1
|
Schrenk D, Allemang A, Fahrer J, Harms H, Li X, Lin G, Mahony C, Mulder P, Peijnenburg A, Pfuhler S, Punt A, Sievers H, Troutman J, Widjaja F. Toxins in Botanical Drugs and Plant-derived Food and Feed - from Science to Regulation: A Workshop Review. PLANTA MEDICA 2024; 90:219-242. [PMID: 38198805 DOI: 10.1055/a-2218-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In September 2022, the 3rd International Workshop on pyrrolizidine alkaloids (PAs) and related phytotoxins was held on-line, entitled 'Toxins in botanical drugs and plant-derived food and feed - from science to regulation'. The workshop focused on new findings about the occurrence, exposure, toxicity, and risk assessment of PAs. In addition, new scientific results related to the risk assessment of alkenylbenzenes, a distinct class of herbal constituents, were presented. The presence of PAs and alkenylbenzenes in plant-derived food, feed, and herbal medicines has raised health concerns with respect to their acute and chronic toxicity but mainly related to the genotoxic and carcinogenic properties of several congeners. The compounds are natural constituents of a variety of plant families and species widely used in medicinal, food, and feed products. Their individual occurrence, levels, and toxic properties, together with the broad range of congeners present in nature, represent a striking challenge to modern toxicology. This review tries to provide an overview of the current knowledge on these compounds and indicates needs and perspectives for future research.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ashley Allemang
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Jörg Fahrer
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Henrik Harms
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Central Product Safety, Procter & Gamble Technical Centre, Reading, United Kingdom
| | - Patrick Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Stefan Pfuhler
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - John Troutman
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Frances Widjaja
- Division of Toxicology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Ishii Y, Shi L, Takasu S, Ogawa K, Umemura T. A 13-week comprehensive toxicity study with adductome analysis demonstrates the toxicity, genotoxicity, and carcinogenicity of the natural flavoring agent elemicin. Food Chem Toxicol 2023; 179:113965. [PMID: 37495168 DOI: 10.1016/j.fct.2023.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Elemicin, an alkenylbenzene flavoring, exists naturally in foods, herbs, and spices. Some alkenylbenzenes are hepatotoxic and hepatocarcinogenic in rodents. However, few studies have examined the toxicology of elemicin. In the current study, we comprehensively evaluated the general toxicity, genotoxicity, and carcinogenicity of elemicin using gpt delta rats and DNA adductome analysis. Groups of 10 male F344 gpt delta rats were treated with elemicin by gavage at a dose of 0, 25, 100, or 400 mg/kg bw/day for 13 weeks. Liver weights were significantly increased with histopathological changes in groups receiving 100 mg/kg bw/day or more. Significant increases in serum hepatotoxic parameters were observed in the 400 mg/kg bw/day group. Based on the observed changes in liver weights, 18.6 mg/kg bw was identified as the low benchmark dose. Significant increases in the number and area of glutathione S-transferase placental form-positive foci and gpt mutant frequencies were apparent only in the 400 mg/kg/day group, although elemicin-specific DNA adducts were detected from the lowest dose, suggesting that elemicin exhibited hepatocarcinogenicity in rats only at higher doses. Because elemicin showed no mutagenicity at lower doses, there was an adequate safety margin between the acceptable daily intake and the estimated daily intake of elemicin.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Liang Shi
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan; Graduate School of Animal Health Technology, Yamazaki University of Animal Health Technology, Tokyo, Japan.
