1
|
Vilić M, Žura Žaja I, Tkalec M, Tucak P, Malarić K, Popara N, Žura N, Pašić S, Gajger IT. Oxidative Stress Response of Honey Bee Colonies ( Apis mellifera L.) during Long-Term Exposure at a Frequency of 900 MHz under Field Conditions. INSECTS 2024; 15:372. [PMID: 38786928 PMCID: PMC11122567 DOI: 10.3390/insects15050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
In this study, oxidative stress and lipid peroxidation in honey bee larvae, pupae and the midguts of adult bees were investigated during a one-year exposure to radiofrequency electromagnetic fields (RF-EMFs) at a frequency of 900 MHz under field conditions. The experiment was carried out on honey bee colonies at three locations with electric field levels of 30 mV m-1, 70 mV m-1 and 1000 mV m-1. Antioxidant enzymes, glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS) as indicators of lipid peroxidation were measured spectrophotometrically. The GST activity within the same developmental stage showed no significant differences regardless of electric field level or sampling time. The highest GST activity was found in the pupae, followed by activity in the larvae and midguts. Both CAT activity and TBARS concentration were the highest in the midguts, regardless of field level and sampling time. The larvae showed a significantly higher TBARS concentration at the location with an electric field level of 1000 mV m-1 compared to the locations with lower levels. Our results show that RF-EMFs at a frequency of 900 MHz can cause oxidative stress in honey bees, with the larval stage being more sensitive than the pupal stage, but there was no linear relationship between electric field level and effect in any of the developmental stages.
Collapse
Affiliation(s)
- Marinko Vilić
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivona Žura Žaja
- Department of Physiology and Radiobiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Perica Tucak
- State Inspectorate of Republic of Croatia, 10000 Zagreb, Croatia;
| | - Krešimir Malarić
- Department of Communication and Space Technologies, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nato Popara
- Department of Physics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.P.); (S.P.)
| | - Nikolino Žura
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Selim Pašić
- Department of Physics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.P.); (S.P.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Saher U, Omer MO, Javeed A, Anjum AA, Rehman K, Awan T, Saleem G, Mobeen A. Functional Studies of Cytogenotoxic Potential of Laticifer Proteins of Calotropis procera against Viral Disease. ACS OMEGA 2023; 8:7119-7127. [PMID: 36844567 PMCID: PMC9948205 DOI: 10.1021/acsomega.2c08102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 05/28/2023]
Abstract
Plant products are widely used for health and disease management. However, besides their therapeutic effects, some plants also have potential toxic activity. Calotropis procera is a well-known laticifer plant having pharmacologically active proteins playing a therapeutically significant role in curing diseases like inflammatory disorders, respiratory diseases, infectious diseases, and cancers. The present study was aimed to investigate the antiviral activity and toxicity profile of the soluble laticifer proteins (SLPs) obtained from C. procera. Different doses of rubber free latex (RFL) and soluble laticifer protein (ranging from 0.019 to 10 mg/mL) were tested. RFL and SLPs were found to be active in a dose-dependent manner against NDV (Newcastle disease virus) in chicken embryos. Embryotoxicity, cytotoxicity, genotoxicity, and mutagenicity of RFL and SLP were examined on chicken embryos, BHK-21 cell lines, human lymphocytes, and Salmonella typhimurium, respectively. It was revealed that RFL and SLP possess embryotoxic, cytotoxic, genotoxic, and mutagenic activity at higher doses (i.e., 1.25-10 mg/mL), while low doses were found to be safe. It was also observed that SLP showed a rather safer profile as compared to RFL. This might be due to the filtration of some small molecular weight compounds at the time of purification of SLPs through a dialyzing membrane. We suggest that SLPs could be used therapeutically against viral disorders but the dose should be critically monitored.
Collapse
Affiliation(s)
- Uzma Saher
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aqeel Javeed
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| | - Kanwal Rehman
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Tanzeela Awan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Gulbeena Saleem
- Department
of Pathology, University of Veterinary and
Animal Sciences, Lahore 54000, Pakistan
| | - Ameena Mobeen
- Environmental
Toxicology Laboratory, National Institute
for Biotechnology and Genetic Engineering (NIBGE) Faisalabad 37020, Pakistan
| |
Collapse
|
3
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
4
|
Assessment of Inflammation in 3D Reconstructed Human Skin Exposed to Combined Exposure to Ultraviolet and Wi-Fi Radiation. Int J Mol Sci 2023; 24:ijms24032853. [PMID: 36769173 PMCID: PMC9917807 DOI: 10.3390/ijms24032853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the human environment, the increasing exposure to radiofrequency (RF) radiation, especially that emitted by wireless devices, could be absorbed in the body. Recently, mobile and emerging wireless technologies (UMTS, DECT, LTE, and Wi-Fi) have been using higher frequencies than 2G GSM systems (900/1800 MHz), which means that most of the circulating RF currents are absorbed into the skin and the superficial soft tissue. The harmful genotoxic, cytotoxic, and mutagenic effects of solar ultraviolet (UV) radiation on the skin are well-known. This study aimed at investigating whether 2422 MHz (Wi-Fi) RF exposure combined with UV radiation in different sequences has any effect on the inflammation process in the skin. In vitro experiments examined the inflammation process by cytokines (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion in a 3D full-thickness human skin model. In the first study, UV exposure was immediately followed by RF exposure to measure the potential additive effects, while in the second study, the possible protective phenomenon (i.e., adaptive response) was investigated when adaptive RF exposure was challenged by UV radiation. Our results suggest that 2422 MHz Wi-Fi exposure slightly, not significantly increased cytokine concentrations of the prior UV exposure. We could not detect the adaptive response phenomenon.
Collapse
|
5
|
Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S. A review on genotoxicity in connection to infertility and cancer. Chem Biol Interact 2021; 345:109531. [PMID: 34058178 DOI: 10.1016/j.cbi.2021.109531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.
Collapse
Affiliation(s)
- Sharmistha Choudhuri
- Department of Biochemistry, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sapna Jain
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Shailendra Asthana
- Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
6
|
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci 2020; 21:E7069. [PMID: 32992895 PMCID: PMC7584027 DOI: 10.3390/ijms21197069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.
