1
|
Odéen H, Payne AH, Parker DL. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI). J Magn Reson Imaging 2025. [PMID: 39842847 DOI: 10.1002/jmri.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences. Many different types of MEG (monopolar, bipolar, tripolar etc.) have been described and pros and cons are discussed. We further review studies investigating the safety of MR-ARFI, as well as approaches to simulate the MR-ARFI displacement. Lastly, MR-ARFI applications such as for focal spot localization, tissue stiffness interrogation following thermal ablation, trans-skull aberration correction, and simultaneous MR-ARFI and MR thermometry are discussed. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Luo H, Sigona MK, Manuel TJ, Phipps MA, Chen LM, Caskey CF, Grissom WA. Reduced-field of view three-dimensional MR acoustic radiation force imaging with a low-rank reconstruction for targeting transcranial focused ultrasound. Magn Reson Med 2022; 88:2419-2431. [PMID: 35916311 PMCID: PMC9529839 DOI: 10.1002/mrm.29403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects. METHODS MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount. To simultaneously minimize scan time and the FUS duty cycle, a 2-min three-dimensional (3D) reduced-FOV spin echo ARFI scan with two-dimensional undersampling was implemented at 3T with a FUS duty cycle of 0.85%. The 3D k-space sampling scheme incorporated uniform undersampling in one phase-encoded axis and partial Fourier (PF) sampling in the other. The scan interleaved FUS-on and FUS-off data collection to improve displacement map quality via a joint low-rank image reconstruction. Experiments in agarose and graphite phantoms and living macaque brains for neuromodulation and blood-brain barrier opening studied the effects of the sampling and reconstruction strategy on the acquisition, and evaluated its repeatability and accuracy. RESULTS In the phantom, the distances between displacement centroids of 10 prospective reconstructions and a fully sampled reference were below 1 mm. In in vivo brain, the distances between centroids ranged from 1.3 to 2.1 mm. Results in phantom and in vivo brain both showed that the proposed method can recover the FUS focus compared to slower fully sampled scans. CONCLUSION The proposed 3D MR-ARFI reduced-FOV method enables rapid imaging of the FUS focus while maintaining a low FUS duty cycle.
Collapse
Affiliation(s)
- Huiwen Luo
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle K Sigona
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J Manuel
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Marshal A Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Li M Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William A Grissom
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Phipps MA, Jonathan S, Yang PF, Chen LM, Grissom W, Caskey CF. A reduced aperture allows for transcranial focus localization at lower pressure. JASA EXPRESS LETTERS 2022; 2:062001. [PMID: 35782333 PMCID: PMC9245740 DOI: 10.1121/10.0011695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Localizing the focus during transcranial focused ultrasound procedures is important to ensure accurate targeting of specific brain regions and interpretation of results. Magnetic resonance acoustic radiation force imaging uses the displacement induced by the ultrasound focus in the brain to localize the beam, but the high pressure required to displace brain tissue may cause damage or confounds during subsequent neuromodulatory experiments. Here, reduced apertures were applied to a phased array transducer to generate comparable displacement to the full aperture but with 20% lower free field pressure.
Collapse
Affiliation(s)
- M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sumeeth Jonathan
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA , , , , ,
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - William Grissom
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA , , , , ,
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
5
|
Darmani G, Bergmann T, Butts Pauly K, Caskey C, de Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T, Phipps M, Pinton G, Ramezanpour H, Sallet J, Yaakub S, Yoo S, Chen R. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol 2022; 135:51-73. [DOI: 10.1016/j.clinph.2021.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
6
|
Bancel T, Tiennot T, Aubry JF. Adaptive Ultrasound Focusing Through the Cranial Bone for Non-invasive Treatment of Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:397-409. [DOI: 10.1007/978-3-030-91979-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the Anterior Thalamus With MRI-Guided Transcranial Focused Ultrasound (tFUS) Alters Pain Thresholds in Healthy Adults: A Double-Blind, Sham-Controlled Study. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:90-99. [PMID: 35746940 PMCID: PMC9063607 DOI: 10.1176/appi.focus.20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Brain Stimulation 2020; 13:1805-1812) Reprinted with permission from Elsevier.
