1
|
Liu H, Wang D, Feng X, Liu L, Liu B, Zhu L, Sun J, Zuo X, Chen S, Liu J, Xian J, Zhang C, Yang W. Angelicin ameliorated ulcerative colitis through activating HDAC1-derived HIF-1α acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156546. [PMID: 40058317 DOI: 10.1016/j.phymed.2025.156546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a stubborn disease that occurs globally. SSP-TXYF is a traditional Chinese medicine (TCM) compound, which is widely used in the treatment of UC, but its picking and preparation is complicated. Therefore, this work analyzes the components of SSP-TXYF to find an natural compound that can treat UC, and verifies its efficacy and mechanism, aiming to explore new natural compound with the same efficacy as SSP-TXYF. METHODS AND RESULTS In this study, we used the quality markers (Q-marker) strategy to analyze the SSP-TXYF. We obtained that angelicin (Ang) is the main active ingredient. Combined with reductive dimethyl labeling and tandem orthogonal proteolysis-activity-based protein profiling (rdTOP-ABPP) and network pharmacology, we found that ERK1/2 and HDAC1 may be the binding proteins. Then, we demonstrated that Ang not only suppresses inflammation in lipopolysaccharide-induced IEC-6 but also effectively inhibits 2,4,6-trinitrobenzenesulfonic acid-induced UC in vivo. Increasing the concentration of propionate and butyrate, activating GPR43 and GPR109A receptors, increasing ERK1/2 activity, promoting Sp1 phosphorylation, thus competitively inhibiting the combination of HIF-1α and HDAC1, and finally increasing the acetylation of HIF-1α is the molecular signaling mechanism for Ang. CONCLUSIONS In conclusion, Ang can improve the symptoms of UC in rats and activate the GPR/ERK/SP1/HDAC1/HIF-1α pathway in colonic epithelial cells to repair the damaged intestinal mucosal barrier (IMB). The key pharmacodynamic mechanism of Ang is consistent with SSP-TXYF, and it is preliminarily believed that Ang can be used as a new natural medicine for treating UC.
Collapse
Affiliation(s)
- Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingbo Zuo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyuan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianyao Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Xian
- Nanning Hospital of Traditional Chinese Medicine, Nanning, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Fei L, Propato AP, Lotti G, Nardini P, Guasti D, Polvani S, Bani D, Galli A, Casini D, Cantini G, Chiaramonti D, Luconi M. Tailor-made Biochar enhances the anti-tumour effects of butyrate-glycerides in colorectal cancer. Biomed Pharmacother 2025; 184:117900. [PMID: 39921946 DOI: 10.1016/j.biopha.2025.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second cause of cancer death in the world. Emerging evidence suggests that the short-chain-fatty-acid butyrate diet-assumed or produced by gut microbiota may interfere with CRC. Novel, more focused and effective anti-cancer natural molecules selectively acting on tumour cells are required to improve patients' compliance compared to more aggressive drug-based schemes. This study explored the in vitro anti-cancer effects of a novel green compound consisting of butyrate-glycerides (BMDG) alone or absorbed on tailor-made Biochar (BMDG-Biochar) or on activated-carbon Norit-B (BMDG-Norit), by using two CRC cell lines, HCT116 and HT29. Tailor-made Biochar characterised by a larger share of meso and macroporosity compared to commercially available activated-carbon Norit-B, with micro-pored ultrastructure, displayed superior performances as a BMDG carrier, with higher absorption/release properties. BMDG, in particular when absorbed on Biochar, interfered significantly with CRC cell proliferation compared to BMDG-Norit that showed no effect. Analysis of cell metabolism revealed a superior sensitivity of HCT116 to the inhibitory effect of BMDG-Biochar. This compound specifically induced a shift from a glycolytic metabolism in particular in HCT116 cells where glycolysis supports the aggressive phenotype, towards the mitochondrial respiration that characterises the more differentiated and less aggressive HT29 cells. Biochar's ability to deliver the butyrate-glyceride bioactive mixture and to exert in vitro combined anti-cancer activity in colorectal cancer, interfering with the Warburg effect that characterises the aggressive CRC forms, opens future translational opportunities to develop new orally assumed green molecules as promising anti-cancer strategies for CRC.
Collapse
Affiliation(s)
- Laura Fei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Arianna Pia Propato
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Giulia Lotti
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - David Casini
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy
| | - David Chiaramonti
- Join-Laboratory Biodelivery, University of Florence, Florence, Italy; RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy; DENERG-Politecnico di Torino and RE-CORD, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Join-Laboratory Biodelivery, University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
4
|
Steigert S, Brouwers J, Vanuytsel T, Verbandt S, Tejpar S, Oswald S, Augustijns P. Protein abundance of drug transporters and drug-metabolizing enzymes in paired healthy and tumor tissue from colorectal cancer patients. Int J Pharm 2025; 671:125216. [PMID: 39809348 DOI: 10.1016/j.ijpharm.2025.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue. To understand how their presence may affect local drug disposition, the protein abundance of multiple drug transporters and drug-metabolizing enzymes was quantified in paired healthy colonic mucosa and colorectal adenocarcinoma tissue from colorectal cancer patients, utilizing mass spectrometry-based targeted proteomics. Statistically significant changes in protein expression were observed for two transporters (MRP1 and BCRP) and three of the studied enzymes (CES1, CES2 and UGT2B17). MRP1 displayed higher levels in cancerous tissue compared to healthy mucosa samples, while BCRP, CES1, CES2 and UGT2B17 showed the opposite. Other proteins of interest which could be quantified in colonic samples were the drug transporters P-gp, MRP3, MRP4, OATP2B1, MCT1 and enzymes CYP4F2, CYP2J2 and UGT1A1. The insights from this study enhance our understanding of the extent to which drug disposition in tumor tissue of colorectal cancer patients could be impacted by drug transporters and drug-metabolizing enzymes and may facilitate a more accurate prediction of local drug concentrations.
Collapse
Affiliation(s)
- Sebastian Steigert
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, Gasthuisberg ON1, Herestraat 49 - box 701, 3000 Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, Gasthuisberg ON4, Herestraat 49 - box 603, 3000 Leuven, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, Gasthuisberg ON4, Herestraat 49 - box 603, 3000 Leuven, Belgium
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
6
|
Singh V, Shirbhate E, Kore R, Vishwakarma S, Parveen S, Veerasamy R, Tiwari AK, Rajak H. Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives. Mini Rev Med Chem 2025; 25:76-93. [PMID: 38982701 DOI: 10.2174/0113895575320344240625080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Subham Vishwakarma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Shadiya Parveen
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ravichandran Veerasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah Darul Aman, 08100, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, AR 72205, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| |
Collapse
|
7
|
Vičič V, Pandel Mikuš R, Ferjančič B. Review of history and mechanisms of action of lactulose (4-O-β-D-Galactopyranosyl-β-D-fructofuranose): present and future applications in food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2036-2045. [PMID: 39397831 PMCID: PMC11464675 DOI: 10.1007/s13197-024-05997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 10/15/2024]
Abstract
Lactulose is a synthetic disaccharide composed of galactose and fructose. Literature review of history, legal status and possible food applications of lactulose in functional foods, such as confectionery and beverages. In the colon, lactulose is fermented by the microbiota and acts as a selective modulator of bacterial growth, promoting the growth of Lactobacilli and Bifidobacteria. It generates organic acids, such as short-chain fatty acids and lactic acid, which lower the pH of the colon and act as an osmotic laxative. Lactulose was first used in 1957 as an ingredient in an infant formula. Later it was registered as a prescription drug and banned for food use in many countries. In 2012, lactulose received an EU (European union) health claim "contributes to acceleration of intestinal transit". It can be used in food and food supplements across all age groups, from infants to the elderly. Lactulose has favourable technological properties, such as sweetness of 48-62% sucrose without an aftertaste, high solubility, low cariogenic potential and stability. Lactulose gummy candy, without added sweeteners, has an overall likability comparable to classic sucrose/glucose-based candy. With more than 60 years of safe use in infant, child, adult and elderly population, lactulose is an ideal ingredient for prebiotic functional food. Its technological properties allow for development of functional candy and beverages almost indistinguishable from those made from sucrose.