Collapse
Affiliation(s)
- Elisa Regalbuto
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Stefania De Sanctis
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Valeria Franchini
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Florigio Lista
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Eugenio Trodella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| |
Collapse
|
7
|
|
8
|
Schuermann D, Ziemann C, Barekati Z, Capstick M, Oertel A, Focke F, Murbach M, Kuster N, Dasenbrock C, Schär P. Assessment of Genotoxicity in Human Cells Exposed to Modulated Electromagnetic Fields of Wireless Communication Devices. Genes (Basel) 2020; 11:E347. [PMID: 32218170 PMCID: PMC7230863 DOI: 10.3390/genes11040347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Modulated electromagnetic fields (wEMFs), as generated by modern communication technologies, have raised concerns about adverse health effects. The International Agency for Research on Cancer (IARC) classifies them as "possibly carcinogenic to humans" (Group 2B), yet, the underlying molecular mechanisms initiating and promoting tumorigenesis remain elusive. Here, we comprehensively assess the impact of technologically relevant wEMF modulations on the genome integrity of cultured human cells, investigating cell type-specificities as well as time- and dose-dependencies. Classical and advanced methodologies of genetic toxicology and DNA repair were applied, and key experiments were performed in two separate laboratories. Overall, we found no conclusive evidence for an induction of DNA damage nor for alterations of the DNA repair capacity in cells exposed to several wEMF modulations (i.e., GSM, UMTS, WiFi, and RFID). Previously reported observations of increased DNA damage after exposure of cells to GSM-modulated signals could not be reproduced. Experimental variables, presumably underlying the discrepant observations, were investigated and are discussed. On the basis of our data, we conclude that the possible carcinogenicity of wEMF modulations cannot be explained by an effect on genome integrity through direct DNA damage. However, we cannot exclude non-genotoxic, indirect, or secondary effects of wEMF exposure that may promote tumorigenesis in other ways.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Myles Capstick
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Antje Oertel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Frauke Focke
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Manuel Murbach
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Niels Kuster
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| |
Collapse
|
9
|
Yang H, Zhang Y, Wang Z, Zhong S, Hu G, Zuo W. The Effects of Mobile Phone Radiofrequency Radiation on Cochlear Stria Marginal Cells in Sprague-Dawley Rats. Bioelectromagnetics 2020; 41:219-229. [PMID: 32072661 PMCID: PMC7154754 DOI: 10.1002/bem.22255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023]
Abstract
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4',6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Honghong Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Smith‐Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GE, Shockley KR, Tice RR, Bucher JR, Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:276-290. [PMID: 31633839 PMCID: PMC7027901 DOI: 10.1002/em.22343] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
The National Toxicology Program tested two common radiofrequency radiation (RFR) modulations emitted by cellular telephones in a 2-year rodent cancer bioassay that included interim assessments of additional animals for genotoxicity endpoints. Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice were exposed from Gestation day 5 or Postnatal day 35, respectively, to code division multiple access (CDMA) or global system for mobile modulations over 18 hr/day, at 10-min intervals, in reverberation chambers at specific absorption rates of 1.5, 3, or 6 W/kg (rats, 900 MHz) or 2.5, 5, or 10 W/kg (mice, 1,900 MHz). After 19 (rats) or 14 (mice) weeks of exposure, animals were examined for evidence of RFR-associated genotoxicity using two different measures. Using the alkaline (pH > 13) comet assay, DNA damage was assessed in cells from three brain regions, liver cells, and peripheral blood leukocytes; using the micronucleus assay, chromosomal damage was assessed in immature and mature peripheral blood erythrocytes. Results of the comet assay showed significant increases in DNA damage in the frontal cortex of male mice (both modulations), leukocytes of female mice (CDMA only), and hippocampus of male rats (CDMA only). Increases in DNA damage judged to be equivocal were observed in several other tissues of rats and mice. No significant increases in micronucleated red blood cells were observed in rats or mice. In conclusion, these results suggest that exposure to RFR is associated with an increase in DNA damage. Environ. Mol. Mutagen. 61:276-290, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Michael E. Wyde
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Matthew D. Stout
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John W. Winters
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Kim G. Shepard
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Amanda S. Green
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Grace E. Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Raymond R. Tice
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John R. Bucher
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Kristine L. Witt
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| |
Collapse
|
11
|
Li Q, Tian M, Teng J, Gao P, Tang BQ, Wu H. Radio frequency-induced superoxide accumulation affected the growth and viability of Saccharomyces cerevisiae. Int Microbiol 2020; 23:391-396. [PMID: 31898034 DOI: 10.1007/s10123-019-00111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022]
Abstract
With the development of the electric technologies, the biological effects of electromagnetic fields (EMF) were widely studied. However, the results remain controversial and the biophysical mechanisms are still unknown. To our knowledge, little studies pay attention to the radio frequency (RF) of 2.6-5 MHz. In the present study, we investigated the effect of these radio frequencies on the growth and cell viability of Saccharomyces cerevisiae at very low power density below 0.1 mT. The result appeared to be time-dependent. The growth of the yeast cells was obviously affected by the RF-EMF with a 43.5% increase when exposed for 30 h, and the growth-promoting effect decreased along with the radiation time and eventually turned to an inhibiting effect retarding growth by 20.7% at 89 h. The cell viability was improved to 70.1% at 8 h and reduced by 33.5% at 28 h. The superoxide accumulated in exposed cells as radiation time increased which may lead to the inhibition of viability and growth of the cells. However, the efficient frequency, power density, and exposure dosage await further investigation. Nevertheless, the wave band studied in this research is effective to produce biological effect, and therefore, it may provide an optional new radio frequency which is valuable for the development and utilization in therapy technique and medical use.