| |
Collapse
|
3
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
4
|
In vivo mutagenicity and tumor-promoting activity of 1,3-dichloro-2-propanol in the liver and kidneys of gpt delta rats. Arch Toxicol 2021; 95:3117-3131. [PMID: 34269859 DOI: 10.1007/s00204-021-03120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), a food contaminant, exerts carcinogenic effects in multiple organs, including the liver and kidneys, in rats. However, the underlying mechanisms of 1,3-DCP-induced carcinogenesis remain unclear. Here, the in vivo mutagenicity and tumor-promoting activity of 1,3-DCP in the liver and kidneys were evaluated using medium-term gpt delta rat models previously established in our laboratory (GPG and GNP models). Six-week-old male F344 gpt delta rats were treated with 0 or 50 mg/kg body weight/day 1,3-DCP by gavage for 4 weeks. After 2 weeks of cessation, partial hepatectomy or unilateral nephrectomy was performed to collect samples for in vivo mutation assays, followed by single administration of diethylnitrosamine (DEN) for tumor initiation. One week after DEN injection, 1,3-DCP treatment was resumed, and tumor-promoting activity was evaluated in the residual liver or kidneys by histopathological analysis of preneoplastic lesions. gpt mutant frequencies increased in excised liver and kidney tissues following 1,3-DCP treatment. 1,3-DCP did not affect the development of glutathione S-transferase placental form-positive foci in residual liver tissues, but enhanced atypical tubule hyperplasia in residual kidney tissues. Detailed histopathological analyses revealed glomerular injury and increased cell proliferation of renal tubular cells in residual kidney tissues of rats treated with 1,3-DCP. These results suggested possible involvement of genotoxic mechanisms in 1,3-DCP-induced carcinogenesis in the liver and kidneys. In addition, we found that 1,3-DCP exhibited limited tumor-promoting activity in the liver, but enhanced clonal expansion in renal carcinogenesis via proliferation of renal tubular cells following glomerular injury.
Collapse
|
5
|
Schulte-Hubbert R, Küpper JH, Thomas AD, Schrenk D. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells. Toxicology 2020; 444:152566. [PMID: 32853702 DOI: 10.1016/j.tox.2020.152566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Estragole is a natural constituent in herbs and spices and in products thereof such as essential oils or herbal teas. After cytochrome P450-catalyzed hydroxylation and subsequent sulfation, estragole acts as a genotoxic hepatocarcinogen forming DNA adducts in rodent liver. Because of the genotoxic mode of action and the widespread occurrence in food and phytomedicines a refined risk assessment for estragole is needed. We analyzed the time- and concentration-dependent levels of the DNA adducts N2-(isoestragole-3'-yl)-2'-desoxyguanosine (E3'N2dG) and N6-(isoestragole-3'-yl)-desoxyadenosine (E3'N6dA), reported to be the major adducts formed in rat liver, in rat hepatocytes (pRH) in primary culture after incubation with estragole. DNA adduct levels were measured via UHPLC-ESI-MS/MS using stable isotope dilution analysis. Both adducts were formed in pRH and could already be quantified after an incubation time of 1 h (E3'N6dA at 10 μM, E3'N2dG at 1μM estragole). E3'N2dG, the main adduct at all incubation times and concentrations, could be detected at estragole concentrations < 0.1 μM after 24 h and < 0.5 μM after 48 h. Adduct levels were highest after 6 h and showed a downward trend at later time-points, possibly due to DNA repair and/or apoptosis. While the concentration-response characteristics of adduct formation were apparently linear over the whole concentration range, strong indication for marked hypo-linearity was obtained when the modeling was based on concentrations < 1 μM only. In the micronucleus assay no mutagenic potential of estragole was found in HepG2 cells whereas in HepG2-CYP1A2 cells 1 μM estragole led to a 3.2 fold and 300 μM to a 7.1 fold increase in micronuclei counts. Our findings suggest the existence of a 'practical threshold' dose for DNA adduct formation as an initiating key event of the carcinogenicity of estragole indicating that the default assumption of concentration-response-linearity is questionable, at least for the two major adducts studied here.