Collapse
|
8
|
Qiao Y, Li Y, Leng Q, Zhou H, Long X, Lee J, Chen Y, Liu X, Zheng H, Zou C. Highly accelerated magnetic resonance acoustic radiation force imaging for in vivo transcranial ultrasound focus localization: A comparison of three reconstruction methods. NMR IN BIOMEDICINE 2021; 34:e4598. [PMID: 34396597 DOI: 10.1002/nbm.4598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Magnetic resonance acoustic radiation force imaging (MR-ARFI) is a promising tool for transcranial neurosurgery planning and monitoring. However, the ultrasound dose during ARFI is quite high due to the high intensity required and the repetitive ultrasound sonication. To reduce the ultrasound deposition and prevent unwanted neurological effects, undersampling in k-space data acquisition is adopted in the current study. Three reconstruction methods, keyhole, k-space hybrid and temporal differences (TED) compressed sensing, the latter two of which were initially proposed for MR thermometry, were applied to the in vivo transcranial focus localization based on MR-ARFI data in a retrospective way. The accuracies of the three methods were compared with the results from the fully sampled data as reference. The results showed that the keyhole method tended to smooth the displacement map and underestimate the peak displacement. The K-space hybrid method was better at recovering the displacement map and was robust to the undersampling pattern, while the TED method was more time efficient under a higher image resolution. For an image of a lower resolution, the K-space hybrid and TED methods were comparable in terms of accuracy when a high undersampling rate was applied. The results reported here facilitate the choice of appropriate undersampled reconstruction methods in transcranial focal localization based on MR-ARFI.
Collapse
Affiliation(s)
- Yangzi Qiao
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yanbin Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Qingpu Leng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Long
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Jo Lee
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yadong Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Chao Zou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
10
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
11
|
Thomas GPL, Khokhlova TD, Bawiec CR, Peek AT, Sapozhnikov OA, O'Donnell M, Khokhlova VA. Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of Nonlinear Pulses. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1040-1050. [PMID: 33052845 PMCID: PMC8476183 DOI: 10.1109/tuffc.2020.3030890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phase aberrations induced by heterogeneities in body wall tissues introduce a shift and broadening of the high-intensity focused ultrasound (HIFU) focus, associated with decreased focal intensity. This effect is particularly detrimental for HIFU therapies that rely on shock front formation at the focus, such as boiling histotripsy (BH). In this article, an aberration correction method based on the backscattering of nonlinear ultrasound pulses from the focus is proposed and evaluated in tissue-mimicking phantoms. A custom BH system comprising a 1.5-MHz 256-element array connected to a Verasonics V1 engine was used as a pulse/echo probe. Pulse inversion imaging was implemented to visualize the second harmonic of the backscattered signal from the focus inside a phantom when propagating through an aberrating layer. Phase correction for each array element was derived from an aberration-correction method for ultrasound imaging that combines both the beamsum and the nearest neighbor correlation method and adapted it to the unique configuration of the array. The results were confirmed by replacing the target tissue with a fiber-optic hydrophone. Comparing the shock amplitude before and after phase-aberration correction showed that the majority of losses due to tissue heterogeneity were compensated, enabling fully developed shocks to be generated while focusing through aberrating layers. The feasibility of using a HIFU phased-array transducer as a pulse-echo probe in harmonic imaging mode to correct for phase aberrations was demonstrated.