Collapse
Affiliation(s)
- Qing Li
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Miao Tian
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Jie Teng
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Peng Gao
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Bruce Qing Tang
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China
| | - Hong Wu
- Institute of Life Science & Technology, ENN Group, South District of ENN Industrial Park, Langfang, 065001, Hebei, China.
| |
Collapse
|
12
|
Chandel S, Kaur S, Issa M, Singh HP, Batish DR, Kohli RK. Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa. PROTOPLASMA 2019; 256:1399-1407. [PMID: 31115694 DOI: 10.1007/s00709-019-01386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the potential of 2100 MHz radiofrequency radiations to act as cytotoxic and genotoxic agent. Fresh onion (Allium cepa L.) roots were exposed to electromagnetic field radiations (EMF-r) for different durations (1 h and 4 h) and evaluated for mitotic index (MI), phase index, chromosomal aberrations, and DNA damage. DNA damage was investigated with the help of the comet assay by assessing various parameters like % head DNA (HDNA), % tail DNA (TDNA), tail moment (TM), and olive tail moment (OTM). Effects of EMF-r exposure were also compared with that of methyl methanesulfonate (MMS; 90 μM), which acted as a positive control. The post-exposure effects of EMF-r after providing the test plants with an acclimatization period of 24 h were also evaluated. Compared to the control, a significant increase in the MI and aberration percentage was recorded upon 4 h of exposure. However, no specific trend of phase index in response to exposure was detected. EMF-r exposure incited DNA damage with a significant decrease in HDNA accompanied by an increase in TDNA upon exposure of 4 h. However, TM and OTM did not change significantly upon exposure as compared to that of control. Analysis of the post-exposure effects of EMF-r did not show any significant change/recovery. Our data, thus, suggest the potential cytotoxic and genotoxic nature of 2100 MHz EMF-r. Our study bears great significance in view of the swiftly emergent EMF-r in the surrounding environment and their potential for inciting aberrations at the chromosomal level, thus posing a genetic hazard.
Collapse
Affiliation(s)
- Shikha Chandel
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Mohd Issa
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
13
|
Foster KR, Simkó M, Verschaeve L. Confronting Risk of Bias in RF Bioeffects Research. Comments on Two Papers by Vijayalaxmi and Prihoda. Radiat Res 2019; 192:363-366. [PMID: 31393822 DOI: 10.1667/rr15478.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenneth R Foster
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104
| | - Myrtill Simkó
- SciProof-International AB, Vaktpoststigen, 831 32 Östersund, Sweden
| | - Luc Verschaeve
- Service Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| |
Collapse
|
14
|
Jooyan N, Goliaei B, Bigdeli B, Faraji-Dana R, Zamani A, Entezami M, Mortazavi SMJ. Direct and indirect effects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: Evidence of bystander effect by non-ionizing radiation. ENVIRONMENTAL RESEARCH 2019; 174:176-187. [PMID: 31036329 DOI: 10.1016/j.envres.2019.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The rapid rise in global concerns about the adverse health effects of exposure to radiofrequency radiation (RFR) generated by common devices such as mobile phones has prompted scientists to further investigate the biological effects of these environmental exposures. Non-targeted effects (NTEs) are responses which do not need a direct exposure to be expressed and are particularly significant at low energy radiations. Although NTEs of ionizing radiation are well documented, there are scarcely any studies on non-targeted responses such as bystander effect (BE) after exposure to non-ionizing radiation. The main goal of this research is to study possible RFR-induced BE. MATERIAL AND METHODS Chinese hamster ovary cells were exposed to 900 MHz GSM RFR at an average specific absorption rate (SAR) of 2 W/kg for 4, 12 and 24 hours (h). To generate a uniformly distributed electromagnetic field and avoid extraneous RF exposures a cavity was desined and used. Cell membrane permeability, cell redox activity, metabolic and mitotic cell death and DNA damages were analyzed. Then the most effective exposure durations and statistically significant altered parameters were chosen to assess the induction of BE through medium transfer procedure. Furthermore, intra and extra cellular reactive oxygen species (ROS) levels were measured to assess the molecular mechanism of BE induced by non-ionizing radiation. RESULTS No statistically significant alteration was found in cell membrane permeability, cell redox activity, metabolic cell activity and micronuclei (MN) frequency in the cells directly exposed to RFR for 4, 12, or 24 h. However, RFR exposure for 24 h caused a statistically significant decrease in clonogenic ability as well as a statistically significant increase in olive moment in both directly exposed and bystander cells which received media from RFR-exposed cells (conditioned culture medium; CCM). Exposure to RFR also statistically significant elevated both intra and extra cellular levels of ROS. CONCLUSION Our observation clearly indicated the induction of BE in cells treated with CCM. To our knowledge, this is the first report that a non-ionizing radiation (900 MHz GSM RFR) can induce bystander effect. As reported for ionizing radiation, our results proposed that ROS can be a potential molecule in indirect effect of RFR. On the other hand, we found the importance of ROS in direct effect of RFR but in different ways.
Collapse
Affiliation(s)
- Najmeh Jooyan
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Bahareh Bigdeli
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Zamani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Entezami
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; Department of Diagnostic Imaging, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| |
Collapse
|
15
|
Vijayalaxmi, Prihoda TJ. Comprehensive Review of Quality of Publications and Meta-analysis of Genetic Damage in Mammalian Cells Exposed to Non-Ionizing Radiofrequency Fields. Radiat Res 2018; 191:20-30. [PMID: 30339042 DOI: 10.1667/rr15117.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There have been numerous published studies reporting on the extent of genetic damage observed in animal and human cells exposed in vitro and in vivo to non-ionizing radiofrequency fields (RF, electromagnetic waves that carry energy as they propagate in air and dense media). Overall, the data are inconsistent; while some studies have suggested significantly increased damage in cells exposed to RF energy compared to unexposed and/or sham-exposed control cells, others have not. Several variables in exposure conditions used in the experiments might have contributed to the controversy. In this comprehensive review, four specific quality control measures were used to determine the quality of 225 published studies in animal and human cells exposed in vitro and in vivo to RF energy, and the results from 2,160 tests with different sample sizes were analyzed. The four specific quality control measures were as follows: 1. "Blind" collection/analysis of the data to eliminate individual/observer "bias"; 2. Adequate description of "dosimetry" for independent replication/confirmation; 3. Inclusion of "positive controls" to confirm the outcomes; and 4. Inclusion of "sham-exposed controls" which are more appropriate to compare the data with those in RF exposure conditions. In addition, meta-analysis of the genetic damage in cells exposed to RF energy and control cells, thus far available in the RF literature database, was performed to obtain the "d" values, i.e., standardized mean difference between these two types of cells or the effect size. The relationship between d values and the above-mentioned quality control measures was ascertained. In addition, the correlation between the quality control measures and the conclusions reported in the publications (no significant difference between the cells exposed to RF energy and control cells; increased damage in former cells compared to the latter; increased, no significant difference and decreased damage in cells exposed to RF energy in the same experiment; or decreased damage in cells exposed to RF energy) was examined. The overall conclusions were as follows: 1. When all four quality control measures were mentioned in the publication, the d values were smaller compared to those when one or more quality control measures were not mentioned in the investigation; 2. Based on the inclusion of quality control measures, the weighted outcome in cells exposed to RF energy (d values) indicated a very small effect, if any; 3. The number of published studies reporting no significant difference in genetic damage of cells exposed to RF energy, compared to that of control cells, increased with increased number of quality control measures employed in investigations; 4. The number of published studies reporting increased genetic damage in cells exposed to RF energy decreased with increased number of quality control measures; and 5. There was a "bias" towards the publications reporting increased genetic damage in cells exposed to RF energy even with very small sample size. Overall, the results from this study underscore the importance of including quality control measures in investigations so that the resulting data are useful, nationally and internationally, in evaluating "potential" health risks from exposure to RF energy.