Collapse
Affiliation(s)
- Ruth Schulte-Hubbert
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Molecular Cell Biology, Brandenburg University of Technology, Senftenberg, Germany
| | - Adam D Thomas
- Centre for the Research in Biosciences (CRIB), UWE, Bristol, United Kingdom
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
6
|
Nohmi T. My career development with Ames test: A personal recollection. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503095. [PMID: 31699345 DOI: 10.1016/j.mrgentox.2019.503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022]
Abstract
I first became acquainted with the Ames test at the very beginning of my career in 1978, when my task at the National Institute of Health Sciences (Tokyo) was to screen for mutagenicity of food additives used in Japan, using the Ames test. I also used this test to research the metabolic activation mechanisms of chemical carcinogens, in particular, the analgesic drug, phenacetin. This chemical was not mutagenic in Salmonella typhimurium TA100 with standard 9000 × g supernatant of liver homogenates (S9) from rat but was mutagenic with hamster S9. It was revealed that hamster S9 had much higher deacetylation activities than rat S9, which accounts for the species difference. Then, my work was focused on molecular biology. We cloned the genes encoding nitroreductase and acetyltransferase in Salmonella typhimurium TA1538. Plasmids carrying these genes made strain TA98 more sensitive to mutagenic nitroarenes and aromatic amines. Because of their high sensitivity, the resulting strains such as YG1021 and YG1024 are widely used to monitor mutagenic nitroarenes and aromatic amines in complex mixtures. Later, we disrupted the genes encoding DNA polymerases in TA1538 and classified chemical mutagens into four classes depending on their use of different DNA polymerases. I was also involved in the generation of gpt delta transgenic rodent gene mutation assays, which examine the results of the Ames test in vivo. I have unintentionally developed my career under the influence of Dr. Ames and I would like to acknowledge his remarkable achievements in the field of environmental mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
7
|
Monien BH, Sachse B, Niederwieser B, Abraham K. Detection of N-Acetyl-S-[3′-(4-methoxyphenyl)allyl]-l-Cys (AMPAC) in Human Urine Samples after Controlled Exposure to Fennel Tea: A New Metabolite of Estragole and trans-Anethole. Chem Res Toxicol 2019; 32:2260-2267. [DOI: 10.1021/acs.chemrestox.9b00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bernhard H. Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Bela Niederwieser
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
8
|
Ishii Y, Yokoo Y, Kijima A, Takasu S, Ogawa K, Umemura T. DNA modifications that do not cause gene mutations confer the potential for mutagenicity by combined treatment with food chemicals. Food Chem Toxicol 2019; 129:144-152. [PMID: 31029721 DOI: 10.1016/j.fct.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Cell proliferation plays a key role in fixing mutations induced by DNA damage. We clarified whether this phenomenon occurred after combined treatment with chemicals in food. The effects of antibiotic flumequine (FL), a residue of veterinary medicinal products in foodstuffs, on mutagenicity in the liver were examined in mice treated with estragole (ES), a natural food flavouring compound. Gpt delta mice were orally administered 10 or 100 mg/kg/day ES and simultaneously fed a diet containing 0.4% FL for 4 weeks. Proliferating cell nuclear antigen-positive cells and cell cycle-related genes were additively increased in the livers of combined treatment groups as compared with high-dose ES or FL groups. Mutant frequencies (MFs) in gpt after cotreatment with low-dose ES and FL were significantly increased, although treatment with ES alone increased MFs only in the high-dose group. Sult1a1 mRNA levels were unchanged after FL treatment. Liquid chromatography with tandem-mass spectrometry analysis showed that FL did not affect the amount of ES-specific DNA adducts in the livers, indicating that FL treatment did not influence metabolic pathways of ES. Thus, enhancement of the mutagenic potential of a chemical by chemical-induced cell proliferation may occur as a result of the combined effects of chemicals in food.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Yuh Yokoo
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, 210-9501, Japan; Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2, Minami-osawa, Hachihoji, Tokyo, 192-0364, Japan.
| |
Collapse
|
9
|
Marinho AT, Miranda JP, Caixas U, Charneira C, Gonçalves-Dias C, Marques MM, Monteiro EC, Antunes AMM, Pereira SA. Singularities of nevirapine metabolism: from sex-dependent differences to idiosyncratic toxicity. Drug Metab Rev 2019; 51:76-90. [PMID: 30712401 DOI: 10.1080/03602532.2019.1577891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nevirapine (NVP) is a first-generation non-nucleoside reverse transcriptase inhibitor widely used for the treatment and prophylaxis of human immunodeficiency virus infection. The drug is taken throughout the patient's life and, due to the availability of an extended-release formulation, it is administered once daily. This antiretroviral is one of the scarce examples of drugs with prescription criteria based on sex, in order to prevent adverse reactions. The therapy with NVP has been associated with potentially life-threatening liver and idiosyncratic skin toxicity. Multiple evidence has emerged regarding the formation of electrophilic NVP metabolites as crucial for adverse idiosyncratic reactions. The formation of reactive metabolites that yield covalent adducts with proteins has been demonstrated in patients under NVP-based treatment. Interestingly, several pharmacogenetic- and sex-related factors associated with NVP toxicity can be mechanistically explained by an imbalance toward increased formation of NVP-derived reactive metabolites and/or impaired detoxification capability. Moreover, the haptenation of self-proteins by these reactive species provides a plausible link between NVP bioactivation and immunotoxicity, further supporting the relevance of this toxicokinetics hypothesis. In the current paper, we review the existing knowledge and recent developments on NVP metabolism and their relation to NVP toxicity.