Collapse
Affiliation(s)
- Vid Vičič
- Chair of Biomedicine in Healthcare, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
- Jata Emona d.o.o, Agrokombinatska Cesta 84, 1000 Ljubljana, Slovenia
| | - Ruža Pandel Mikuš
- Chair of Biomedicine in Healthcare, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Blaž Ferjančič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ul. 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
9
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
10
|
Bošnjaković D, Nedić S, Arsić S, Prodanović R, Vujanac I, Jovanović L, Stojković M, Jovanović IB, Djuricic I, Kirovski D. Effects of Brown Seaweed ( Ascophyllum nodosum) Supplementation on Enteric Methane Emissions, Metabolic Status and Milk Composition in Peak-Lactating Holstein Cows. Animals (Basel) 2024; 14:1520. [PMID: 38891568 PMCID: PMC11171174 DOI: 10.3390/ani14111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dairy industry contributes significantly to anthropogenic methane emissions, which have an impact on global warming. This study aimed to investigate the effects of a dietary inclusion of brown seaweed Ascophyllum nodosum on enteric methane emissions (EMEs), hematological and blood biochemical profiles, and milk composition in dairy cows. Eighteen Holstein cows were divided into three groups: CON (non-supplemented cows), BS50 (50 mL of 10% A. nodosum), and BS100 (100 mL of 10% A. nodosum). In each cow, measurements of EME, dry matter intake (DMI), and milk yield (MY), as well as blood and milk sampling with respective analyzes, were performed before supplementation (P1), after 15 (P2) days, and after 30 (P3) days of supplementation. A. nodosum reduced (p < 0.05) methane production, methane yield, and methane intensity in both BS50 and BS100, and raised DMI (p < 0.05) only in BS50. Total bilirubin (p < 0.05) was higher in BS50 compared to CON cows in P2, and triacylglycerols were lower (p < 0.05) in BS50 than in CON cows in P3. Higher milk fat content was found in BS50 than in CON cows in P3. C16:0 proportions were higher (p < 0.05) in BS50 and BS100 than in CON cows, while C18:3n-3 was higher (p < 0.05) in BS100 than in BS50 and CON cows in P3. Dietary treatment with A. nodosum reduced EMEs and showed the potential to increase DMI and to improve energy status as well as milk composition in peak-lactating dairy cows.
Collapse
Affiliation(s)
- Dušan Bošnjaković
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Sreten Nedić
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Sveta Arsić
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Radiša Prodanović
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Ivan Vujanac
- Department of Ruminant and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (S.N.); (S.A.); (R.P.); (I.V.)
| | - Ljubomir Jovanović
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Milica Stojković
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Ivan B. Jovanović
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| | - Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijela Kirovski
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia; (D.B.); (L.J.); (M.S.); (I.B.J.)
| |
Collapse
|
11
|
Wang Y, Wymond B, Tandon H, Belobrajdic DP. Swapping White for High-Fibre Bread Increases Faecal Abundance of Short-Chain Fatty Acid-Producing Bacteria and Microbiome Diversity: A Randomized, Controlled, Decentralized Trial. Nutrients 2024; 16:989. [PMID: 38613022 PMCID: PMC11013647 DOI: 10.3390/nu16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A low-fibre diet leads to gut microbiota imbalance, characterized by low diversity and reduced ability to produce beneficial metabolites, such as short-chain fatty acids (SCFAs). This imbalance is associated with poor gastrointestinal and metabolic health. We aimed to determine whether one dietary change, substitution of white bread with high-fibre bread, improves gut microbiota diversity and SCFA-producing capability. Twenty-two healthy adults completed a two-phase randomized, cross-over trial. The participants consumed three slices of a high-fibre bread (Prebiotic Cape Seed Loaf with BARLEYmax®) or control white bread as part of their usual diet for 2 weeks, with the treatment periods separated by a 4-week washout. High-fibre bread consumption increased total dietary fibre intake to 40 g/d, which was double the amount of fibre consumed at baseline or during the white bread intervention. Compared to white bread, the high-fibre bread intervention resulted in higher faecal alpha diversity (Shannon, p = 0.014) and relative abundance of the Lachnospiracae ND3007 group (p < 0.001, FDR = 0.019) and tended to increase the butyrate-producing capability (p = 0.062). In conclusion, substituting white bread with a high-fibre bread improved the diversity of gut microbiota and specific microbes involved in SCFA production and may enhance the butyrate-producing capability of gut microbiota in healthy adults. These findings suggest that a single dietary change involving high-fibre bread provides a practical way for adults to exceed recommended dietary fibre intake levels that improve gut microbiota composition and support gastrointestinal and metabolic health.
Collapse
Affiliation(s)
- Yanan Wang
- CSIRO, Microbiomes for One Systems Health-Future Science Platform, Health and Biosecurity, Adelaide 5000, Australia;
| | - Brooke Wymond
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | - Himanshu Tandon
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | | |
Collapse
|
12
|
Ebrahimpour-Koujan S, Benisi-Kohansal S, Azadbakht L, Fallah M, Esmaillzadeh A. Adherence to HEI-2010 and odds of breast cancer according to the menopause status: Evidence from Middle Eastern Country. PLoS One 2024; 19:e0300986. [PMID: 38547194 PMCID: PMC10977784 DOI: 10.1371/journal.pone.0300986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Majority of earlier studies have assessed the association between individual healthy eating index-2010 (HEI-2010) and the odds of breast cancer (BC). However, no study has been conducted on the effect of compliance with HEI-2010 and the odds of BC in the Iranian population with a large sample size. Therefore, we aimed to investigate the relationship between the HEI-2010 and the odds of BC in the Iranian population. METHOD This population-based case-control study included 350 newly diagnosed cases of BC and 700 healthy controls randomly selected from adult women. HEI-2010 was examined using validated questionnaires. The adherence to HEI-2010 among the participants was divided into four categories. The general characteristics of the participants in the quartiles of the HEI score for categorical variables and continuous variables were evaluated using chi-square and one-way analysis of variance, respectively. Also, using logistic regression analysis, dietary intakes were evaluated in HEI score quartiles. Also, confounding variables were adjusted in different models. RESULT People with the highest HEI score had 60% lower odds of BC (OR: 0.40; 95% CI: 0.27, 0.57) than those with the lowest score among post-menopause women. After controlling for age and energy intake, individuals with the highest HEI score were 78% less likely to have BC compared with those with the lowest score (OR: 0.22; 95% CI: 0.14, 0.33). Adjustments for other potential confounders including demographic factors made the association stronger (OR: 0.21; 95% CI: 0.13, 0.32). This association remained significant even after taking BMI into model (OR: 0.27; 95% CI: 0.17, 0.43). CONCLUSION Finally, in this study we found an association between HEI-2010 and odds of breast cancer. This association was particularly seen in postmenopausal women. No significant association was found between adherence to HEI-2010 and odds of BC among pre-menopausal.
Collapse
Affiliation(s)
- Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Benisi-Kohansal
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Fallah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Song I, Yang J, Saito M, Hartanto T, Nakayama Y, Ichinohe T, Fukuda S. Prebiotic inulin ameliorates SARS-CoV-2 infection in hamsters by modulating the gut microbiome. NPJ Sci Food 2024; 8:18. [PMID: 38485724 PMCID: PMC10940623 DOI: 10.1038/s41538-024-00248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024] Open
Abstract
Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.
Collapse
Affiliation(s)
- Isaiah Song
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Jiayue Yang
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Misa Saito
- Metagen, Inc., Tsuruoka, Yamagata, Japan
| | | | | | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
- Metagen, Inc., Tsuruoka, Yamagata, Japan.