Collapse
Affiliation(s)
- Vijayalaxmi
- Department of a Radiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Thomas J Prihoda
- b Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
16
|
Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, Marinaccio J, Sgura A, Ceccuzzi S, Doria A, Gallerano GP, Giovenale E, Ravera GL, Bei R, Benvenuto M, Modesti A, Masuelli L, Lista F. Genotoxic Effects in Human Fibroblasts Exposed to Microwave Radiation. HEALTH PHYSICS 2018; 115:126-139. [PMID: 29787439 DOI: 10.1097/hp.0000000000000871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last decades, technological development has led to an increasing use of devices and systems based on microwave radiation. The increased employment of these devices has elicited questions about the potential long-term health consequences associated with microwave radiation exposure. From this perspective, biological effects of microwave radiation have been the focus of many studies, but the reported scientific data are unclear and contradictory. The aim of this study is to evaluate the potential genotoxic and cellular effects associated with in vitro exposure of human fetal and adult fibroblasts to microwave radiation at the frequency of 25 GHz. For this purpose, several genetic and biological end points were evaluated. Results obtained from comet assay, phosphorylation of H2AX histone, and antikinetochore antibody (CREST)-negative micronuclei frequency excluded direct DNA damage to human fetal and adult fibroblasts exposed to microwaves. No induction of apoptosis or changes in prosurvival signalling proteins were detected. Moreover, CREST analysis showed for both the cell lines an increase in the total number of micronuclei and centromere positive micronuclei in exposed samples, indicating aneuploidy induction due to chromosome loss.
Collapse
Affiliation(s)
- Valeria Franchini
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Elisa Regalbuto
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Andrea De Amicis
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Stefania De Sanctis
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Sara Di Cristofaro
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| | - Elisa Coluzzi
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Jessica Marinaccio
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Antonella Sgura
- University of Rome Roma Tre, Department of Science, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Silvio Ceccuzzi
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Andrea Doria
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Gian Piero Gallerano
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Emilio Giovenale
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Gian Luca Ravera
- Radiation Sources, Antennas and Diagnostics Laboratory, ENEA Research Center, Frascati, Italy
| | - Roberto Bei
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Monica Benvenuto
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Andrea Modesti
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine, Rome, Italy
| | - Laura Masuelli
- University of Rome La Sapienza, Department of Experimental Medicine, Rome, Italy
| | - Florigio Lista
- Scientific Department of Army Medical Center of Rome, Via Santo Stefano Rotondo, 4-00184, Rome, Italy
| |
Collapse
|
17
|
Herrala M, Mustafa E, Naarala J, Juutilainen J. Assessment of genotoxicity and genomic instability in rat primary astrocytes exposed to 872 MHz radiofrequency radiation and chemicals. Int J Radiat Biol 2018. [DOI: 10.1080/09553002.2018.1450534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ehab Mustafa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Su L, Yimaer A, Xu Z, Chen G. Effects of 1800 MHz RF-EMF exposure on DNA damage and cellular functions in primary cultured neurogenic cells. Int J Radiat Biol 2018; 94:295-305. [PMID: 29368975 DOI: 10.1080/09553002.2018.1432913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To systematically evaluate the effects of 1800 MHz radiofrequency electromagnetic fields (RF-EMF) exposure on DNA damage and cellular functions in primary cultured neurogenic cells. MATERIALS AND METHODS The primary cultured astrocytes, microglia and cortical neurons were exposed to RF-EMF at a SAR of 4.0 W/kg. The DNA damage was evaluated by γH2AX foci formation assay. The secretions of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) in astrocytes and microglia, microglial phagocytic activity and neuronal development were examined by enzyme-linked immunosorbent assay, phagocytosis assay and immunofluorescent staining on microtubule-associated protein tau, microtubule-associated protein 2, postsynaptic density 95 and gephyrin, respectively. RESULTS RF-EMF exposure did not significantly induce γH2AX foci formation in three primary cultured neurogenic cells. Furthermore, RF-EMF exposure did not significantly affect the secretion of cytokines in astrocytes and microglia, and the morphological indicators of dendrites or synapses of cortical neurons. However, the exposure significantly reduced the phagocytic activity of microglia and inhibited the axon branch length and branch number of cortical neurons. CONCLUSIONS Our data demonstrated that exposure to RF-EMF did not elicit DNA damage but inhibited the phagocytic ability of microglia and the axon branch length and branch number of cortical neurons.