Collapse
Affiliation(s)
- Aline T Marinho
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Joana P Miranda
- b Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisboa , Portugal
| | - Umbelina Caixas
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal.,c Centro Hospitalar de Lisboa Central (CHLC) , Lisboa , Portugal
| | - Catarina Charneira
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Clara Gonçalves-Dias
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - M Matilde Marques
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Emília C Monteiro
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Alexandra M M Antunes
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Sofia A Pereira
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| |
Collapse
|
10
|
Nohmi T. Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicol Res 2018; 34:281-290. [PMID: 30370002 PMCID: PMC6195886 DOI: 10.5487/tr.2018.34.4.281] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/10/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
11
|
Punt A, Paini A, Spenkelink A, Scholz G, Schilter B, van Bladeren PJ, Rietjens IMCM. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling. Chem Res Toxicol 2016; 29:659-68. [PMID: 26952143 DOI: 10.1021/acs.chemrestox.5b00493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estragole is a known hepatocarcinogen in rodents at high doses following metabolic conversion to the DNA-reactive metabolite 1'-sulfooxyestragole. The aim of the present study was to model possible levels of DNA adduct formation in (individual) humans upon exposure to estragole. This was done by extending a previously defined PBK model for estragole in humans to include (i) new data on interindividual variation in the kinetics for the major PBK model parameters influencing the formation of 1'-sulfooxyestragole, (ii) an equation describing the relationship between 1'-sulfooxyestragole and DNA adduct formation, (iii) Monte Carlo modeling to simulate interindividual human variation in DNA adduct formation in the population, and (iv) a comparison of the predictions made to human data on DNA adduct formation for the related alkenylbenzene methyleugenol. Adequate model predictions could be made, with the predicted DNA adduct levels at the estimated daily intake of estragole of 0.01 mg/kg bw ranging between 1.6 and 8.8 adducts in 10(8) nucleotides (nts) (50th and 99th percentiles, respectively). This is somewhat lower than values reported in the literature for the related alkenylbenzene methyleugenol in surgical human liver samples. The predicted levels seem to be below DNA adduct levels that are linked with tumor formation by alkenylbenzenes in rodents, which were estimated to amount to 188-500 adducts per 10(8) nts at the BMD10 values of estragole and methyleugenol. Although this does not seem to point to a significant health concern for human dietary exposure, drawing firm conclusions may have to await further validation of the model's predictions.
Collapse
Affiliation(s)
- Ans Punt
- Division of Toxicology, Wageningen University , Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Alicia Paini
- Division of Toxicology, Wageningen University , Tuinlaan 5, 6703 HE Wageningen, The Netherlands.,Nestlé Research Center , P.O. Box 44, 1000 Lausanne 26, Switzerland
| | - Albertus Spenkelink
- Division of Toxicology, Wageningen University , Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Gabriele Scholz
- Nestlé Research Center , P.O. Box 44, 1000 Lausanne 26, Switzerland
| | - Benoit Schilter
- Nestlé Research Center , P.O. Box 44, 1000 Lausanne 26, Switzerland
| | - Peter J van Bladeren
- Division of Toxicology, Wageningen University , Tuinlaan 5, 6703 HE Wageningen, The Netherlands.,Nestec S.A , Avenue Nestlé 55, 1800 Vevey, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University , Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
12
|
Huang X, Cao M, Wang L, Wu S, Liu X, Li H, Zhang H, Wang RY, Sun X, Wei C, Baggerly KA, Roth JA, Wang M, Swisher SG, Fang B. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380. Oncotarget 2016; 6:345-54. [PMID: 25514600 PMCID: PMC4381599 DOI: 10.18632/oncotarget.2814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
Abstract
The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380–mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380–sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mengru Cao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. The Fourth Department of Medicine Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoying Liu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongyu Li