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Du Y, Kusama K, Hama K, Chen X, Tahara Y, Kajiwara S, Shibata S, Orihara K. Protective Effects of Inulin on Stress-Recurrent Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:2494. [PMID: 38473746 DOI: 10.3390/ijms25052494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the digestive tract and is closely associated with the homeostasis of the gut microbiota. Inulin, as a natural prebiotic, displays anti-inflammatory activity and maintains equilibrium of the intestinal microbiota. In this study, our research aimed to explore the potential of inulin in enhancing intestinal immunity and reducing inflammation in stress-recurrent IBD. In this study, a co-culture intestinal epithelium model and a stress-recurrent IBD mouse model was used to examine the protective effects of inulin. It was observed that inulin digesta significantly reduced pro-inflammatory cytokine expression (CXCL8/IL8 and TNFA) and increased MUC2 expression in intestinal epithelial cells. In vivo, our findings showed that Inulin intake significantly prevented IBD symptoms. This was substantiated by a decrease in serum inflammatory markers (IL-6, CALP) and a downregulation of inflammatory cytokine (Il6) in colon samples. Additionally, inulin intake led to an increase in short-chain fatty acids (SCFAs) in cecal contents and a reduction in the expression of endoplasmic reticulum (ER) stress markers (CHOP, BiP). Our results highlight that inulin can improve stress-recurrent IBD symptoms by modulating microbiota composition, reducing inflammation, and alleviating ER stress. These findings suggested the therapeutic potential of inulin as a dietary intervention for ameliorating stress-recurrent IBD.
Collapse
Affiliation(s)
- Yao Du
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kanta Kusama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Koki Hama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
15
|
Oncel S, Safratowich BD, Lindlauf JE, Liu Z, Palmer DG, Briske-Anderson M, Zeng H. Efficacy of Butyrate to Inhibit Colonic Cancer Cell Growth Is Cell Type-Specific and Apoptosis-Dependent. Nutrients 2024; 16:529. [PMID: 38398853 PMCID: PMC10892417 DOI: 10.3390/nu16040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Increasing dietary fiber consumption is linked to lower colon cancer incidence, and this anticancer effect is tied to elevated levels of short-chain fatty acids (e.g., butyrate) because of the fermentation of fiber by colonic bacteria. While butyrate inhibits cancer cell proliferation, the impact on cancer cell type remains largely unknown. To test the hypothesis that butyrate displays different inhibitory potentials due to cancer cell type, we determined half-maximal inhibitory concentrations (IC50) of butyrate in HCT116, HT-29, and Caco-2 human colon cancer cell proliferation at 24, 48, and 72 h. The IC50 (mM) butyrate concentrations of HCT116, HT-29, and Caco-2 cells were [24 h, 1.14; 48 h, 0.83; 72 h, 0.86], [24 h, N/D; 48 h, 2.42; 72 h, 2.15], and [24 h, N/D; 48 h, N/D; 72 h, 2.15], respectively. At the molecular level, phosphorylated ERK1/2 and c-Myc survival signals were decreased by (>30%) in HCT116, HT-29, and Caco-2 cells treated with 4 mM butyrate. Conversely, butyrate displayed a stronger potential (>1-fold) for inducing apoptosis and nuclear p21 tumor suppressor in HCT116 cells compared to HT-29 and Caco-2 cells. Moreover, survival analysis demonstrated that a cohort with high p21 gene expression in their colon tissue significantly increased survival time compared to a low-p21-expression cohort of colon cancer patients. Collectively, the inhibitory efficacy of butyrate is cell type-specific and apoptosis-dependent.
Collapse
Affiliation(s)
- Sema Oncel
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| | - Bryan D. Safratowich
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| | - James E. Lindlauf
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Daniel G. Palmer
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| | - Mary Briske-Anderson
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| | - Huawei Zeng
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA; (S.O.); (B.D.S.); (J.E.L.); (D.G.P.); (M.B.-A.)
| |
Collapse
|
16
|
Kim B, Lee J, Jung ES, Lee S, Suh DH, Park YJ, Kim J, Kwak JM, Lee S. The impact of a modified microbiota-accessible carbohydrate diet on gut microbiome and clinical symptoms in colorectal cancer patients following surgical resection. Front Microbiol 2024; 15:1282932. [PMID: 38380099 PMCID: PMC10877053 DOI: 10.3389/fmicb.2024.1282932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
A high-fiber diet is widely recognized for its positive effects on the gut microbiome. However, the specific impact of a high-fiber diet on the gut microbiome and bowel habits of patients with colon cancer remains poorly understood. In this study, we aimed to assess the effects of a modified microbiota-accessible carbohydrate (mMAC) diet on gut microbiota composition and clinical symptoms in colon cancer patients who underwent surgical resection. To achieve this, we enrolled 40 patients in two groups: those who received adjuvant chemotherapy and those who did not. Fecal samples were collected before and after dietary interventions for microbial and metabolite analyses. Each group was randomized in a 1: 1 ratio to follow either a 3-week conventional diet followed by a 3-week mMAC diet, or the reverse sequence. Although there were no significant differences in the microbial diversity data before and after the mMAC diet in both the non-chemotherapy and chemotherapy groups, distinct differences in gut microbial composition were revealed after the mMAC diet. Specifically, the abundance of Prevotella, which is associated with high-fiber diets, was further elevated with increased concentrations of acetate and propionate after the mMAC diet. Additionally, patients who experienced improved diarrhea and constipation after the mMAC diet exhibited an enrichment of beneficial bacteria and notable changes in metabolites. In conclusion, this study provides valuable insights into the potential benefits of the mMAC diet, specifically its impact on the gut microbiome and clinical symptoms in postoperative colorectal cancer (CRC) patients. These findings emphasize the potential role of a high-fiber diet in influencing the gut microbiome, and the clinical symptoms warrant further investigation.
Collapse
Affiliation(s)
- Boyeon Kim
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Sunyoung Lee
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Dong Ho Suh
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Yu Jin Park
- HEM Pharma Inc., Suwon, Gyeonggi, Republic of Korea
| | - Jin Kim
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung-Myun Kwak
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soohyeon Lee
- Cancer Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Schlörmann W, Liao S, Dinc T, Lorkowski S, Wallert M, Glei M. Chemopreventive effects of α-tocopherol and its long-chain metabolites α-13'-hydroxy- and α-13'-carboxychromanol in LT97 colon adenoma cells. Food Funct 2024; 15:183-195. [PMID: 38019686 DOI: 10.1039/d3fo02826g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Anticancer effects of vitamin E (tocopherols) have been studied extensively. While in vitro and animal studies showed promising results regarding anticancer effects of tocopherols, human intervention studies failed to reproduce these results. In vivo, α-tocopherol (α-TOH) is metabolized to the long-chain metabolites (LCM) 13'-hydroxychromanol (α-13'-OH) and 13'-carboxychromanol (α-13'-COOH), which likely reach the large intestine. The LCM showed antiproliferative effects in different colon cancer cell lines, but the exact mechanism of action remains unclear. To further clarify the chemopreventive action of the LCM, premalignant LT97 colon adenoma cells were treated with α-TOH, α-13'-OH and α-13'-COOH to study their impact on growth, apoptosis, antigenotoxicity, and ROS-scavenging capacity as well as expression of selected genes involved in detoxification and the cell cycle. Growth inhibitory potential was observed for α-13'-OH (IC50: 37.4 μM) and α-13'-COOH (IC50: 5.8 μM) but not for α-TOH in the tested concentrations. Levels of caspase-3 activity and expression of genes regulating the cell cycle and detoxification remained unchanged. However, α-TOH, α-13'-OH and α-13'-COOH exhibited antigenotoxic and partly ROS-scavenging capacity. The results indicate that the LCM exert chemopreventive effects via ROS-scavenging capacity, the protection against DNA damage and the induction of cell death via caspase-independent mechanisms in premalignant colon cells.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| | - Sijia Liao
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
| | - Tülin Dinc
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| | - Stefan Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
| | - Michael Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| |
Collapse
|
18
|
Miedes D, Cilla A, Alegría A. Chemopreventive Effect of an In Vitro Digested and Fermented Plant Sterol-Enriched Wholemeal Rye Bread in Colon Cancer Cells. Foods 2023; 13:112. [PMID: 38201138 PMCID: PMC10778687 DOI: 10.3390/foods13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Diet is crucial for the prevention of colorectal cancer. Whole grains are the source of beneficial compounds for this, such as fiber. The enrichment of wholemeal rye bread with plant sterols (PSs) could increase its beneficial effects. This study aimed to assess the potential antiproliferative effect of this enriched food on colon adenocarcinoma cells (Caco-2) compared with a non-enriched one. After a human oral chewing, simulated semi-dynamic gastrointestinal digestion and colonic fermentation in a simgi® system, fermentation liquids (FLs) obtained were used as treatment for cells. Cytotoxicity assay showed that samples diluted 1/5 (v/v) with DMEM are not toxic for non-tumoral cells, whereas they damage tumoral cells. Samples with PS (FLPS) produced a higher chemopreventive effect (vs. blank) in MTT and apoptosis assays, as well as higher gene expression of TP53 and Casp8. Nevertheless, FL0 (without PS) produced a higher chemopreventive effect in a cell cycle and reduced glutathione and calcium assays, besides producing higher gene expression of Casp3 and lower CCND1. The distinct antiproliferative effect of both FLs is attributed to differences in PSs, short chain fatty acids (lower concentration in FLPS vs. FL0) and antioxidant compounds. These results may support wholemeal rye bread consumption as a way of reducing the risk of colorectal cancer development, although further research would be needed.