Collapse
|
12
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul 2020; 13:1805-1812. [PMID: 33127579 PMCID: PMC7888561 DOI: 10.1016/j.brs.2020.10.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Transcranial focused ultrasound (tFUS) is a noninvasive brain stimulation method that may modulate deep brain structures. This study investigates whether sonication of the right anterior thalamus would modulate thermal pain thresholds in healthy individuals. Methods: We enrolled 19 healthy individuals in this three-visit, double-blind, sham-controlled, crossover trial. Participants first underwent a structural MRI scan used solely for tFUS targeting. They then attended two identical experimental tFUS visits (counterbalanced by condition) at least one week apart. Within the MRI scanner, participants received two, 10-min sessions of either active or sham tFUS spread 10 min apart targeting the right anterior thalamus [fundamental frequency: 650 kHz, Pulse repetition frequency: 10 Hz, Pulse Width: 5 ms, Duty Cycle: 5%, Sonication Duration: 30s, Inter-Sonication Interval: 30 s, Number of Sonications: 10, ISPTA.0 995 mW/cm2, ISPTA.3 719 mW/cm2, Peak rarefactional pressure 0.72 MPa]. The primary outcome measure was quantitative sensory thresholding (QST), measuring sensory, pain, and tolerance thresholds to a thermal stimulus applied to the left forearm before and after right anterior thalamic tFUS. Results: The right anterior thalamus was accurately sonicated in 17 of the 19 subjects. Thermal pain sensitivity was significantly attenuated after active tFUS. The pre-post x active-sham interaction was significant (F(1,245.95) = 4.03, p = .046). This interaction indicates that in the sham stimulation condition, thermal pain thresholds decreased 1.08 °C (SE = 0.28) pre-post session, but only decreased .51 °C (SE = 0.30) pre-post session in the active stimulation group. Conclusions: Two 10-min sessions of anterior thalamic tFUS induces antinociceptive effects in healthy individuals. Future studies should optimize the parameter space, dose and duration of this effect which may lead to multi-session tFUS interventions for pain disorders.
Collapse
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Kevin A Caulfield
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sasha Stomberg-Firestein
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Philipp M Summers
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Matt Savoca
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xingbao Li
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Austelle
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Baron Short
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Norman Spivak
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mark S George
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
13
|
Wang JB, Di Ianni T, Vyas DB, Huang Z, Park S, Hosseini-Nassab N, Aryal M, Airan RD. Focused Ultrasound for Noninvasive, Focal Pharmacologic Neurointervention. Front Neurosci 2020; 14:675. [PMID: 32760238 PMCID: PMC7372945 DOI: 10.3389/fnins.2020.00675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A long-standing goal of translational neuroscience is the ability to noninvasively deliver therapeutic agents to specific brain regions with high spatiotemporal resolution. Focused ultrasound (FUS) is an emerging technology that can noninvasively deliver energy up the order of 1 kW/cm2 with millimeter and millisecond resolution to any point in the human brain with Food and Drug Administration-approved hardware. Although FUS is clinically utilized primarily for focal ablation in conditions such as essential tremor, recent breakthroughs have enabled the use of FUS for drug delivery at lower intensities (i.e., tens of watts per square centimeter) without ablation of the tissue. In this review, we present strategies for image-guided FUS-mediated pharmacologic neurointerventions. First, we discuss blood–brain barrier opening to deliver therapeutic agents of a variety of sizes to the central nervous system. We then describe the use of ultrasound-sensitive nanoparticles to noninvasively deliver small molecules to millimeter-sized structures including superficial cortical regions and deep gray matter regions within the brain without the need for blood–brain barrier opening. We also consider the safety and potential complications of these techniques, with attention to temporal acuity. Finally, we close with a discussion of different methods for mapping the ultrasound field within the brain and describe future avenues of research in ultrasound-targeted drug therapies.