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rui-Yu Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caimiao Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computation Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Fang B. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai) 2016; 48:27-38. [PMID: 26350096 DOI: 10.1093/abbs/gmv090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Fang B, Mehran RJ, Heymach JV, Swisher SG. Predictive biomarkers in precision medicine and drug development against lung cancer. CHINESE JOURNAL OF CANCER 2015; 34:295-309. [PMID: 26134262 PMCID: PMC4593363 DOI: 10.1186/s40880-015-0028-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The molecular characterization of various cancers has shown that cancers with the same origins, histopathologic diagnoses, and clinical stages can be highly heterogeneous in their genetic and epigenetic alterations that cause tumorigenesis. A number of cancer driver genes with functional abnormalities that trigger malignant transformation and that are required for the survival of cancer cells have been identified. Therapeutic agents targeting some of these cancer drivers have been successfully developed, resulting in substantial improvements in clinical symptom amelioration and outcomes in a subset of cancer patients. However, because such therapeutic drugs often benefit only a limited number of patients, the successes of clinical development and applications rely on the ability to identify those patients who are sensitive to the targeted therapies. Thus, biomarkers that can predict treatment responses are critical for the success of precision therapy for cancer patients and of anticancer drug development. This review discusses the molecular heterogeneity of lung cancer pathogenesis; predictive biomarkers for precision medicine in lung cancer therapy with drugs targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), and immune checkpoints; biomarkers associated with resistance to these therapeutics; and approaches to identify predictive biomarkers in anticancer drug development. The identification of predictive biomarkers during anticancer drug development is expected to greatly facilitate such development because it will increase the chance of success or reduce the attrition rate. Additionally, such identification will accelerate the drug approval process by providing effective patient stratification strategies in clinical trials to reduce the sample size required to demonstrate clinical benefits.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - John V Heymach
- Department of Thoracic and Head/Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Ding W, Levy DD, Bishop ME, Pearce MG, Davis KJ, Jeffrey AM, Duan JD, Williams GM, White GA, Lyn-Cook LE, Manjanatha MG. In vivo genotoxicity of estragole in male F344 rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:356-365. [PMID: 25361439 DOI: 10.1002/em.21918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/03/2014] [Indexed: 06/04/2023]
Abstract
Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.
Collapse
Affiliation(s)
- Wei Ding
- Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Phillips TD, Richardson M, Cheng YSL, He L, McDonald TJ, Cizmas LH, Safe SH, Donnelly KC, Wang F, Moorthy B, Zhou GD. Mechanistic relationships between hepatic genotoxicity and carcinogenicity in male B6C3F1 mice treated with polycyclic aromatic hydrocarbon mixtures. Arch Toxicol 2014; 89:967-77. [PMID: 24888377 DOI: 10.1007/s00204-014-1285-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/20/2014] [Indexed: 01/22/2023]
Abstract
The genotoxicity of a complex mixture [neutral fraction (NF)] from a wood preserving waste and reconstituted mixture (RM) mimicking the NF with seven major polycyclic aromatic hydrocarbons (PAHs) and benzo(a)pyrene (BaP) was investigated by determining DNA adducts and tumor incidence in male B6C3F1 mice exposed to three different doses of the chemical mixtures. The peak values of DNA adducts were observed after 24 h, and the highest levels of PAH-DNA adducts were exhibited in mice administered NF + BaP, and the highest tumor incidence and mortality were also observed in this group. DNA adduct levels after 1, 7, or 21 days were significantly correlated with animal mortality and incidence of total tumors including liver, lung, and forestomach. However, only hepatic DNA adducts after 7 days significantly correlated with liver tumor incidence. Most proteins involved in DNA repair including ATM, pATR, Chk1, pChk1, DNA PKcs, XRCC1, FANCD2, Ku80, Mre11, and Brca2 were significantly lower in liver tumor tissue compared to non-tumor tissue. Expressions of proteins involved in apoptosis and cell cycle regulation were also significantly different in tumor versus non-tumor tissues, and it is possible that PAH-induced changes in these gene products are important for tumor development and growth.
