrizicola aquatica as a Prominent Natural Antibiotic Available in Qurugol Lake. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2019.56] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background
: Recently, resistant pathogenic microorganisms have become increasingly wide spread. The search for new natural antibiotics is a viable solution to this problem. For this aim we investigated the antimicrobial ability of Tabrizicola aquatica, the novel bacterium isolated from Qurugol Lake located nearby Tabriz city, Iran. Methods: The antimicrobial properties of Tabrizacola aquatica was investigated using well diffusion test. Tabtizicola aquatica was incubated at 40℃ in shaking incubator at 150 rpm for 14 days. The culture was centrifuged to obtain cell free supernatant, which was sterilized using 0.2 μm filter paper and lyophilized. Microorganisms were lawn and then wells were prepared over the agar plates. About 100 ml of the diluted lyophilized supernatant was added to the wells. The plates then were incubated at 37℃. After 48 hours, antimicrobial activity was defined by measuring the inhibition zone diameter. Results: The bacterial filtrates had considerable antagonistic effect against Escherichia coli, Rhizobium radiobacter, Pseudomonas syringae, Erwinia amylovora, Botrytis cinerea, Neurospora crassa and Fusarium oxysporum. However, the filtrates did not show any inhibitory action on the Aspergillus flavus and Klebsiella pneumonia. The supernatant decreased the growth zone on Streptococcus aureus, Pseudomonas aeruginosa, Shigella flexneri, Xanthomonas camoestris and Bassilus cereos. The result of MIC against pathogens was found for Neurospora crassa in the 50 µg/mL. Conclusion: The results, suggested that Tabrizicola aquatica and similar bacteria can be helpful to control freshwater natural water sources from pathogenic microorganism. Moreover, microbial natural products are still the most promising source of new antibiotics. Our results point out a scope for characterization of the metabolites and could be a candidate in the identification of novel antibiotics.
Collapse
Affiliation(s)
- Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elia Shakeri
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
El-Shaibany A, AL-Habori M, Al-Maqtari T, Al-Mahbashi H. The Yemeni Brown Algae Dictyota dichotoma Exhibit High In Vitro Anticancer Activity Independent of Its Antioxidant Capability. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2425693. [PMID: 32149090 PMCID: PMC7048913 DOI: 10.1155/2020/2425693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/26/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the anticancer and antioxidant activities as well as the safety of the brown algae Dictyota dichotoma of the Western seacoast of Yemen. Cytotoxicity of methanol extract of D. dichotoma and several of its fractions, petroleum ether, chloroform, ethyl acetate, n-butanol, and aqueous extracts against seven different cancer cell lines was determined by crystal violet staining. The antioxidant activity was also assessed using the DPPH radical scavenging assay. Acute toxicity study was performed on rats at increasing doses of the methanol extract. Extracts of D. dichotoma exerted a significant dose-dependent cytotoxicity on the seven tumor cell lines but were generally more selective on MCF-7 and PC-3. Among all fractions, the chloroform fraction of the D. dichotoma displayed the highest cytotoxic activity and was most effective in MCF-7, PC3, and CACO cells (IC50 = 1.93 ± 0.25, 2.2 ± 0.18, and 2.71 ± 0.53 μg/mL, respectively). The petroleum ether fraction was also effective, particularly against MCF-7 and PC-3 (IC50 = 4.77 ± 0.51 and 3.93 ± 0.51 μg/mL, respectively) whereas the activity of the ethyl acetate fraction was more pronounced against HepG2 and CACO (IC50 = 5.06 ± 0.21 and 5.06 ± 0.23 μg/mL, respectively). Of all the extracts tested, the crude methanolic extract of the algae exhibited only a modest antioxidant potential (IC50 = 204.6 ± 8.3 μg/mL). Doses as high as 5000 mg/kg body weight of D. dichotoma methanolic extracts were safe and well tolerated by rats. The overall results showed that D. dichotoma exhibited a significant cytotoxic activity probably due to the occurrence of nonpolar cytotoxic compounds, which is independent of its antioxidant capability.