Collapse
Affiliation(s)
- Liling Su
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China.,b Department of Clinical Medicine , Jiangxi Medical College , Shangrao , PR China
| | - Aziguli Yimaer
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China
| | - Zhengping Xu
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China
| | - Guangdi Chen
- a Bioelectromagnetics Laboratory , Zhejiang University School of Medicine , Hangzhou , PR China.,c Institute of Environmental Health , Zhejiang University School of Public Health , Hangzhou , PR China
| |
Collapse
|
19
|
de Oliveira F, Carmona A, Ladeira C. Is mobile phone radiation genotoxic? An analysis of micronucleus frequency in exfoliated buccal cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 822:41-46. [DOI: 10.1016/j.mrgentox.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|
20
|
Danese E, Lippi G, Buonocore R, Benati M, Bovo C, Bonaguri C, Salvagno GL, Brocco G, Roggenbuck D, Montagnana M. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:272. [PMID: 28758098 DOI: 10.21037/atm.2017.04.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. METHODS The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. RESULTS No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). CONCLUSIONS The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Ruggero Buonocore
- Laboratory of Clinical Chemistry and Haematology, Academic Hospital of Parma, Parma, Italy
| | - Marco Benati
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Chiara Bovo
- Medical Direction, University Hospital of Verona, Verona, Italy
| | - Chiara Bonaguri
- Laboratory of Clinical Chemistry and Haematology, Academic Hospital of Parma, Parma, Italy
| | | | - Giorgio Brocco
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Dirk Roggenbuck
- Faculty of Natural Sciences, Brandenburg Technical University, Senftenberg, Germany and Medipan GmbH, Dahlewitz/Berlin, Germany
| | | |
Collapse
|
21
|
Alchalabi ASH, Rahim H, AbdulMalek MF, Aklilu E, Aziz AR, Ronald SH, Khan MA. Micronuclei Formation and 8-Hydroxy-2-Deoxyguanosine Enzyme Detection in Ovarian Tissues After Radiofrequency Exposure at 1800 MHz in Adult Sprague–Dawley Rats. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Sannino A, Zeni O, Romeo S, Massa R, Scarfi MR. Adverse and beneficial effects in Chinese hamster lung fibroblast cells following radiofrequency exposure. Bioelectromagnetics 2017; 38:245-254. [DOI: 10.1002/bem.22034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Sannino
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Olga Zeni
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Stefania Romeo
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
| | - Rita Massa
- CNR—Institute for Electromagnetic Sensing of the EnvironmentNapoliItaly
- Department of Physics “Ettore Pancini”University of Naples Federico IINapoliItaly
| | | |
Collapse
|
23
|
Su L, Wei X, Xu Z, Chen G. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics 2016; 38:175-185. [DOI: 10.1002/bem.22032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory; Zhejiang University School of Medicine; Hangzhou China
- Department of Public Health; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
24
|
Lee JS, Kim JY, Kim HJ, Kim JC, Lee JS, Kim N, Park MJ. Effects of combined radiofrequency field exposure on amyloid-beta-induced cytotoxicity in HT22 mouse hippocampal neurones. JOURNAL OF RADIATION RESEARCH 2016; 57:620-626. [PMID: 27325640 PMCID: PMC5137286 DOI: 10.1093/jrr/rrw040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegenerative disease and it is caused by neuronal death in the brain. Recent studies have shown that non-ionizing radiofrequency (RF) radiation has some beneficial cognitive effects in animal models of AD. In this study, we examined the effect of combined RF radiation on amyloid-beta (Aβ)-induced cytotoxicity in HT22 rat hippocampal neurons. Treatment with Aβ suppressed HT22 cell proliferation in a concentration-dependent manner. RF exposure did not affect cell proliferation, and also had a marginal effect on Aβ-induced suppression of growth in HT22 cells. Cell cycle analysis showed that Aβ decreased the G1 fraction and increased the subG1 fraction, indicating increased apoptosis. Accordingly, Aβ increased the annexin V/propidium iodide (PI)-positive cell fraction and the degradation of poly (ADP ribose) polymerase and caspase-3 in HT22 cells. However, RF alone and the combination of Aβ and RF did not affect these events significantly. Aβ increased reactive oxygen species (ROS) generation, thereby suppressing cell proliferation. This was abrogated by N-acetylcysteine (NAC) treatment, indicating that Aβ-induced ROS generation is the main cause of suppression of proliferation. NAC also restored Aβ-induced annexin V/PI-positive cell populations. However, RF did not have a significant impact on these events. Finally, Aβ stimulated the ataxia telangiectasia and Rad3-related protein/checkpoint kinase 1 DNA single-strand breakage pathway, and enhanced beta-site amyloid precursor protein expression; RF had no effect on them. Taken together, our results demonstrate that RF exposure did not significantly affect the Aβ-induced decrease of cell proliferation, increase of ROS production, or induction of cell death in these cells.
Collapse
Affiliation(s)
- Jong-Sun Lee
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Nowongil 75, Nowon-Gu, Seoul 139-706, Korea
| | - Jeong-Yub Kim
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Nowongil 75, Nowon-Gu, Seoul 139-706, Korea
- Department of Pathology, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Hee-Jin Kim
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Nowongil 75, Nowon-Gu, Seoul 139-706, Korea
| | - Jeong Cheol Kim
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Nowongil 75, Nowon-Gu, Seoul 139-706, Korea
| | - Jae-Seon Lee
- Division of Biomedical Sciences, College of Medicine, Inha University, Incheon 400-712, Korea
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju 362-763, Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Nowongil 75, Nowon-Gu, Seoul 139-706, Korea
| |
Collapse
|
25
|
Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ. Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Int J Radiat Biol 2016; 93:249-256. [PMID: 27648632 DOI: 10.1080/09553002.2017.1237058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To define the impact of radiofrequency (RF) under in vitro experimental Alzheimer's disease conditions, we investigated the effect of RF radiation on glutamate-induced oxidative stress in mouse hippocampal neuronal HT22 cells. MATERIALS AND METHODS Cell survival rate was measured by MTT and trypan blue exclusion assays. Cell cycle distribution, cell death, and ROS production were analyzed using flow cytometry. Expression of proteins was analyzed by Western blot. RESULTS RF exposure alone had a marginal impact on cell proliferation; however, it significantly enhanced glutamate-induced cytotoxicity in HT22 cells. Glutamate augmented the subG1 fraction of cell cycle, annexin/propidium iodide positive cell population, and expression of cleaved poly (ADP ribose) polymerase, which were further increased by RF exposure. Glutamate induced reactive oxygen species (ROS) generation and RF exposure further upregulated it. N-acetylcysteine (NAC) treatment completely abrogated glutamate- and RF-induced ROS production followed by cell death and restored cell proliferation in HT22 cells. Finally, glutamate phosphorylated c-Jun N-terminal kinase (JNK) and RF increased this event further. Treatment with NAC and inhibitor of JNK decreased JNK phosphorylation and restored cell proliferation, respectively. CONCLUSIONS Our results demonstrate that RF exposure enhanced glutamate-induced cytotoxicity by further increase of ROS production in HT22 cells.