Collapse
Affiliation(s)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain; (D.M.); (A.A.)
| | | |
Collapse
|
19
|
Tosti E, Srivastava N, Edelmann W. Vaccination and Microbiota Manipulation Approaches for Colon Cancer Prevention in Rodent Models. Cancer Prev Res (Phila) 2023; 16:429-438. [PMID: 37012205 PMCID: PMC11834863 DOI: 10.1158/1940-6207.capr-23-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Colorectal cancer represents the third most common cancer type worldwide and is a leading cause of cancer-related mortality in the United States and Western countries. Rodent models have been invaluable to study the etiology of colorectal cancer and to test novel chemoprevention avenues. In the past, the laboratory mouse has become one of the best preclinical models for these studies due to the availability of genetic information for commonly used mouse strains with well-established and precise gene targeting and transgenic techniques. Well-established chemical mutagenesis technologies are also being used to develop mouse and rat models of colorectal cancer for prevention and treatment studies. In addition, xenotransplantation of cancer cell lines and patient-derived xenografts has been useful for preclinical prevention studies and drug development. This review focuses on the recent use of rodent models to evaluate the utility of novel strategies in the prevention of colon cancers including immune prevention approaches and the manipulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
20
|
Amin M, Navidifar T, Saeb S, Barzegari E, Jamalan M. Tumor-targeted induction of intrinsic apoptosis in colon cancer cells by Lactobacillus plantarum and Lactobacillus rhamnosus strains. Mol Biol Rep 2023; 50:5345-5354. [PMID: 37155013 DOI: 10.1007/s11033-023-08445-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Colorectal cancer is one of the widespread and lethal types of malignancies. Recently, antineoplastic attributes of probiotics have attracted lots of attention. Here, we investigated anti-proliferative potential of the non-pathogenic strains Lactobacillus plantarum ATCC 14,917 and Lactobacillus rhamnosus ATCC 7469 on human colorectal adenocarcinoma-originated Caco-2 cells. METHODS AND RESULTS Caco-2 and HUVEC control cells were treated with ethyl acetate extracts of the two Lactobacillus strains to assess cell viability by MTT assay. Annexin/PI staining flow cytometry, and caspase-3, -8 and - 9 activity assays were performed to determine the type of cell death induced in extract-treated cells. Expression levels of apoptosis-related genes were evaluated by RT-PCR. Extracts from both L. plantarum and L. rhamnosus specifically targeted the Caco-2 cells and not HUVEC controls, and significantly affected the viability of the colon cancer cell line in a time- and dose-dependent manner. This effect was shown to occur through activation of the intrinsic apoptosis pathway, as indicated by the increased caspase-3 and - 9 activities. While there are limited and conflicting data about the mechanisms underlying the specific antineoplastic attributes of Lactobacillus strains, we clarified the overall induced mechanism. The Lactobacillus extracts specifically down-regulated the expression of the anti-apoptotic bcl-2 and bcl-xl, and simultaneously up-regulated the pro-apoptotic bak, bad, and bax genes in treated Caco-2 cells. CONCLUSIONS Ethyl acetate extracts of L. plantarum and L. rhamnosus strains could be considered as targeted anti-cancer treatments specifically inducing the intrinsic apoptosis pathway in colorectal tumor cells.
Collapse
Affiliation(s)
- Mansour Amin
- Department of Microbiology, Cellular and Molecular Research Center, Infectious and Tropical Diseases Research Center, Health Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Navidifar
- Department of Microbiology, Cellular and Molecular Research Center, Infectious and Tropical Diseases Research Center, Health Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sholeh Saeb
- Department of Microbiology, Cellular and Molecular Research Center, Infectious and Tropical Diseases Research Center, Health Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
21
|
He Z, Yang C, Yuan Y, He W, Wang H, Li H. Basic constituents, bioactive compounds and health-promoting benefits of wine skin pomace: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:8073-8090. [PMID: 36995277 DOI: 10.1080/10408398.2023.2195495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Wine pomace (WP) is a major byproduct generated during winemaking, and skin pomace (SKP) comprises one of the most valuable components of WP. Since SKP differs in composition and properties from seed pomace (SDP), precise knowledge of SKP will aid the wine industry in the development of novel, high-value products. The current review summarizes recent advances in research relating to SKP presents a comprehensive description of the generation, composition, and bioactive components, primarily focusing on the biological activities of SKP, including antioxidant, gastrointestinal health promotion, antibacterial, anti-inflammatory, anticancer, and metabolic disease alleviation properties. Currently, the separation and recovery of skins and seeds is an important trend in the wine industry for the disposal of winemaking byproducts. In comparison to SDP, SKP is rich in polyphenols including anthocyanins, flavonols, phenolic acids, stilbenes, and some proanthocyanidins, as well as dietary fiber (DF). These distinctive benefits afford SKP the opportunity for further development and application. Accordingly, the health-promoting mechanism and appropriate application of SKP will be further elucidated in terms of physiological activity, with the progress of biochemical technology and the deepening of related research.
Collapse
Affiliation(s)
- Zhouyang He
- College of Enology, Northwest A&F University, Yangling, China
| | - Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuxin Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Wanzhou He
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
22
|
Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023; 12:pathogens12030486. [PMID: 36986408 PMCID: PMC10058806 DOI: 10.3390/pathogens12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide, and certain subtypes are highly aggressive and drug resistant. As oxidative stress is linked to the onset and progression of cancer, new alternative therapies, based on plant-derived compounds that activate signaling pathways involved in the maintenance of cellular redox homeostasis, have received increasing interest. Among the bioactive dietary compounds considered for cancer prevention and treatment are flavonoids, such as quercetin, carotenoids, such as lycopene, polyphenols, such as resveratrol and stilbenes, and isothiocyanates, such as sulforaphane. In healthy cells, these bioactive phytochemicals exhibit antioxidant, anti-apoptotic and anti-inflammatory properties through intracellular signaling pathways and epigenetic regulation. Short-chain fatty acids (SCFAs), produced by intestinal microbiota and obtained from the diet, also exhibit anti-inflammatory and anti-proliferative properties related to their redox signaling activity—and are thus key for cell homeostasis. There is evidence supporting an antioxidant role for SCFAs, mainly butyrate, as modulators of Nrf2-Keap1 signaling involving the inhibition of histone deacetylases (HDACs) and/or Nrf2 nuclear translocation. Incorporation of SCFAs in nutritional and pharmacological interventions changes the composition of the the intestinal microbiota, which has been shown to be relevant for cancer prevention and treatment. In this review, we focused on the antioxidant properties of SCFAs and their impact on cancer development and treatment, with special emphasis on breast cancer.