Collapse
Affiliation(s)
- Amina El-Shaibany
- Department of Pharmacology, Faculty of Pharmacy, University of Sana'a, Sana'a, Yemen
| | - Molham AL-Habori
- Department of Biochemistry & Molecular Biology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Yemen
| | - Tareq Al-Maqtari
- Department of Pharmacology, Faculty of Pharmacy, University of Sana'a, Sana'a, Yemen
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine and Health Sciences, University of Sana'a, Sana'a, Yemen
| |
Collapse
|
28
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Mihanfar A, Yousefi B, Safa A, Majidinia M, Rameshknia V. Critical roles of long noncoding RNAs in breast cancer. J Cell Physiol 2020; 235:5059-5071. [PMID: 31951025 DOI: 10.1002/jcp.29442] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Breast cancer is a major clinical challenge that affects a wide range of the female population and heavily burdens the health system. In the past few decades, attempts have been made to understand the etiology of breast cancer, possible environmental risk factors, and the genetic predispositions, pathogenesis, and molecular aberrations involved in the process. Studies have shown that breast cancer is a heterogeneous entity; each subtype has its specific set of aberrations in different cell signaling pathways, such as Notch, Wnt/β-catenin, transforming growth factor-β, and mitogen-activated protein kinase pathways. One novel group of molecules that have been shown to be inducted in the regulation of multiple cell signaling pathways is the long noncoding RNAs (lncRNAs). These molecules have important implications in the regulation of multiple signaling pathways by interacting with various genes, affecting the transcription process, and finally, playing roles in posttranslational control of these genes. There is growing evidence that lncRNAs are involved in the process of breast cancer formation by effecting the aforementioned signaling pathways, and that this involvement can have significant diagnostic and prognostic values in clinical contexts. The present review aims to elicit the significance of lncRNAs in the regulation of cell signaling pathways, and the resulting changes in cell survival, proliferation, and invasion, which are the hallmarks of breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra S Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
29
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
30
|
Liu B, Che C, Liu J, Si M, Gong Z, Li Y, Zhang J, Yang G. Fabrication and Antitumor Mechanism of a Nanoparticle Drug Delivery System: Graphene Oxide/Chitosan Oligosaccharide/
γ
‐Polyglutamic Acid Composites for Anticancer Drug Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201903145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baoqing Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Chengchuan Che
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Jinfeng Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Meiru Si
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Zhijin Gong
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Yuan Li
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Junming Zhang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Ge Yang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| |
Collapse
|
31
|
L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1253289. [PMID: 31885769 PMCID: PMC6899331 DOI: 10.1155/2019/1253289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.
Collapse
|
32
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
33
|
Karanam G, Arumugam MK, Sirpu Natesh N. Anticancer Effect of Marine Sponge-Associated Bacillus pumilus AMK1 Derived Dipeptide Cyclo (-Pro-Tyr) in Human Liver Cancer Cell Line Through Apoptosis and G2/M Phase Arrest. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09850-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo. Food Chem Toxicol 2019; 126:56-66. [PMID: 30753858 DOI: 10.1016/j.fct.2019.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
Scandenolone, an isoflavone, has shown anti-cancer potential. In this study, we extracted scandenolone from Cudrania tricuspidata fruit and evaluated its anti-breast cancer effects as well as toxicity in cell and animal models. In cell model, scandenolone suppressed the breast cancer MCF-7 cells viability, ceased mitotic cell cycle, decreased mitochondrial membrane potential, up-regulated cleaved caspase-3 and promoted the phosphorylation of p53. Additionally, this isoflavone promoted cell apoptosis and induced a sustained activation of the phosphorylation of p38 and ERK, but not JNK and Akt. The effects were further verified in a human MCF-7 breast cancer xenograft model, where scandenolone efficiently suppressed the cancer growth and increased apoptotic cells in tumor tissue. However scandenolone has also shown certain toxicity to normal hepatocytes and breast epithelial cells. It could be concluded that scandenolone suppressed the growth of breast cancer cells, but its toxicity towards normal cells might limit its potential clinical use.
Collapse
|
35
|
Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C. Biotechnological Applications of Bioactive Peptides From Marine Sources. Adv Microb Physiol 2018; 73:171-220. [PMID: 30262109 DOI: 10.1016/bs.ampbs.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Costantini
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Chiara Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Núñez Pons
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Department of Biology, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Dipartimento di Biologia, Università Roma 3, Roma, Italy.
| |
Collapse
|
36
|
Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95:94-105. [PMID: 28610952 DOI: 10.1016/j.peptides.2017.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023]
Abstract
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.