Collapse
Affiliation(s)
- Jeong-Yub Kim
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea.,b Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Hee-Jin Kim
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea
| | - Nam Kim
- c School of Information and Communication Engineering , Chungbuk National University , Cheongju , Korea
| | - Jong Hwa Kwon
- d Department of Radio Technology Research , Electronics and Telecommunications Research Institute , Daejeon , Korea
| | - Myung-Jin Park
- a Korea Institute of Radiological and Medical Sciences , Seoul , Korea
| |
Collapse
|
26
|
Genetic damage in humans exposed to extremely low-frequency electromagnetic fields. Arch Toxicol 2016; 90:2337-48. [DOI: 10.1007/s00204-016-1769-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 01/27/2023]
|
27
|
Arendash GW. Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer's Disease. J Alzheimers Dis 2016; 53:753-71. [PMID: 27258417 PMCID: PMC4981900 DOI: 10.3233/jad-160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
We have demonstrated in multiple studies that daily, long-term electromagnetic field (EMF) treatment in the ultra-high frequency range not only protects Alzheimer's disease (AD) transgenic mice from cognitive impairment, but also reverses such impairment in aged AD mice. Moreover, these beneficial cognitive effects appear to be through direct actions on the AD process. Based on a large array of pre-clinical data, we have initiated a pilot clinical trial to determine the safety and efficacy of EMF treatment to mild-moderate AD subjects. Since it is important to establish the safety of this new neuromodulatory approach, the main purpose of this review is to provide a comprehensive assessment of evidence supporting the safety of EMFs, particularly through transcranial electromagnetic treatment (TEMT). In addition to our own pre-clinical studies, a rich variety of both animal and cell culture studies performed by others have underscored the anticipated safety of TEMT in clinical AD trials. Moreover, numerous clinical studies have determined that short- or long-term human exposure to EMFs similar to those to be provided clinically by TEMT do not have deleterious effects on general health, cognitive function, or a variety of physiologic measures-to the contrary, beneficial effects on brain function/activity have been reported. Importantly, such EMF exposure has not been shown to increase the risk of any type of cancer in human epidemiologic studies, as well as animal and cell culture studies. In view of all the above, clinical trials of safety/efficacy with TEMT to AD subjects are clearly warranted and now in progress.
Collapse
|
28
|
Ji Y, He Q, Sun Y, Tong J, Cao Y. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:419-426. [PMID: 27267824 DOI: 10.1080/15287394.2016.1176618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage.
Collapse
Affiliation(s)
- Yongxin Ji
- a School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu Province, People's Republic of China
| | - Qina He
- a School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu Province, People's Republic of China
| | - Yulong Sun
- a School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu Province, People's Republic of China
| | - Jian Tong
- a School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu Province, People's Republic of China
| | - Yi Cao
- a School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu Province, People's Republic of China
| |
Collapse
|
29
|
Makale M, Kesari S. Cell Phones and Glioma Risk: An Update. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Nachtergael A, Poivre M, Belayew A, Duez P. In vitro genotoxicity tests point to an unexpected and harmful effect of a Magnolia and Aristolochia association. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:178-186. [PMID: 26278811 DOI: 10.1016/j.jep.2015.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE in the 1990s, a Belgian cohort of more than 100 patients reported cases of Aristolochic Acid Nephropathy (AAN). This progressive renal and interstitial fibrosis, frequently associated with urothelial malignancies, was consecutive to the Chinese-herbs based slimming capsules intake where a plant Stephania tetrandra S. Moore was replaced by a highly genotoxic Aristolochia species. 70% of the Belgian patients evolved into end-stage renal disease, requiring dialysis or renal transplantation. Furthermore the prevalence of upper urinary tract carcinoma was found alarmingly high in these patients. The Aristolochia adulteration was blamed for the intoxication cases and, to the best of our knowledge, the prescription itself has not been further investigated. AIM OF THE STUDY This work proposes to evaluate the in vitro cytotoxicity and genotoxicity of Aristolochia and Magnolia traditional aqueous decoctions and their association. MATERIALS AND METHODS The cytotoxicity of extracts has been assessed by a MTT cell proliferation assay and the genotoxicity by measuring the presence of γ-H2AX, a phosphorylated histone associated with DNA damages. RESULTS Treating cells for 24h with a mixture 1:1 of Magnolia officinalis and Aristolochia baetica decoctions led to an increase in the production of γ-H2AX. CONCLUSIONS This genotoxic potentiation warrants further studies but may lead to an explanatory factor for the "Chinese herb nephropathy" cases.
Collapse
Affiliation(s)
- Amandine Nachtergael
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium
| | - Mélanie Poivre
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | - Pierre Duez
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, 20 Place du Paarc, 7000 Mons, Belgium.
| |
Collapse
|
31
|
Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer. ENERGIES 2015. [DOI: 10.3390/en81012020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M. Exposure to 915 MHz radiation induces micronuclei inVicia fabaroot tips. Mutagenesis 2015; 31:187-92. [DOI: 10.1093/mutage/gev071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Real versus Simulated Mobile Phone Exposures in Experimental Studies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:607053. [PMID: 26346766 PMCID: PMC4539441 DOI: 10.1155/2015/607053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/14/2015] [Indexed: 12/01/2022]
Abstract
We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets.
Collapse
|
34
|
Zhu S, Zhang J, Liu C, He Q, Vijayalaxmi, Prihoda TJ, Tong J, Cao Y. Dominant lethal mutation test in male mice exposed to 900MHz radiofrequency fields. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:53-7. [PMID: 26433262 DOI: 10.1016/j.mrgentox.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
Abstract
Adult male ICR mice were exposed to continuous wave 900MHz radiofrequency fields (RF) at 1.6mW/cm(2) power intensity (whole body average specific absorption rate of 0.731W/kg) for 4 hour/day for 15 days. At the end of exposure, each mouse was caged with 3 mature virgin female mice for mating. After 7 days, each male mouse was transferred to a fresh cage and mated with a second batch of 3 females. This process was repeated for a total of 4 consecutive weeks. Sham exposed male mice and those subjected to an acute 2Gy γ-irradiation (GR) were handled similarly and used as un-exposed and positive controls, respectively. All females were sacrificed on the 18th day of gestation and presumptive mating and, the contents in their uteri were examined. The overall observations during the 4 weeks of mating indicated that the un-exposed female mice mated to RF-exposed male mice showed no significant differences in the percentage of pregnancies, total implants, live implants and dead implants when compared with those mated with sham-exposed mice. In contrast, female mice mated with GR-exposed males showed a consistent pattern of significant differences in the above indices in each and all 4 weeks of mating. Thus, the data indicated an absence of mutagenic potential of RF exposure in the germ cells of male mice.