Collapse
|
23
|
Jermendi É, Fernández-Lainez C, Beukema M, López-Velázquez G, van den Berg MA, de Vos P, Schols HA. TLR 2/1 interaction of pectin depends on its chemical structure and conformation. Carbohydr Polym 2023; 303:120444. [PMID: 36657837 DOI: 10.1016/j.carbpol.2022.120444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Citrus pectins have demonstrated health benefits through direct interaction with Toll-like receptor 2. Methyl-ester distribution patterns over the homogalacturonan were found to contribute to such immunomodulatory activity, therefore molecular interactions with TLR2 were studied. Molecular-docking analysis was performed using four GalA-heptamers, GalA7Me0, GalA7Me1,6, GalA7Me1,7 and GalA7Me2,5. The molecular relations were measured in various possible conformations. Furthermore, commercial citrus pectins were characterized by enzymatic fingerprinting using polygalacturonase and pectin-lyase to determine their methyl-ester distribution patterns. The response of 12 structurally different pectic polymers on TLR2 binding and the molecular docking with four pectic oligomers clearly demonstrated interactions with human-TLR2 in a structure-dependent way, where blocks of (non)methyl-esterified GalA were shown to inhibit TLR2/1 dimerization. Our results may be used to understand the immunomodulatory effects of certain pectins via TLR2. Knowledge of how pectins with certain methyl-ester distribution patterns bind to TLRs may lead to tailored pectins to prevent inflammation.
Collapse
Affiliation(s)
- Éva Jermendi
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands; Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Av. Imán 1, piso 9, col. Insurgentes Cuicuilco 04530, Ciudad de México, Mexico.
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Av. Imán 1, piso 5, col. Insurgentes Cuicuilco 04530, Ciudad de México, Mexico.
| | - Marco A van den Berg
- DSM Food & Beverages, Alexander Fleminglaan 1, 2613, AX, Delft, the Netherlands.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
24
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
25
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
26
|
Kumar A, Ali A, Kapardar RK, Dar GM, Nimisha, Apurva, Sharma AK, Verma R, Sattar RSA, Ahmad E, Mahajan B, Saluja SS. Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
Affiliation(s)
- Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Raj Kishore Kapardar
- Microbial Biotechnology Division, The Energy and Resource Institute (TERI), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
27
|
Trabelsi K, Ammar A, Boujelbane MA, Puce L, Garbarino S, Scoditti E, Boukhris O, Khanfir S, Clark CCT, Glenn JM, Alhaj OA, Jahrami H, Chtourou H, Bragazzi NL. Religious fasting and its impacts on individual, public, and planetary health: Fasting as a "religious health asset" for a healthier, more equitable, and sustainable society. Front Nutr 2022; 9:1036496. [PMID: 36505246 PMCID: PMC9729557 DOI: 10.3389/fnut.2022.1036496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Religious fasting is practiced by people of all faiths, including Christianity, Islam, Buddhism, Jainism, as well as Hinduism, Judaism, and Taoism. Individual/clinical, public, global, and planetary health has traditionally been studied as separate entities. Nevertheless, religious fasting, in conjunction with other religious health assets, can provide several opportunities, ranging from the individual to the population, environmental, and planetary levels, by facilitating and supporting societal transformations and changes, such as the adoption of healthier, more equitable, and sustainable lifestyles, therein preserving the Earth's systems and addressing major interconnected, cascading, and compound challenges. In this review, we will summarize the most recent evidence on the effects of religious fasting, particularly Orthodox and Ramadan Islamic fasting, on human and public health. Further, we will explore the potential effects of religious fasting on tackling current environmental issues, with a special focus on nutrition/food restriction and planetary health. Finally, specific recommendations, particularly around dietary intake during the fasting rituals, will be provided to ensure a sustainable healthy planet.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Research Laboratory: Education, Motricity, Sport and Health, Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- UFR SESS-STAPS, Paris-East Créteil University, LIRTES (EA 7313), Créteil, France
| | - Mohamed Ali Boujelbane
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Egeria Scoditti
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Omar Boukhris
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia
| | - Saber Khanfir
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Jordan M. Glenn
- Department of Health, Exercise Science Research Center Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Omar A. Alhaj
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Haitham Jahrami
- Department of Psychiatry, Ministry of Health, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hamdi Chtourou
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
28
|
Semreen AM, Alsoud LO, El-Huneidi W, Ahmed M, Bustanji Y, Abu-Gharbieh E, El-Awady R, Ramadan WS, Alqudah MA, Shara M, Abuhelwa AY, Soares NC, Semreen MH, Alzoubi KH. Metabolomics Analysis Revealed Significant Metabolic Changes in Brain Cancer Cells Treated with Paclitaxel and/or Etoposide. Int J Mol Sci 2022; 23:13940. [PMID: 36430415 PMCID: PMC9693830 DOI: 10.3390/ijms232213940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer of the central nervous system (CNS) is ranked as the 19th most prevalent form of the disease in 2020. This study aims to identify candidate biomarkers and metabolic pathways affected by paclitaxel and etoposide, which serve as potential treatments for glioblastoma, and are linked to the pathogenesis of glioblastoma. We utilized an untargeted metabolomics approach using the highly sensitive ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) for identification. In this study, 92 and 94 metabolites in U87 and U373 cell lines were profiled, respectively. The produced metabolites were then analyzed utilizing t-tests, volcano plots, and enrichment analysis modules. Our analysis revealed distinct metabolites to be significantly dysregulated (nutriacholic acid, L-phenylalanine, L-arginine, guanosine, ADP, hypoxanthine, and guanine), and to a lesser extent, mevalonic acid in paclitaxel and/or etoposide treated cells. Furthermore, both urea and citric acid cycles, and metabolism of polyamines and amino acids (aspartate, arginine, and proline) were significantly enriched. These findings can be used to create a map that can be utilized to assess the antitumor effect of paclitaxel and/or etoposide within the studied cancer cells.
Collapse
Affiliation(s)
- Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A.Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
29
|
Meijer JL, Roderka MN, Chinburg EL, Renier TJ, McClure AC, Rothstein RI, Barry EL, Billmeier S, Gilbert-Diamond D. Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss. Nutrients 2022; 14:nu14204243. [PMID: 36296927 PMCID: PMC9607039 DOI: 10.3390/nu14204243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/28/2022] Open
Abstract
Bariatric surgery is associated with weight loss attributed to reduced caloric intake, mechanical changes, and alterations in gut hormones. However, some studies have suggested a heightened incidence of colorectal cancer (CRC) has been associated with bariatric surgery, emphasizing the importance of identifying mechanisms of risk. The objective of this study was to determine if bariatric surgery is associated with decreases in fecal short-chain fatty acids (SCFA), a group of bacterial metabolites of fiber. Fecal samples (n = 22) were collected pre- (~6 weeks) and post-bariatric surgery (~4 months) in patients undergoing Roux-en-Y gastric bypass and sleeve gastrectomy. SCFA levels were quantified using liquid chromatography/mass spectrometry. Dietary intake was quantified using 24-h dietary recalls. Using an aggregate variable, straight SCFAs significantly decreased by 27% from pre- to post-surgery, specifically acetate, propionate, butyrate, and valerate. Pre-surgery weight was inversely associated with butyrate, with no association remaining post-surgery. Multiple food groups were positively (sugars, milk, and red and orange vegetables) and inversely (animal protein) associated with SCFA levels. Our results suggest a potential mechanism linking dietary intake and SCFA levels with CRC risk post-bariatric surgery with implications for interventions to increase SCFA levels.