Collapse
Affiliation(s)
- Yeji Lee
- College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chanvorleak Phat
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Soon-Cheol Hong
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Reactive oxygen species dependent phosphorylation of the liver kinase B1/AMP activated protein kinase/ acetyl-CoA carboxylase signaling is critically involved in apoptotic effect of lambertianic acid in hepatocellular carcinoma cells. Oncotarget 2017; 8:70116-70129. [PMID: 29050265 PMCID: PMC5642540 DOI: 10.18632/oncotarget.19592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
Though lambertianic acid (LA) is reported to have hypolipidemic activity in liver, its underlying anticancer mechanism is poorly understood so far. Thus, in the present study, apoptotic mechanism of LA was elucidated in HepG2 and SK-Hep1 hepatocellular carcinoma (HCC) cells. Here LA increased cytotoxicity, sub-G1 population and Annexin V/PI positive cells in two HCC cells. Also, LA cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP), activated phosphorylation of liver kinase B1 (LKB1)/AMP activated protein kinase (AMPK)/ acetyl-CoA carboxylase (ACC) pathway and also suppressed antiapoptotic proteins such as phosphorylation of Akt/ mammalian target of rapamycin (mTOR) and the expression of B cell lymphoma-2 (Bcl-2)/ B-cell lymphoma-extra large (Bcl-xL) and cyclooxygenase-2 (COX-2) in two HCC cells. Furthermore, LA generated reactive oxygen species (ROS) in HepG2 cells and AMPK inhibitor compound C or ROS inhibitor N-acetyl-L-cysteine (NAC) blocked the apoptotic ability of LA to cleave PARP or increase sub G1 population in HepG2 cells. Consistently, cleavages of PARP and caspase-3 were induced by LA only in AMPK+/+ MEF cells, but not in AMPK-/- MEF cells. Also, immunoprecipitation (IP) revealed that phosphorylation of LKB1/AMPK through their binding was enhanced in LA treated HepG2 cells. Overall, these findings suggest that ROS dependent phosphorylation of LKB1/AMPK/ACC signaling is critically involved in LA induced apoptosis in HCCs.
Collapse
|
38
|
Pan L, Zhang Y, Zhao W, Zhou X, Wang C, Deng F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother Pharmacol 2017; 80:91-100. [PMID: 28597038 DOI: 10.1007/s00280-017-3337-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. METHODS The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca2+ was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. RESULTS Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca2+ concentration, but decreased GSH concentration in the cells. CONCLUSIONS The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.
Collapse
Affiliation(s)
- Li Pan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yuming Zhang
- Department of Clinical Laboratory, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wanlu Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xia Zhou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
- Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
39
|
Beesoo R, Bhagooli R, Neergheen-Bhujun VS, Li WW, Kagansky A, Bahorun T. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:81-90. [PMID: 28392375 DOI: 10.1016/j.cbpc.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022]
Abstract
Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections.
Collapse
Affiliation(s)
- Rima Beesoo
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Republic of Mauritius; ANDI Centre of Excellence for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Republic of Mauritius; Department of Health Sciences, Faculty of Science University of Mauritius, Réduit, Republic of Mauritius
| | - Ranjeet Bhagooli
- Department of Marine and Ocean Science, Fisheries and Mariculture, Faculty of Ocean Studies, University of Mauritius, Réduit 80837, Republic of Mauritius.
| | - Vidushi S Neergheen-Bhujun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Republic of Mauritius; Department of Health Sciences, Faculty of Science University of Mauritius, Réduit, Republic of Mauritius.
| | - Wen-Wu Li
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, ST4 7 QB Stoke on Trent, UK
| | - Alexander Kagansky
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital Crewe Road South, Edinburgh EH4 2XU, UK
| | - Theeshan Bahorun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Republic of Mauritius.
| |
Collapse
|
40
|
Huang Y, Ohno O, Suenaga K, Miyamoto K. Apoptosis-inducing activity and antiproliferative effect of Paeoniflorigenone from moutan cortex. Biosci Biotechnol Biochem 2017; 81:1106-1113. [PMID: 28317437 DOI: 10.1080/09168451.2017.1300517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ninety samples from the extracts of plants from traditional Chinese medicines were screened for antitumor activity. Paeoniflorigenone (PFG) was isolated as an active ingredient from the root of moutan cortex, which showed the strongest activity. In addition, our data indicated that PFG was cytotoxic and induced apoptosis selectively in the cancer cell lines. These effects were cancelled by the addition of caspase inhibitor Z-VAD-FMK, suggesting that it was mediated by caspase-3 activation.