Collapse
Affiliation(s)
- Tracie D Phillips
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Onami S, Cho YM, Toyoda T, Horibata K, Ishii Y, Umemura T, Honma M, Nohmi T, Nishikawa A, Ogawa K. Absence of in vivo genotoxicity of 3-monochloropropane-1,2-diol and associated fatty acid esters in a 4-week comprehensive toxicity study using F344 gpt delta rats. Mutagenesis 2014; 29:295-302. [DOI: 10.1093/mutage/geu018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Villarini M, Pagiotti R, Dominici L, Fatigoni C, Vannini S, Levorato S, Moretti M. Investigation of the cytotoxic, genotoxic, and apoptosis-inducing effects of estragole isolated from fennel (Foeniculum vulgare). JOURNAL OF NATURAL PRODUCTS 2014; 77:773-778. [PMID: 24617303 DOI: 10.1021/np400653p] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present study was undertaken to evaluate, in the HepG2 human hepatoma cell line, the in vitro cytotoxic, genotoxic, and apoptotic activities of estragole (1), contained in the essential oil of Foeniculum vulgare (fennel) and suspected to induce hepatic tumors in susceptible strains of mice. Toward this end, an MTT cytotoxicity assay, a trypan blue dye exclusion test, a double-staining (acridine orange and DAPI) fluorescence viability assay, a single-cell microgel-electrophoresis (comet) assay, a mitochondrial membrane potential (Δψm) assay, and a DNA fragmentation analysis were conducted. In terms of potential genotoxic effects, the comet assay indicated that estragole (1) was not able to induce DNA damage nor apoptosis under the experimental conditions used.
Collapse
Affiliation(s)
- Milena Villarini
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia , Via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Marinho AT, Rodrigues PM, Caixas U, Antunes AMM, Branco T, Harjivan SG, Marques MM, Monteiro EC, Pereira SA. Differences in nevirapine biotransformation as a factor for its sex-dependent dimorphic profile of adverse drug reactions. J Antimicrob Chemother 2013; 69:476-82. [PMID: 24051761 DOI: 10.1093/jac/dkt359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Nevirapine is widely used for the treatment of HIV-1 infection; however, its chronic use has been associated with severe liver and skin toxicity. Women are at increased risk for these toxic events, but the reasons for the sex-related differences are unclear. Disparities in the biotransformation of nevirapine and the generation of toxic metabolites between men and women might be the underlying cause. The present work aimed to explore sex differences in nevirapine biotransformation as a potential factor in nevirapine-induced toxicity. METHODS All included subjects were adults who had been receiving 400 mg of nevirapine once daily for at least 1 month. Blood samples were collected and the levels of nevirapine and its phase I metabolites were quantified by HPLC. Anthropometric and clinical data, and nevirapine metabolite profiles, were assessed for sex-related differences. RESULTS A total of 52 patients were included (63% were men). Body weight was lower in women (P = 0.028) and female sex was associated with higher alkaline phosphatase (P = 0.036) and lactate dehydrogenase (P = 0.037) levels. The plasma concentrations of nevirapine (P = 0.030) and the metabolite 3-hydroxy-nevirapine (P = 0.035), as well as the proportions of the metabolites 12-hydroxy-nevirapine (P = 0.037) and 3-hydroxy-nevirapine (P = 0.001), were higher in women, when adjusted for body weight. CONCLUSIONS There was a sex-dependent variation in nevirapine biotransformation, particularly in the generation of the 12-hydroxy-nevirapine and 3-hydroxy-nevirapine metabolites. These data are consistent with the sex-dependent formation of toxic reactive metabolites, which may contribute to the sex-dependent dimorphic profile of nevirapine toxicity.
Collapse
Affiliation(s)
- Aline T Marinho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alhusainy W, Paini A, van den Berg JHJ, Punt A, Scholz G, Schilter B, van Bladeren PJ, Taylor S, Adams TB, Rietjens IMCM. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Mol Nutr Food Res 2013; 57:1969-78. [DOI: 10.1002/mnfr.201300144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Wasma Alhusainy
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- Flavor and Extract Manufacturers Association; Washington, DC USA
- International Organization of the Flavor Industry; Genève Switzerland
- Nestlé Research Centre; Vers-Chez-Les-Blanc; Lausanne Switzerland
| | - Alicia Paini
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- Nestlé Research Centre; Vers-Chez-Les-Blanc; Lausanne Switzerland
| | | | - Ans Punt
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
| | - Gabriele Scholz
- Nestlé Research Centre; Vers-Chez-Les-Blanc; Lausanne Switzerland
| | - Benoit Schilter
- Nestlé Research Centre; Vers-Chez-Les-Blanc; Lausanne Switzerland
| | - Peter J. van Bladeren
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- Nestlé Research Centre; Vers-Chez-Les-Blanc; Lausanne Switzerland
| | - Sean Taylor
- International Organization of the Flavor Industry; Genève Switzerland
| | - Timothy B. Adams
- Flavor and Extract Manufacturers Association; Washington, DC USA
| | | |
Collapse
|