Collapse
Affiliation(s)
- Jennifer L. Meijer
- Weight and Wellness Center, Dartmouth-Health, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Correspondence: ; Tel.: +1-603-650-5250
| | | | - Elsa L. Chinburg
- Weight and Wellness Center, Dartmouth-Health, Lebanon, NH 03756, USA
| | - Timothy J. Renier
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Auden C. McClure
- Weight and Wellness Center, Dartmouth-Health, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Richard I. Rothstein
- Weight and Wellness Center, Dartmouth-Health, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah Billmeier
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Diane Gilbert-Diamond
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Wishart DS, Oler E, Peters H, Guo A, Girod S, Han S, Saha S, Lui V, LeVatte M, Gautam V, Kaddurah-Daouk R, Karu N. MiMeDB: the Human Microbial Metabolome Database. Nucleic Acids Res 2022; 51:D611-D620. [PMID: 36215042 PMCID: PMC9825614 DOI: 10.1093/nar/gkac868] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The Human Microbial Metabolome Database (MiMeDB) (https://mimedb.org) is a comprehensive, multi-omic, microbiome resource that connects: (i) microbes to microbial genomes; (ii) microbial genomes to microbial metabolites; (iii) microbial metabolites to the human exposome and (iv) all of these 'omes' to human health. MiMeDB was established to consolidate the growing body of data connecting the human microbiome and the chemicals it produces to both health and disease. MiMeDB contains detailed taxonomic, microbiological and body-site location data on most known human microbes (bacteria and fungi). This microbial data is linked to extensive genomic and proteomic sequence data that is closely coupled to colourful interactive chromosomal maps. The database also houses detailed information about all the known metabolites generated by these microbes, their structural, chemical and spectral properties, the reactions and enzymes responsible for these metabolites and the primary exposome sources (food, drug, cosmetic, pollutant, etc.) that ultimately lead to the observed microbial metabolites in humans. Additional, extensively referenced data about the known or presumptive health effects, measured biosample concentrations and human protein targets for these compounds is provided. All of this information is housed in richly annotated, highly interactive, visually pleasing database that has been designed to be easy to search, easy to browse and easy to navigate. Currently MiMeDB contains data on 626 health effects or bioactivities, 1904 microbes, 3112 references, 22 054 reactions, 24 254 metabolites or exposure chemicals, 648 861 MS and NMR spectra, 6.4 million genes and 7.6 billion DNA bases. We believe that MiMeDB represents the kind of integrated, multi-omic or systems biology database that is needed to enable comprehensive multi-omic integration.
Collapse
Affiliation(s)
- David S Wishart
- To whom correspondence should be addressed. Tel: +1 780 492 8574;
| | - Eponine Oler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Harrison Peters
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - AnChi Guo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sagan Girod
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Scott Han
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sukanta Saha
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada,Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Vicki W Lui
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Vasuk Gautam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Rima Kaddurah-Daouk
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Naama Karu
- Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| |
Collapse
|
31
|
van Deuren T, Blaak EE, Canfora EE. Butyrate to combat obesity and obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes Rev 2022; 23:e13498. [PMID: 35856338 PMCID: PMC9541926 DOI: 10.1111/obr.13498] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022]
Abstract
Evidence is increasing that disturbances in the gut microbiome may play a significant role in the etiology of obesity and type 2 diabetes. The short chain fatty acid butyrate, a major end product of the bacterial fermentation of indigestible carbohydrates, is reputed to have anti-inflammatory properties and positive effects on body weight control and insulin sensitivity. However, whether butyrate has therapeutic potential for the treatment and prevention of obesity and obesity-related complications remains to be elucidated. Overall, animal studies strongly indicate that butyrate administered via various routes (e.g., orally) positively affects adipose tissue metabolism and functioning, energy and substrate metabolism, systemic and tissue-specific inflammation, and insulin sensitivity and body weight control. A limited number of human studies demonstrated interindividual differences in clinical effectiveness suggesting that outcomes may depend on the metabolic, microbial, and lifestyle-related characteristics of the target population. Hence, despite abundant evidence from animal data, support of human data is urgently required for the implementation of evidence-based oral and gut-derived butyrate interventions. To increase the efficacy of butyrate-focused interventions, future research should investigate which factors impact treatment outcomes including baseline gut microbial activity and functionality, thereby optimizing targeted-interventions and identifying individuals that merit most from such interventions.
Collapse
Affiliation(s)
- Thirza van Deuren
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Emanuel E Canfora
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
32
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Alexis Ramírez-Coronel A, Kamal Abdelbasset W, Hasan Abed M, Markov A, Raheem Lateef Al-Awsi G, Azamatovich Shamsiev J, Thaeer Hammid A, Nader Shalaby M, Karampoor S, Mirzaei R. The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol 2022; 110:108983. [PMID: 35750016 DOI: 10.1016/j.intimp.2022.108983] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Murtadha Hasan Abed
- Department of Medical Laboratory, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation; Tyumen Industrial University, Tyumen, Russian Federation.
| | | | - Jamshid Azamatovich Shamsiev
- Department of Pediatric Surgery, Anesthesiology and Intensive Care, Samarkand State Medical Institute, Samarkand, Uzbekistan; Research scholar, Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan.
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq.
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
34
|
Sun Y, Koyama Y, Shimada S. Measurement of intraluminal pH changes in the gastrointestinal tract of mice with gastrointestinal diseases. Biochem Biophys Res Commun 2022; 620:129-134. [DOI: 10.1016/j.bbrc.2022.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
35
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
36
|
Hertli S, Zimmermann P. Molecular interactions between the intestinal microbiota and the host. Mol Microbiol 2022; 117:1297-1307. [PMID: 35403275 PMCID: PMC9325447 DOI: 10.1111/mmi.14905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The intestine is the most densely colonized region of the body, inhabited by a diverse community of microbes. The functional significance of the intestinal microbiota is not yet fully understood, but it is known that the microbiota is implicated in numerous physiological processes of the host, such as metabolism, nutrition, the immune system, and regulation of behavior and mood. This article reviews recent findings on how bacteria of the intestinal microbiota interact with the host. Microbiota‐microbiota and microbiota‐host interactions are mediated by direct cell contact and by metabolites either produced by bacteria or produced by the host or the environment and metabolized by bacteria. Among them are short‐chain fatty, including butyrate, propionate, and acetate. Other examples include polyamines, linoleic acid metabolites, tryptophan metabolites, trimethylamine‐N‐oxide, vitamins, and secondary bile acids. These metabolites are involved in regulating the cell cycle, neurobiological signaling, cholesterol and bile acid metabolism, immune responses, and responses to antioxidants. Understanding the host‐microbiota pathways and their modulation will allow the identification of individualized therapeutic targets for many diseases. This overview helps to facilitate and promote further research in this field.
Collapse
Affiliation(s)
- Salomé Hertli
- Department of Community Health, Faculty of Science and Medicine University of Fribourg Fribourg Switzerland
| | - Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine University of Fribourg Fribourg Switzerland
- Department of Paediatrics Hospital HFR Fribourg Fribourg Switzerland
- Infectious Diseases Research Group, Murdoch Children’s Research Institute Parkville Australia
| |
Collapse
|
37
|
Use of the β-Glucan-Producing Lactic Acid Bacteria Strains Levilactobacillus brevis and Pediococcus claussenii for Sourdough Fermentation-Chemical Characterization and Chemopreventive Potential of In Situ-Enriched Wheat and Rye Sourdoughs and Breads. Nutrients 2022; 14:nu14071510. [PMID: 35406123 PMCID: PMC9002695 DOI: 10.3390/nu14071510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to examine β-glucan production and the potential prebiotic and chemopreventive effects of wheat and rye sourdoughs and breads generated with wild-type and non-β-glucan-forming isogenic mutant strains of Levilactobacillus brevis and Pediococcus claussenii. Sourdough and bread samples were subjected to in vitro digestion and fermentation. Fermentation supernatants (FS) and pellets (FP) were analyzed (pH values, short-chain fatty acids (SCFA), ammonia, bacterial taxa) and the effects of FS on LT97 colon adenoma cell growth, viability, caspase-2 and -3 activity, genotoxic and antigenotoxic effects and on gene and protein expression of p21, cyclin D2, catalase and superoxide dismutase 2 (SOD2) were examined. Concentrations of SCFA were increased and concentrations of ammonia were partly reduced in the FS. The relative abundance of Bifidobacteriaceae was increased in all FPs. Treatment with FS reduced the growth and viability of LT97 cells and significantly increased caspase-2 and -3 activities without exhibiting genotoxic or antigenotoxic effects. The p21 mRNA and protein levels were increased while that of cyclin D2 was reduced. Catalase and SOD2 mRNA and protein expression were marginally induced. The presented results indicate a comparable chemopreventive potential of wheat and rye sourdoughs and breads without an additional effect of the formed β-glucan.