Collapse
Affiliation(s)
- Ying Huang
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| | - Osamu Ohno
- b Department of Chemistry and Life Science , School of Advanced Engineering, Kogakuin University , Hachioji , Japan
| | | | - Kenji Miyamoto
- a Department of Biosciences & Informatics , Keio University , Yokohama , Japan
| |
Collapse
|
41
|
de Lima AB, Barbosa CDS, Gonçalves AMMN, Santos FVD, Viana GHR, Varotti FDP, Silva LM. New 3-alkylpyridine marine alkaloid analogues as promising antitumor agents against the CD44+/high/CD24−/lowsubset of triple-negative breast cancer cell line. Chem Biol Drug Des 2017; 90:5-11. [DOI: 10.1111/cbdd.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Aline Brito de Lima
- Serviço de Biologia Celular; Fundação Ezequiel Dias; Belo Horizonte MG Brazil
| | - Camila de Souza Barbosa
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | | | - Fabio Vieira dos Santos
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | | | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio); Universidade Federal de São João del Rei; Divinópolis MG Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular; Fundação Ezequiel Dias; Belo Horizonte MG Brazil
| |
Collapse
|
42
|
Catalani E, Proietti Serafini F, Zecchini S, Picchietti S, Fausto AM, Marcantoni E, Buonanno F, Ortenzi C, Perrotta C, Cervia D. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules. Pharmacol Res 2016; 113:409-420. [PMID: 27650755 DOI: 10.1016/j.phrs.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/27/2022]
Abstract
Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis/modifications processes, and the results obtained so far in biological studies provide a rationale to consider some of them a potential resource for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Francesca Proietti Serafini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, Milano, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| |
Collapse
|
43
|
Wätjen W, Ebada SS, Bergermann A, Chovolou Y, Totzke F, Kubbutat MHG, Lin W, Proksch P. Cytotoxic effects of the anthraquinone derivatives 1'-deoxyrhodoptilometrin and (S)-(-)-rhodoptilometrin isolated from the marine echinoderm Comanthus sp. Arch Toxicol 2016; 91:1485-1495. [PMID: 27473261 DOI: 10.1007/s00204-016-1787-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
We investigated cytotoxic effects of the anthraquinone derivatives 1'-deoxyrhodoptilometrin (SE11) and (S)-(-)-rhodoptilometrin (SE16) isolated from the marine echinoderm Comanthus sp. in two tumor cell lines (C6 glioma, Hct116 colon carcinoma). Both compounds showed cytotoxic effects, with SE11 [IC50-value (MTT assay): 13.1 µM in Hct116 cells] showing a higher potency to induce apoptotic and necrotic cell death. No generation of oxidative stress was detectable (DCF assay), and also no modulation of Nrf2/ARE and NFκB signaling could be shown. Investigation of 23 protein kinases associated with cell proliferation, survival, metastasis, and angiogenesis showed that both compounds were potent inhibitors of distinct kinases, e.g., IGF1-receptor kinase, focal adhesion kinase, and EGF receptor kinase with SE11 being a more potent compound (IC50 values: 5, 18.4 and 4 µM, respectively). SE11 caused a decrease in ERK phosphorylation which may be a consequence of the inhibition of EGF receptor kinase by this compound. Since an inhibition of the EGF receptor/MAPK pathway is an important target for diverse cytostatic drugs, we suggest that the anthraquinone derivative 1'-deoxyrhodoptilometrin (SE11) may be an interesting lead structure for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Wim Wätjen
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
- Institute of Toxicology, Heinrich-Heine-Universität, P.O. Box 101007, 40001, Düsseldorf, Germany.