Collapse
Affiliation(s)
- Shunxing Zhu
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, PR China; Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province, PR China.
| | - Jie Zhang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, PR China.
| | - Chun Liu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province, PR China.
| | - Qina He
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, PR China.
| | - Vijayalaxmi
- Department of Radiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Thomas J Prihoda
- Department of Pathology, University of Texas Health Science Center, 7703 Floyd Curl Drive,San Antonio, TX 78229, USA.
| | - Jian Tong
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, PR China.
| | - Yi Cao
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
35
|
Vijayalaxmi, Fatahi M, Speck O. Magnetic resonance imaging (MRI): A review of genetic damage investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:51-63. [PMID: 26041266 DOI: 10.1016/j.mrrev.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI.
Collapse
Affiliation(s)
- Vijayalaxmi
- Department of Radiology, University of Texas Health Science Center, San Antonio, United States
| | - Mahsa Fatahi
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Disease (DZNE) Site, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
36
|
Zong C, Ji Y, He Q, Zhu S, Qin F, Tong J, Cao Y. Adaptive response in mice exposed to 900 MHZ radiofrequency fields: bleomycin-induced DNA and oxidative damage/repair. Int J Radiat Biol 2015; 91:270-6. [PMID: 25347145 DOI: 10.3109/09553002.2014.980465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine whether mice exposed to radiofrequency fields (RF) and then injected with a radiomimetic drug, bleomycin (BLM), exhibit adaptive response and provide some mechanistic evidence for such response. MATERIALS AND METHODS Adult mice were exposed to 900 MHz RF at 120 μW/cm(2) power density for 4 hours/day for 7 days. Immediately after the last exposure, some mice were sacrificed while the others were injected with BLM 4 h later. In each animal: (i) The primary DNA damage and BLM-induced damage as well as its repair kinetics were determined in blood leukocytes; and (ii) the oxidative damage was determined from malondialdehyde (MDA) levels and the antioxidant status was assessed from superoxide dismutase (SOD) levels in plasma, liver and lung tissues. RESULTS There were no indications for increased DNA and oxidative damages in mice exposed to RF alone in contrast to those treated with BLM alone. Mice exposed to RF+ BLM showed significantly: (a) reduced BLM-induced DNA damage and that remained after each 30, 60, 90, 120 and 150 min repair time, and (b) decreased levels of MDA in plasma and liver, and increased SOD level in the lung. CONCLUSIONS The overall data suggested that RF exposure was capable of inducing adaptive response and mitigated BLM- induced DNA and oxidative damages by activating certain cellular processes.
Collapse
Affiliation(s)
- Chunyan Zong
- School of Public Health, Medical College of Soochow University , Suzhou, Jiangsu
| | | | | | | | | | | | | |
Collapse
|
37
|
Vijayalaxmi, Scarfi MR. International and national expert group evaluations: biological/health effects of radiofrequency fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9376-408. [PMID: 25211777 PMCID: PMC4199025 DOI: 10.3390/ijerph110909376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022]
Abstract
The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the "weight of scientific evidence" approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research.
Collapse
Affiliation(s)
- Vijayalaxmi
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX 78299, USA.
| | - Maria R Scarfi
- CNR-Institute for Electromagnetic Sensing of Environment, Napoli 80124, Italy.
| |
Collapse
|
38
|
Vijayalaxmi, Prihoda TJ. Mobile phones, non-ionizing radiofrequency fields and brain cancer: is there an adaptive response? Dose Response 2014; 12:509-14. [PMID: 25249839 DOI: 10.2203/dose-response.14-012.vijayalaxmi] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is widespread concern among the general public regarding the ever increasing use of mobile phones. The concern is mainly because the antenna which transmits nonionizing radiofrequency fields is held close to the head during use and thus might cause brain cancer. By far, the largest epidemiological study was conducted by the INTER-PHONE study group and the results were published in 2011. The author's conclusions were (i) no increased risk of meningioma and glioma in mobile phone users and (ii) there were suggestions of an increased risk for glioma at the highest exposure levels but, bias and error prevented a causal interpretation. We have carefully examined all of the odd ratios presented in the INTERPHONE study publication: our results showed 24.3% decreased and 0.7% increased risk for meningioma and 22.1% decreased and 6.6% increased risk for glioma. Hence, we hypothesize that the overwhelming evidence for the decreased risk for both diseases may be due to the induction of 'adaptive response' which is well-documented in scientific literature.
Collapse
Affiliation(s)
- Vijayalaxmi
- Department of Radiology, University of Texas Health Science Center
| | - Thomas J Prihoda
- Department of Pathology, University of Texas Health Science Center
| |
Collapse
|
39
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|
40
|
In vivo evaluation of the genotoxic effects of gonadotropins on rat reticulocytes. Curr Ther Res Clin Exp 2014; 72:60-70. [PMID: 24648576 DOI: 10.1016/j.curtheres.2011.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gonadotropins, as ovulation-inducing drugs, have been used widely to treat infertility. An epidemiologic correlation between infertility therapy and ovarian cancer development has been reported. However, the effect of gonadotropins in the formation of reproductive tract cancers is controversial. OBJECTIVE The aim of the study was to determine the in vivo genotoxic effects of gonadotropins on rat reticulocytes. METHODS In this prospective, randomized, controlled study, rats were randomly assigned to 1 of 5 groups. The calculated rat doses of 0.65 human menopausal gonadotropin (hMG), 0.95 hMG, 0.65 follitropin beta (FB), 0.95 FB, or normal saline (control group) were injected, respectively. These calculated rat doses (U/g) are based on average human gonadotropin doses of 150 and 225 IU/d for a 70-kg woman given in 2-mL saline (the control group received 2 mL of saline). Injections were administered once per day for 5 days, followed by 5 days of rest. Each treatment was repeated for 6 estrus cycles in the rats for a total of 12 estrus cycles. Six months after the last day of the 12(th) cycle, the rats were euthanized. Bone marrow tissues were removed, and pluripotent reticulocyte cells with micronuclei, nuclear buds, and binuclear abnormalities were analyzed using an in situ micronuclei assay under light microscopy. The proportion of micronucleated cells, cells with anaphase bridge, nuclear buds, and other nuclear abnormalities were measured. RESULTS The number of cells with nuclear buds and binuclear abnormalities in the hMG 225 and FB 225 groups was significantly higher (P < 0.05) than that from the hMG 150, FB 150, and control groups in the cytogenetic analysis of bone marrow stem cells. An increased rate of genotoxicity in all gonadotropin groups versus that of placebo was found. CONCLUSION In rats, the micronucleus genotoxicity assay suggests a dose-dependent gonadotropin effect on genomic instability in bone marrow stem cells in vivo.