Collapse
|
38
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|
39
|
Ojwach J, Adetunji AI, Mutanda T, Mukaratirwa S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00702. [PMID: 35127459 PMCID: PMC8803601 DOI: 10.1016/j.btre.2022.e00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Functional foods are essential food products that possess health-promoting properties for the treatment of infectious diseases. In addition, they provide energy and nutrients, which are required for growth and survival. They occur as prebiotics or dietary supplements, including oligosaccharides, processed foods, and herbal products. However, oligosaccharides are more efficiently recognized and utilized, as they play a fundamental role as functional ingredients with great potential to improve health in comparison to other dietary supplements. They are low molecular weight carbohydrates with a low degree of polymerization. They occur as fructooligosaccharide (FOS), inulooligosaccharadie (IOS), and xylooligosaccahride (XOS), depending on their monosaccharide units. Oligosaccharides are produced by acid or chemical hydrolysis. However, this technique is liable to several drawbacks, including inulin precipitation, high processing temperature, low yields, and high production costs. As a consequence, the application of microbial enzymes for oligosaccharide production is recognized as a promising strategy. Microbial enzymatic production of FOS and IOS occurs by submerged or solid-state fermentation in the presence of suitable substrates (sucrose, inulin) and catalyzed by fructosyltransferases and inulinases. Incorporation of FOS and IOS enriches the rheological and physiological characteristics of foods. They are used as low cariogenic sugar substitutes, suitable for diabetics, and as prebiotics, probiotics and nutraceutical compounds. In addition, these oligosaccharides are employed as anticancer, antioxidant agents and aid in mineral absorption, lipid metabolism, immune regulation etc. This review, therefore, focuses on the occurrence, physico-chemical characteristics, and microbial enzymatic synthesis of FOS and IOS from coprophilous fungi. In addition, the potential health benefits of these oligosaccharides were discussed in detail.
Collapse
Affiliation(s)
- Jeff Ojwach
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department of Biodiversity and Conservation Biology, Faculty of Natural Science, University of the Western Cape, Private Bag X17 Bellville 7530, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Adegoke Isiaka Adetunji
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University, School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| |
Collapse
|
40
|
Grochowska M, Perlejewski K, Laskus T, Radkowski M. The Role of Gut Microbiota in Gastrointestinal Tract Cancers. Arch Immunol Ther Exp (Warsz) 2022; 70:7. [PMID: 35112169 PMCID: PMC8810472 DOI: 10.1007/s00005-021-00641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Disturbances in gastrointestinal (GI) microbiota could play a significant role in the development of GI cancers, but the underlying mechanisms remain largely unclear. While some bacteria seem to facilitate carcinogenesis, others appear to be protective. So far only one bacterium (Helicobacter pylori) has been classified by the International Agency for Cancer Research as carcinogenic in humans but many other are the subject of intense research. Most studies on the role of microbiota in GI tract oncogenesis focus on pancreatic and colorectal cancers with the following three species: Helicobacter pylori, Escherichia coli, and Porphyromonas gingivalis as likely causative factors. This review summarizes the role of bacteria in GI tract oncogenesis.
Collapse
Affiliation(s)
- Marta Grochowska
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Karol Perlejewski
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology, Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
41
|
Antitumor bioactivity and gut microbiota modulation of polyhydroxybutyrate (PHB) in a rat animal model for colorectal cancer. Int J Biol Macromol 2022; 203:638-649. [PMID: 35090944 DOI: 10.1016/j.ijbiomac.2022.01.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Polyhydroxybutyrate (PHB) is a non-toxic polyhydroxyalkanoate polymer produced by several microorganisms, widely used as a biological substitute for plastics derived from fossil hydrocarbons. In this work, PHB polymer has been tested in an animal model for colorectal cancer. In the animal model, PHB has been able to reduce the number of polyps by 48,1%, and the tumoral extension area by 58,1%. Also, PHB induces a selective increase in beneficial gut bacterial taxons in this animal model, and a selective reduction in pro-inflammatory taxons, demonstrating its value as a nutraceutical compound. This antitumor effect is caused by gut production of 3-hydroxybutyrate and butyrate. In this animal model, 3-hydroxybutyrate is also observed in plasma and in brain tissue, after PHB consumption, making PHB supplementation interesting as a bioactive compound in other extraintestinal conditions, as 3-hydroxybutyrate has been reported to enhance brain and cognitive function, cardiac performance, appetite suppression and diabetes. Therefore, PHB could be postulated as an interesting non-polysaccharide antitumor prebiotic, paving the way towards its future use in functional foods.
Collapse
|
42
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
43
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
44
|
Elham N, Naheed M, Elahe M, Hossein MM, Majid T. Selective Cytotoxic effect of Probiotic, Paraprobiotic and Postbiotics of L.casei strains against Colorectal Cancer Cells: Invitro studies. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Noroozi Elham
- Islamic Azad University, Science and Research Branch, Iran; Islamic Azad University, Iran
| | - Mojgani Naheed
- Razi Vaccine and Serum Research Institute-Agriculture Research, Education and Extension Organization, Iran
| | | | | | - Tebianian Majid
- Razi Vaccine and Serum Research Institute-Agriculture Research, Education and Extension Organization, Iran
| |
Collapse
|
45
|
Bhatti SI, Mindikoglu AL. The impact of dawn to sunset fasting on immune system and its clinical significance in Covid-19 pandemic. Metabol Open 2021; 13:100162. [PMID: 34977523 PMCID: PMC8713419 DOI: 10.1016/j.metop.2021.100162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Dawn to sunset fasting, a type of intermittent fasting commonly practiced in the month of Ramadan, requires fasting from dawn to sunset without food or liquid intake. Dawn and dusk are two transition time zones of the day that play a critical role in the human circadian rhythm. Practicing dawn to sunset fasting requires the alignment of mealtimes and wake-sleep times with the human biological dawn and dusk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs immune cell responses at multiple levels and leads to severe Coronavirus Disease 2019 (COVID-19). It generates high levels of pro-inflammatory cytokines and chemokines, also known as a cytokine storm, leads to mitochondrial dysfunction and generation of excessive amounts of mitochondrial reactive oxygen species, downregulates autophagy to escape detection for unchecked replication, and alters gut microbiome composition. Severe cases of COVID-19 have been associated with several comorbidities that impair immune responses (e.g., obesity, diabetes, malignancy) and blood laboratory abnormalities (e.g., elevated procalcitonin, C-reactive protein, interleukin-6 (IL-6), leukocytosis, lymphopenia). Several studies of dawn to sunset fasting showed anti-inflammatory effect by suppressing several pro-inflammatory cytokines, reducing oxidative stress, inducing a proteome response associated with increased autophagy, remodeling the gut microbiome, and improving the components of metabolic syndrome (e.g., obesity, blood glucose levels, blood pressure, lipids). In conclusion, dawn to sunset fasting has the potential to optimize the immune system function against SARS-CoV-2 during the COVID-19 pandemic as it suppresses chronic inflammation and oxidative stress, improves metabolic profile, and remodels the gut microbiome. This review presents scientific literature related to the effects of dawn to sunset fasting on the immune system. Studies are needed to assess and confirm the potential benefits of dawn to sunset fasting against SARS-CoV-2.
Collapse
Affiliation(s)
- Sundus I Bhatti
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Burwaiss A, Ammar M, Alghazeer R, Eljamil A, Alarbie D, Elghmasi S, Al-Griw M, Alansari WS, Shamlan G, Eskandrani AA. Tissue levels of oxidative stress markers and antioxidants in colorectal cancer patients. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of reactive oxygen species in the development of cancer has become well recognized in recent years; however, evidence for a link between oxidative stress and cancer risk has not been fully explored. One of the major cancers whose number of cases has increased significantly in recent years is colon and rectal cancer, which has the second highest mortality rate in Libya. Forty subjects were divided into three groups (20 tumors from colorectal cancer patients, adjacent surrounding tumor tissues, and 20 adjacent normal tissues). Evaluation of oxidative stress indices in the samples was performed by analyzing enzymatic and non-enzymatic parameters including the activity of glutathione peroxidase and catalase as antioxidant enzymes, reduced glutathione as an antioxidant, malondialdehyde MDA levels as an oxidative damage product, nitritc oxide content NO as an inflammatory marker, and total thiols as a measure of redox status. MDA and NO levels were significantly higher in tumor tissues than in adjacent healthy tissue. Also, the surrounding tumor tissue exhibited higher MDA and NO levels compared with control tissues. The oxidant and antioxidant levels in the tumor was significantly lower than those in the surrounding tumor tissue and control healthy tissue. The results suggest that oxidant and antioxidant parameters can be used as indicators of an imbalance in humans, and as this imbalance increases, the human body may be vulnerable to developing cancer.