| | - Sherif S Ebada
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Anja Bergermann
- Institute of Toxicology, Heinrich-Heine-Universität, P.O. Box 101007, 40001, Düsseldorf, Germany
| | - Yvonni Chovolou
- Institute of Toxicology, Heinrich-Heine-Universität, P.O. Box 101007, 40001, Düsseldorf, Germany
| | - Frank Totzke
- ProQinase GmbH, Breisacher Str. 117, 79106, Freiburg, Germany
| | | | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
44
|
Macroalgae of Izmir Gulf: Dictyotaceae exhibit high in vitro anti-cancer activity independent from their antioxidant capabilities. Cytotechnology 2016; 68:2667-2676. [PMID: 27378181 DOI: 10.1007/s10616-016-9991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 05/30/2016] [Indexed: 10/21/2022] Open
Abstract
In this study, 24 marine macroalgae collected from the coastline of Izmir Gulf were examined for their antioxidant activities and their effects on cell proliferation. Crude extracts were obtained from samples with cold methanol extraction. Antioxidant activity was evaluated as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity and total phenolic content (TPC); growth inhibitory effects of the extracts were determined by using WST-8. Amongst the species, Polysiphonia denuata (Rhodophyta) and Cystoseira species (Phaeophyceae) have been noticed by their high DPPH radical scavenging activities and TPCs. As expected, there was a strong correlation between these tests. Dictyota dichotoma (Phaeophyceae) showed the highest anti-cancer activity on MCF-7 cells with an IC50 of 17.2 ng mL-1. Flow cytometry analyses demonstrated that D. dichotoma methanolic extract strongly induced apoptosis. This extract exhibited moderate viability inhibition on MCF10A cells (IC50: 49.3 ng mL-1), suggesting a potential use of the extracts or its compounds for cancer therapy. There was no correlation between anti-cancer potential and antioxidant content of the extracts.
Collapse
|
45
|
Wang AT, Prinsep MR, Martinus RD. Pterocellin A isolated from marine bryozoan Pterocella vesiculosa is cytotoxic to human HeLa cells via mitochondrial apoptotic processes. SPRINGERPLUS 2016; 5:742. [PMID: 27376010 PMCID: PMC4909694 DOI: 10.1186/s40064-016-2397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
Pterocellin A is a novel bioactive alkaloid isolated from the New Zealand marine bryozoan Pterocella vesiculosa. It exhibits potent antitumour activity towards the P388 (murine leukaemia) cell line in vitro and is selectively sensitive towards certain non-small cell lung, melanoma, and breast cancer cell lines, however, the biological mode of action of pterocellin A is unknown. Using the human cervical cancer cell line HeLa, we show that pterocellin A exhibited cytotoxicity against HeLa cells with an IC50 of 886 ng/mL. Time-course MTT and LDH assays were carried out and the results showed only a low level of cytosolic LDH was detected in the supernatant after all the cells have died from pterocellin A treatment at 2000 ng/mL. This indicated the cells maintained membrane integrity upon cell death which suggested apoptotic cell death. Additionally, morphological changes were observed under the microscope after 6 h of treatment. Cell shrinkage and nucleus condensation were observed, as well as apparent membrane blebbing, a key feature of apoptosis. The MTT data was also indicative of mitochondria impairment which could suggest that pterocellin A targets the mitochondria. This idea was supported by the observed changes in the morphology and location of the mitochondria after exposure to pterocellin A. Furthermore, the level of activated caspase-3 in HeLa cells increased after treatment with pterocellin A; activated caspase-3 can only be detected after a series of signalling events following the induction of apoptosis. These data support the notion that pterocellin A is an inducer of apoptosis in HeLa cells possibly via mitochondria related processes.
Collapse
Affiliation(s)
- Alice T Wang
- School of Science, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Michèle R Prinsep
- School of Science, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Ryan D Martinus
- School of Science, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
46
|
Yao J, Jiao R, Liu C, Zhang Y, Yu W, Lu Y, Tan R. Assessment of the Cytotoxic and Apoptotic Eἀects of Chaetominine in a Human Leukemia Cell Line. Biomol Ther (Seoul) 2016; 24:147-55. [PMID: 26902083 PMCID: PMC4774495 DOI: 10.4062/biomolther.2015.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023] Open
Abstract
Chaetominine is a quinazoline alkaloid originating from the endophytic fungus Aspergillus fumigatus CY018. In this study, we showed evidence that chaetominine has cytotoxic and apoptotic effects on human leukemia K562 cells and investigated the pathway involved in chaetominine-induced apoptosis in detail. Chaetominine inhibited K562 cell growth, with an IC50 value of 35 nM, but showed little inhibitory effect on the growth of human peripheral blood mononuclear cells. The high apoptosis rates, morphological apoptotic features, and DNA fragmentation caused by chaetominine indicated that the cytotoxicity was partially caused by its pro-apoptotic effect. Under chaetominine treatment, the Bax/Bcl-2 ratio was upregulated (from 0.3 to 8), which was followed by a decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, and stimulation of Apaf-1. Furthermore, activation of caspase-9 and caspase-3, which are the main executers of the apoptotic process, was observed. These results demonstrated that chaetominine induced cell apoptosis via the mitochondrial pathway. Chaetominine inhibited K562 cell growth and induced apoptotic cell death through the intrinsic pathway, which suggests that chaetominine might be a promising therapeutic for leukemia.