Collapse
|
41
|
Sannino A, Zeni O, Romeo S, Massa R, Gialanella G, Grossi G, Manti L, Vijayalaxmi, Scarfì MR. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage. JOURNAL OF RADIATION RESEARCH 2014; 55:210-7. [PMID: 23979077 PMCID: PMC3951069 DOI: 10.1093/jrr/rrt106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 03/19/2024]
Abstract
The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.
Collapse
Affiliation(s)
- Anna Sannino
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
| | - Olga Zeni
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
| | - Stefania Romeo
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
| | - Rita Massa
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Giancarlo Gialanella
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Gianfranco Grossi
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
- Centre of Radioprotection and Health Physics, University of Naples Federico II, via Cintia, 80126, Napoli, Italy
| | - Lorenzo Manti
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Vijayalaxmi
- Department of Radiology, University of Texas Health Science Centre, 7703 Floyd Curl Drive – MC 7800, San Antonio, TX 78229-3900, USA
| | - Maria Rosaria Scarfì
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
42
|
Vijayalaxmi, Cao Y, Scarfi MR. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00004-0. [PMID: 24548818 DOI: 10.1016/j.mrrev.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
Abstract
Adaptive response is a phenomenon in which cells which were pre-exposed to extremely low and non-toxic doses of a genotoxic agent became resistant to the damage induced by subsequent exposure to a higher and toxic dose of the same, similar (in action) or another genotoxic agent. Such response has been well documented in scientific literature in cells exposed in vitro and in vivo to low doses of physical (especially, ionizing radiation) and chemical mutagens. The existence of similar phenomenon in mammalian cells exposed in vitro and in vivo to non-ionizing radiofrequency fields has been reported in several research publications. In in vitro studies, human blood lymphocytes exposed to radiofrequency fields and then treated with a genotoxic mutagen or subjected to ionizing radiation showed significantly decreased genetic damage. Similar studies in tumor cells showed significantly increased viability, decreased apoptosis, increased mitochondrial membrane potential, decreased intracellular free Ca2+ and, increased Ca2+-Mg2+-ATPase activity. In in vivo studies, exposure of rodents to radiofrequency fields and then to lethal/sub-lethal doses of γ-radiation showed survival advantage, significantly decreased damage in hematopoietic tissues, decreased genetic damage in blood leukocytes and bone marrow cells, increased numbers of colony forming units in bone marrow, increased levels of colony stimulating factor and interleukin-3 in the serum and increased expression of genes related to cell cycle. These observations suggested the ability of radiofrequency fields to induce adaptive response and also indicated some potential mechanisms for the induction of such response. Several gaps in knowledge that need to be investigated were discussed.
Collapse
|
43
|
Liu C, Gao P, Xu SC, Wang Y, Chen CH, He MD, Yu ZP, Zhang L, Zhou Z. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: A protective role of melatonin. Int J Radiat Biol 2013; 89:993-1001. [DOI: 10.3109/09553002.2013.811309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Speit G, Gminski R, Tauber R. Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible. Mutat Res 2013; 755:163-166. [PMID: 23817106 DOI: 10.1016/j.mrgentox.2013.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed.
Collapse
Affiliation(s)
- Günter Speit
- Universität Ulm, Institut für Humangenetik, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
45
|
Atlı Şekeroğlu Z, Akar A, Şekeroğlu V. Evaluation of the cytogenotoxic damage in immature and mature rats exposed to 900 MHz radiofrequency electromagnetic fields. Int J Radiat Biol 2013; 89:985-92. [DOI: 10.3109/09553002.2013.809170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One 2013; 8:e62663. [PMID: 23750202 PMCID: PMC3672148 DOI: 10.1371/journal.pone.0062663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. RESULTS WE FIND THAT: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. CONCLUSIONS SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity.
Collapse
|
47
|
Mornet E, Kania R, Sauvaget E, Herman P, Tran Ba Huy P. Vestibular schwannoma and cell-phones. Results, limits and perspectives of clinical studies. Eur Ann Otorhinolaryngol Head Neck Dis 2013; 130:275-82. [PMID: 23725662 DOI: 10.1016/j.anorl.2012.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/19/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022]
Abstract
The widespread development of cell-phones entails novel user exposure to electromagnetic fields. Health impact is a public health issue and a source of anxiety in the population. Some clinical studies reported an association between cell and cordless phone use and vestibular schwannoma; others found none. A systematic review was performed of all published clinical studies (cohort, registry, case-control and validation studies), with analysis of results, to determine the nature of the association and the level of evidence. Cohort studies were inconclusive due to short exposure durations and poor representativeness. Registry studies showed no correlation between evolution of cell-phone use and incidence of vestibular schwannoma. Case-control studies reported contradictory results, with methodological flaws. Only a small number of subjects were included in long-term studies (>10 years), and these failed to demonstrate any indisputable causal relationship. Exposure assessment methods were debatable, and long-term assessment was lacking. An on-going prospective study should determine any major effect of electromagnetic fields; schwannoma being a rare pathology, absence of association will be difficult to prove. No clinical association has been demonstrated between cell and cordless phone use and vestibular schwannoma. Existing studies are limited by their retrospective assessment of exposure.
Collapse
Affiliation(s)
- E Mornet
- Service d'ORL et chirurgie cervico-faciale, université Paris Diderot, hôpital Lariboisière, 2, rue Ambroise-Paré, 75475 Paris cedex 10, France.
| | | | | | | | | |
Collapse
|
48
|
Tkalec M, Stambuk A, Srut M, Malarić K, Klobučar GIV. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:7-12. [PMID: 23352129 DOI: 10.1016/j.ecoenv.2012.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.
Collapse
Affiliation(s)
- Mirta Tkalec
- Faculty of Science, Department of Botany, University of Zagreb, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
49
|
Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z. Exposure to 1800MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett 2013; 218:2-9. [DOI: 10.1016/j.toxlet.2013.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/28/2022]
|
50
|
Induction of adaptive response in mice exposed to 900MHz radiofrequency fields: Application of micronucleus assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:127-9. [DOI: 10.1016/j.mrgentox.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022]
|