Collapse
Affiliation(s)
- Jeffrey B Wang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Tommaso Di Ianni
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daivik B Vyas
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Zhenbo Huang
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sunmee Park
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Niloufar Hosseini-Nassab
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Muna Aryal
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Raag D Airan
- Neuroradiology Division, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
14
|
Ozenne V, Constans C, Bour P, Santin MD, Valabrègue R, Ahnine H, Pouget P, Lehéricy S, Aubry JF, Quesson B. MRI monitoring of temperature and displacement for transcranial focus ultrasound applications. Neuroimage 2020; 204:116236. [DOI: 10.1016/j.neuroimage.2019.116236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023] Open
|
15
|
Liu HL, Tsai CH, Jan CK, Chang HY, Huang SM, Li ML, Qiu W, Zheng H. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1756-1767. [PMID: 30010555 DOI: 10.1109/tuffc.2018.2855181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasound phased array system design to support transmit/receive operations for concurrent ultrasound exposure and backscattered focal beam reconstruction through a spherically focused ultrasound array. A 256-channel ultrasound transmission system was used to transmit focused ultrasonic energy (full 256 channels), with an extended implementation of multiple-channel receiving function (up to 64 channels) using the same 256-channel ultrasound array. A coherent backscatter-received beam formation algorithm was implemented to map the point spread function (PSF) and focal beam distribution under a free-field/transcranial environment setup, with the backscattering generated from a strong scatterer (a point reflector or a microbubble-perfused tube) or a weakly scattered tissue-mimicking graphite phantom. Our results showed that PSF and focal beam can be successfully reconstructed and visualized in free-field conditions and can also be transcranially reconstructed following skull-induced aberration correction. In vivo experiments were conducted to demonstrate its capability to preoperatively and semiquantitatively map a focal beam to guide blood-brain barrier opening. The proposed system may have potential for real-time guidance of ultrasound brain intervention, and may facilitate the design of a dual-mode ultrasound phased array for brain therapeutic applications.
Collapse
|
16
|
de Bever JT, Odéen H, Hofstetter LW, Parker DL. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 2017; 79:1515-1524. [PMID: 28795419 DOI: 10.1002/mrm.26827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joshua T de Bever
- School of Computing, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2017; 47:316-331. [PMID: 28580706 DOI: 10.1002/jmri.25770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan.,Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
18
|
Mougenot C, Pichardo S, Engler S, Waspe A, Colas EC, Drake JM. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing. Phys Med Biol 2016; 61:5724-40. [PMID: 27401452 DOI: 10.1088/0031-9155/61/15/5724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n = 4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.
Collapse
|
19
|
Eames MDC, Farnum M, Khaled M, Elias WJ, Hananel A, Snell JW, Kassell NF, Aubry JF. Head phantoms for transcranial focused ultrasound. Med Phys 2015; 42:1518-27. [PMID: 25832042 DOI: 10.1118/1.4907959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE In the ongoing endeavor of fine-tuning, the clinical application of transcranial MR-guided focused ultrasound (tcMRgFUS), ex-vivo studies wlkiith whole human skulls are of great use in improving the underlying technology guiding the accurate and precise thermal ablation of clinically relevant targets in the human skull. Described here are the designs, methods for fabrication, and notes on utility of three different ultrasound phantoms to be used for brain focused ultrasound research. METHODS Three different models of phantoms are developed and tested to be accurate, repeatable experimental options to provide means to further this research. The three models are a cadaver, a gel-filled skull, and a head mold containing a skull and filled with gel that mimics the brain and the skin. Each was positioned in a clinical tcMRgFUS system and sonicated at 1100 W (acoustic) for 12 s at different locations. Maximum temperature rise as measured by MR thermometry was recorded and compared against clinical data for a similar neurosurgical target. Results are presented as heating efficiency in units (°C/kW/s) for direct comparison to available clinical data. The procedure for casting thermal phantom material is presented. The utility of each phantom model is discussed in the context of various tcMRgFUS research areas. RESULTS The cadaveric phantom model, gel-filled skull model, and full head phantom model had heating efficiencies of 5.3, 4.0, and 3.9 °C/(kW/s), respectively, compared to a sample clinical heating efficiency of 2.6 °C/(kW/s). In the seven research categories considered, the cadaveric phantom model was the most versatile, though less practical compared to the ex-vivo skull-based phantoms. CONCLUSIONS Casting thermal phantom material was shown to be an effective way to prepare tissue-mimicking material for the phantoms presented. The phantom models presented are all useful in tcMRgFUS research, though some are better suited to a limited subset of applications depending on the researchers needs.
Collapse
Affiliation(s)
| | - Mercy Farnum
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903
| | - Mohamad Khaled
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908
| | - W Jeff Elias
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908
| | - Arik Hananel
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903 and Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908
| | - John W Snell
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903 and Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908
| | - Neal F Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903 and Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908
| | - Jean-Francois Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris 75005, France
| |
Collapse
|