Collapse
Affiliation(s)
- Jingyun Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China
| | - Ruihua Jiao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Changqing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China
| | - Yupeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China
| | - Wanguo Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China
| | - Renxiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
47
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
48
|
Zhong G, Chen X, Fang X, Wang D, Xie M, Chen Q. Fra-1 is upregulated in lung cancer tissues and inhibits the apoptosis of lung cancer cells by the P53 signaling pathway. Oncol Rep 2015; 35:447-53. [PMID: 26549498 DOI: 10.3892/or.2015.4395] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 11/05/2022] Open
Abstract
Fos-related antigen-1 (Fra-1) is a member of the activator protein-1 transcription factor superfamily. It plays important roles in oncogenesis in various types of malignancies. Herein, we investigated the expression of Fra-1 in lung cancer tissues by qPCR, immunohistochemistry, and western blot technologies. The results showed that Fra-1 was overexpressed in the lung cancer tissues when compared with the level in the adjacent non-cancerous tissues. To explore the possible mechanism of Fra-1 in lung cancer, we elucidated the effect of Fra-1 on the apoptosis of lung cancer H460 cells, and found that the rate of cell apoptosis was decreased in the H460/Fra-1 cells compared with the H460 or H460/vector cells. Cell apoptosis is closely related with a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of Fra-1 in the lung cancer H460 cells, led to an increase in ΔΨm and and a decrease in intracellular ROS and Ca2+ concentrations. Furthermore, we found that Fra-1 was correlated with dysregulation of the P53 signaling pathway in lung cancer tissues in vitro. At the same time, we found that Fra-1 overexpression affected the expression of MDM2 and P53 in vivo. In summary, our results suggest that Fra-1 is upregulated in lung cancer tissues and functions by affecting the P53 signaling pathway in lung cancer.
Collapse
Affiliation(s)
- Guangwei Zhong
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingxuan Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
49
|
Zhu GC, Gao L, He J, Long Y, Liao S, Wang H, Li X, Yi W, Pei Z, Wu M, Xiang J, Peng S, Ma J, Zhou M, Zeng Z, Xiang B, Xiong W, Tang K, Cao L, Li X, Li G, Zhou Y. CD90 is upregulated in gastric cancer tissues and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein. Oncol Rep 2015; 34:2497-506. [PMID: 26329007 DOI: 10.3892/or.2015.4243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 90 (CD90) (Thy-1) plays important roles in the oncogenesis in various types of malignancies. In the present study, we investigated the expression of CD90 in gastric cancer (GC) tissues by q-PCR, immunohistochemistry (IHC), and western blot technologies. The results showed that CD90 was overexpressed in gastric cancer tissues compared with the level in the adjacent non‑cancerous tissues. To explore the possible mechanism of CD90 in GC, we elucidated the effect of CD90 on the apoptosis of AGS gastric cancer cells, and found that a considerable decrease in apoptotic cells was observed for AGS cells with CD90 overexpression. Meanwhile, the rate of apoptotic cells was increased in the AGS cells with CD90 interference (siCD90) compared with that in the AGS cells. Cell apoptosis is closely related to a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of CD90 in the AGS gastric cancer cells led to an increase in ΔΨm and a decrease in intracellular ROS and Ca2+ concentrations. At the same time, siCD90 reduced ΔΨm and the increase in intracellular ROS and Ca2+ concentrations. Furthermore, we identified and confirmed that CD90 functions by modulating the expression level of secreted protein, acidic, cysteine‑rich (osteonectin) (SPARC) in vitro through LC‑MS/MS analyses and western blot technology. In summary, our results suggest that CD90 is upregulated in gastric cancer and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein.
Collapse
Affiliation(s)
- Guang Chao Zhu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Lu Gao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yuehua Long
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Haiyun Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Xujuan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhen Pei
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ke Tang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
50
|
Hou TT, Yang XY, Xia P, Pan S, Liu J, Qi ZP. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism. Neural Regen Res 2015; 10:644-50. [PMID: 26170828 PMCID: PMC4424760 DOI: 10.4103/1673-5374.155441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/27/2023] Open
Abstract
Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.
Collapse
Affiliation(s)
- Ting-Ting Hou
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng Xia
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Su Pan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, First Clinical Medical College of Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Ping Qi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|