Collapse
Affiliation(s)
- Abdullah Burwaiss
- Gastroenterology and Hepatology Department at Tripoli University Hospital (TUH), Tripoli, Libya
- Medicine Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Manal Ammar
- Chemistry Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Rabia Alghazeer
- Chemistry Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ashour Eljamil
- Biochemistry Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Dalal Alarbie
- Gastroenterology and Hepatology Department at Tripoli University Hospital (TUH), Tripoli, Libya
| | - Sana Elghmasi
- Biochemistry Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Mohamed Al-Griw
- Histology & Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
47
|
Schlörmann W, Bockwoldt JA, Mayr MF, Lorkowski S, Dawczynski C, Rohn S, Ehrmann MA, Glei M. Fermentation profile, cholesterol-reducing properties and chemopreventive potential of β-glucans from Levilactobacillus brevis and Pediococcus claussenii - a comparative study with β-glucans from different sources. Food Funct 2021; 12:10615-10631. [PMID: 34585204 DOI: 10.1039/d1fo02175c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate whether β-glucans obtained from the lactic acid bacteria (LAB) Levilactobacillus (L.) brevis and Pediococcus (P.) claussenii exhibit similar physiological effects such as cholesterol-binding capacity (CBC) as the structurally different β-glucans from oat, barley, and yeast as well as curdlan. After in vitro fermentation, fermentation supernatants (FSs) and/or -pellets (FPs) were analyzed regarding the concentrations of short-chain fatty acids (SCFAs), ammonia, bile acids, the relative abundance of bacterial taxa and chemopreventive effects (growth inhibition, apoptosis, genotoxicity) in LT97 colon adenoma cells. Compared to other glucans, the highest CBC was determined for oat β-glucan (65.9 ± 8.8 mg g-1, p < 0.05). Concentrations of SCFA were increased in FSs of all β-glucans (up to 2.7-fold). The lowest concentrations of ammonia (down to 0.8 ± 0.3 mmol L-1) and bile acids (2.5-5.2 μg mL-1) were detected in FSs of the β-glucans from oat, barley, yeast, and curdlan. The various β-glucans differentially modulated the relative abundance of bacteria families and reduced the Firmicutes/Bacteroidetes ratio. Treatment of LT97 cells with the FSs led to a significant dose-dependent growth reduction and increase in caspase-3 activity without exhibiting genotoxic effects. Though the different β-glucans show different fermentation profiles as well as cholesterol- and bile acid-reducing properties, they exhibit comparable chemopreventive effects.
Collapse
Affiliation(s)
- W Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - J A Bockwoldt
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M F Mayr
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany.
| | - S Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Straße 25, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - C Dawczynski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Junior Research Group Nutritional Concepts, Dornburger Straße 29, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - S Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M A Ehrmann
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
48
|
Debnath N, Kumar R, Kumar A, Mehta PK, Yadav AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev 2021; 37:105-153. [PMID: 34678130 DOI: 10.1080/02648725.2021.1989847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Every individual harbours a complex, diverse and mutualistic microbial flora in their intestine and over the time it became an integral part of the body, affecting a plethora of activities of the host. Interaction between host and gut-microbiota affects several aspects of host physiology. Gut-microbiota affects host metabolism by fermenting unabsorbed/undigested carbohydrates in the large intestine. Not only the metabolic functions, any disturbances in the composition of the gut-microbiota during first 2-3 years of life may impact on the brain development and later affects cognition and behaviour. Thus, gut-dysbiosis causes certain serious pathological conditions in the host including metabolic disorders, inflammatory bowel disease and mood alterations, etc. Microbial-metabolites in recent times have emerged as key mediators and are responsible for microbiota induced beneficial effects on host. This review provides an overview of the mechanism of microbial-metabolite production, their respective physiological functions and the impact of gut-microbiome in health and diseases. Metabolites from dietary fibres, aromatic amino acids such as tryptophan, primary bile acids and others are the potential substances and link microbiota to host physiology. Many of these metabolites act as signalling molecules to a number of cells types and also help in the secretion of hormones. Moreover, interaction of microbiota derived metabolites with their host, immunity boosting mechanisms, protection against pathogens and modulation of metabolism is also highlighted here. Understanding all these functional attributes of metabolites produced from gut-microbiota may lead to the opening of a new avenue for preventing and developing potent therapies against several diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | | | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|
49
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Synbiotic supplementation attenuates the promoting effect of indole-3-carbinol on colon tumorigenesis. Benef Microbes 2021; 12:493-501. [PMID: 34463193 DOI: 10.3920/bm2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indole-3 carbinol (I3C) has shown dual effects on the promotion and progression stages of colon carcinogenesis while synbiotics (Syn) have exerted anti-carcinogenic activities in most rodent studies. This study aimed to investigate the effects of I3C given alone or together with a Syn intervention on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. All animals were given four subcutaneous DMH injections (4×40 mg/kg bodyweight, twice a week for two weeks) and then received either basal diet (G1), basal diet containing I3C (1g/kg chow) (G2) or basal diet containing I3C+Syn (I3C + inulin 50g/kg chow + Bifidobacterium lactis BB-12®), 2.5×1010 cfu/g of basal diet), (G3) for 21 weeks. Dietary I3C (G2) significantly increased tumour volume and cell proliferation when compared to the DMH control group (G1). Syn intervention (G3) significantly reduced tumour volume and cell proliferation when compared to I3C (G2). The colon tumours found were classified into well-differentiated tubular adenomas or adenocarcinomas. Dietary I3C or I3C+Syn did not significantly affect the incidence and the multiplicity of tumours in comparison with the DMH control group. Furthermore, Syn intervention (G3) increased Gstm1 and reduced Mapk9 gene expression in colonic tumours. The findings of the present study show that the dietary I3C shows a weak promoting activity, while the combination with Syn ameliorates I3C effects.
Collapse
Affiliation(s)
- N A de Moura
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| | - B F R Caetano
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.,Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| |
Collapse
|
50
|
A Perspective on the Role of Microbiome for Colorectal Cancer Treatment. Cancers (Basel) 2021; 13:cancers13184623. [PMID: 34572850 PMCID: PMC8468110 DOI: 10.3390/cancers13184623] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is the third most diagnosed cancer worldwide and contributes significantly to global mortality and morbidity. The gut microbiome, composed of the trillions of microbes endemic to the human gastrointestinal tract, has been shown to be implicated in colorectal cancer oncogenesis; however, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. This review sought to characterize this relationship and in doing so, identify how these interactions may inform future treatments in the form of synbiotics designed to alter the host microbiota to achieve optimized treatment outcomes. Abstract In healthy hosts, trillions of microbes colonise the gut and oral cavity in a well-balanced state, maintaining a mutually beneficial relationship. Loss of this balance, termed dysbiosis, is strongly implicated in the pathogenesis of colorectal cancer (CRC). However, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. Recent studies suggest that the gut microbiota has the ability to affect the host response to chemotherapeutic agents by enhancing drug efficacy, promoting chemoresistance and mediating chemotherapy-induced toxicity and side effects via a variety of mechanisms. Several other studies have also proposed manipulation of the microbiota to optimise CRC treatment. In this review, we summarise the current advancement of knowledge on how microbiota and CRC treatments interact with each other and how this interaction may shed some light on the development of personalised microbiota manipulations that improve CRC treatment outcomes.
Collapse
|